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Abstract—Nearly perfect packing codes are those codes that
meet the Johnson upper bound on the size of error-correcting
codes. This bound is an improvement to the sphere-packing
bound. A related bound for covering codes is known as the
van Wee bound. Codes that meet this bound will be called
nearly perfect covering codes. This work studies such codes with
covering radius 1. It is shown that the set of these codes can
be partitioned into three families, depending on the distribution
of the Hamming distances between neighboring codewords.
General properties of these code families are presented, including
a characterization of their weight and distance distributions.
Constructions of codes for each of the families are presented.
Finally, extended perfect covering codes are considered. Their
punctured codes yield a variety of nearly perfect covering codes.

Index Terms—Nearly perfect codes, Perfect codes, Sphere-
covering bound, Weight distribution.

I. INTRODUCTION

PERFECT codes are among the most fascinating structures
in coding theory. They meet the well-known sphere-

packing bound, yet they are very rare. Therefore, there have
been many attempts to find either packing or covering codes
that are “almost perfect.” One class of such covering codes is
the topic of this work.

All the codes herein are over the binary field F2, and by
an (n,M) code (of length n and size M ) we mean a subset
C ⊆ Fn

2 of size |C| = M . For integers ` 6 m, we use the
notation [` : m] for the integer interval {`, `+1, . . . ,m}, with
[m] standing for [1 : m].

A translate of an (n,M) code C is the set

e + C , {e + c : c ∈ C},

where e ∈ Fn
2 (and addition is over F2). When the all-zero

word, 0, is a codeword in C we say that the code is zeroed.
A translate e + C with e ∈ C is a zeroed code. When e 6∈ C
we say that e + C is a non-zeroed translate.

The (Hamming) distance between two words x,y ∈ Fn
2

will be denoted by d(x,y), and w(x) will denote the weight
of x, i.e., the size of the support, Supp(x), of x (the notation
extends to integer vectors as well). The radius-t ball centered
at a word x ∈ Fn

2 is denoted by

Bt(x) , {y ∈ Fn
2 : d(x,y) 6 t}
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(where, for simplicity of notation, we make the dependence
on n implicit). We also define the boundary (sphere)

∂Bt(x) , {y ∈ Fn
2 : d(x,y) = t}

and
St , ∂Bt(0) = {y ∈ Fn

2 : w(y) = t}.

The words in ∂Bt(x) will be called the t-neighbors of x. The
minimum distance of an (n,M) code C is the smallest distance
between any two distinct codewords in C, and the distance of a
word x ∈ Fn

2 from C is defined by d(x, C) = minc∈C d(x, c).
The covering radius of C is defined by

R = max
x∈Fn

2

d(x, C),

and we say that a code C is R-covering if its covering radius
is at most R. When C is a linear code over F2 (of dimension
log2M ) and H is any full-rank r × n parity-check matrix
of C over F2 (where r = n − log2M ), the covering radius
of C equals the smallest R such that every vector in Fr

2 can
be expressed as a linear combination (over F2) of R columns
of H .

For an (n,M) code C with minimum distance 2R + 1 we
have the sphere-packing bound

M ·
R∑

i=0

(
n

i

)
6 2n, (1)

and if C has covering radius R we have the sphere-covering
bound

M ·
R∑

i=0

(
n

i

)
> 2n. (2)

Perfect codes meet both bounds.
The sphere-packing bound for an (n,M) code with mini-

mum distance 2R+ 1 was improved by Johnson [18] to

M ·

(
R∑

i=0

(
n

i

)
+

(
n
R

)⌊
n

R+1

⌋ ( n+ 1
R+ 1

−
⌊
n+ 1
R+ 1

⌋))
6 2n (3)

(see [22, p. 533]), and a code that meets this bound is called
a nearly perfect (packing) code. When R + 1 divides n + 1,
this bound coincides with (1). Codes that meet the bound (3)
were considered in [15], [21]. There are two families of
nontrivial codes that are nearly perfect yet not perfect. One
family is the set of shortened Hamming codes. A second
family consists of the punctured Preparata codes. These codes
were first found by Preparata [25] and later others found
many inequivalent codes with the same parameters [3], [19].
Moreover, these codes are very important in constructing other
codes, e.g., see [9]. A comprehensive work on perfect codes
and related codes can be found in [7]. For R-covering codes,
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an improvement on the sphere-covering bound was obtained
by van Wee [27]. A simplified version of his bound was
presented by Struik [26] and takes the form

M ·

(
R∑

i=0

(
n

i

)
−

(
n
R

)⌊
n

R+1

⌋ (⌈ n+ 1
R+ 1

⌉
− n+ 1
R+ 1

))
> 2n (4)

(notice the similarity to (3)). When R+ 1 divides n+ 1, this
bound coincides with (2). A code that meets the bound (4)
will be called a nearly perfect covering code. For even n and
R = 1, this bound becomes

M >
2n

n
. (5)

Except for perfect codes and some trivial codes, R = 1 is
the only radius for which we currently know of codes that
meet the bound (4); from (5), these codes have length n = 2r

and size M = 22r−r, for some positive integer r. A code with
these parameters will be called a a nearly perfect 1-covering
code (in short, NP1CC). In the case of linear codes, there is
a very simple characterization of NP1CCs, as we show in the
next example.

Example 1. Let C be an (n=2r,M=2n−r) linear code
over F2 and let H be any full-rank r× n parity-check matrix
of C over F2. Then C is 1-covering (and, hence, is an NP1CC),
if and only if each nonzero vector in Fr

2 appears as a column
in H . Thus, there are two possible cases. The first is when
the columns of H range over all the vectors of Fr

2 (including
the all-zero vector); the second case is similar, except that the
all-zero column is replaced by some nonzero vector of Fr

2.

In this work, we consider the structure of general (not
necessarily linear) NP1CCs. In Section II, we show that in any
NP1CC C, each codeword c ∈ C has a unique other codeword
c′ in B2(c); this, in turn, induces a partition of the code C
into pairs {c, c′}. Based on this property, we classify NP1CCs
into three types:
• Type A codes, in which the codewords in every pair
{c, c′} are 1-neighbors (the first case in Example 1
belongs to this type),

• Type B codes, in which the codewords in every such pair
are 2-neighbors (the second case in the example is of this
type), and—

• Type C codes (which are all the remaining NP1CCs).
In Section III, we present constructions of codes for each type
and then provide a complete characterization of NP1CCs of
Type A. In Section IV, we consider the weight and distance
distributions of NP1CCs; in particular, we prove that there
are exactly two possible weight distributions for all zeroed
NP1CCs and two other weight distributions for all their non-
zeroed translates. Moreover, we show that Type A and Type B
codes are distance invariant. In Section V, we concentrate on a
class of Type A codes in which the number of codeword pairs
{c, c′} that differ only on any given coordinate is the same for
all coordinates. Extended NP1CCs are discussed in Section VI
and are shown to provide—through puncturing—a method for
obtaining new NP1CCs from others. A conclusion and a few
problems for future research are presented in Section VII.

II. STRUCTURE OF NP1CCS

In this section, we examine the structure of NP1CCs.
Let C be an (n,M) code. Given a word x ∈ Fn

2 , we say
that a codeword c ∈ C covers x if c ∈ B1(x). Clearly, if C is
1-covering then every word x ∈ Fn

2 is covered by at least one
codeword of C. The over-covering of a subset Y ⊆ Fn

2 (with
respect to a 1-covering code C) is defined by∑

y∈Y
(|B1(y) ∩ C| − 1) =

(∑
y∈Y
|B1(y) ∩ C|

)
− |Y| .

Thus, while each word in Y is covered by at least one
codeword of C, the over-covering of Y measures how many
additional codewords cover each one of the words in Y . The
following lemma follows from the analysis of Struik in [26]
(although, as stated, it does not appear explicitly there).

Lemma 1 ([26]). Let C be an (n,M) NP1CC and let x ∈
Fn

2 \ C be a non-codeword. Then B1(x) contains exactly one
word that is covered by two codewords of C and no word that
is covered by more than two codewords of C.

Proof. We provide the steps of the proof through pointers
to [26]. It follows from Eq. (6) therein that for each non-
codeword x ∈ Fn

2 \ C, the over-covering of the ball B1(x) is
at least 1. Denoting by ε the average of these over-coverings,
we then get that ε > 1 (see Eq. (7) in [26]). Then, equality in
the Van Wee bound (Eq. (9) in [26]) forces the equality ε = 1,
which means that the over-covering of each ball B1(x) must
be exactly 1.

Corollary 2. Let C be an (n,M) NP1CC. For every non-
codeword x ∈ Fn

2 \ C,

|B1(x) ∩ C| 6 2.

A non-codeword x ∈ Fn
2 \ C for which |B1(x) ∩ C| = 2

will be called a midword.
While midwords differ from the remaining non-codewords

in the size of the intersection B1(x) ∩ C, those sizes become
the same if we look at balls of radius 2. This property,
which we prove in the next theorem, will be instrumental in
Section IV for deriving the weight and distance distributions
of NP1CCs.

Theorem 3. Let C be an (n,M) NP1CC. For every non-
codeword x ∈ Fn

2 \ C,

|B2(x) ∩ C| = n

2
+ 1.

Proof. Consider first the case where x is a midword.
By Lemma 1, no other word in B1(x) is covered by two
codewords; namely, the set of 1-neighbors of x consists of
two codewords c1 and c2 (none of which is a 1-neighbor
of a codeword) and n − 2 non-codewords y1,y2, . . . ,yn−2

(none of which is a midword). Each yi, in turn, is covered by
a unique codeword (which belongs to ∂B2(x)). Conversely,
each codeword in ∂B2(x) covers exactly two words among
the yi’s (and none of the codewords c1 and c2). We conclude
that B2(x) contains exactly n/2+1 codewords: the codewords
c1 and c2, and n/2− 1 codewords that cover the yi’s.
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We next turn to the case where x is not a midword. One (and
only one) of the 1-neighbors of x is a codeword, c, and, by
Lemma 1, there is a unique 1-neighbor y0 of x that is covered
by two codewords. We distinguish between two cases.

Case 1: y0 = c. The n − 1 remaining 1-neighbors of x
are non-codewords y1,y2, . . . ,yn−1, and each yi (including
y0) is covered by a unique codeword in ∂B2(x). Conversely,
each codeword in ∂B2(x) covers exactly two words among
the yi’s. These n/2 codewords, along with c, are (all) the
n/2 + 1 codewords in B2(x).

Case 2: y0 6= c, namely, y0 is a midword, which is covered
by two codewords c1, c2 ∈ ∂B2(x). The 1-neighbors of x
other than c and y0 are non-codewords y1,y2, . . . ,yn−2, each
covered by a unique codeword (in ∂B2(x)). Conversely, each
codeword in ∂B2(x) covers exactly two words among the yi’s
(where y0 is covered by two codewords). We conclude that
B2(x) contains exactly n/2+1 codewords: (i) the codeword c,
(ii) the codewords c1 and c2, which cover both y0 and two
other yi’s, and (iii) n/2 − 2 codewords that cover the n − 4
remaining yi’s.

The following bound is due to Fort and Hedlund [14] and
will be used in our next proof.

Lemma 4 ([14]). Let X be an (n,M) code whose code-
words are all in S3 and, in addition, every word in S2 is
covered by at least one codeword in X . Then

|X | >
⌈n

3

⌊n
2

⌋⌉
.

Lemma 5. Let C be an (n,M) NP1CC. For every codeword
c ∈ C,

|B2(c) ∩ C| > 2.

Proof. The result is immediate when n = 2, so we assume
hereafter in the proof that n = 2r > 4 and (by possibly
translating the code) that c = 0. Suppose to the contrary that
B2(0) ∩ C = {0}. Then S1 ∩ C = S2 ∩ C = ∅ and, so, all
the words in S2 are covered (only) by codewords in S3 ∩ C.
By Lemma 4 we then get that |S3 ∩ C| > (n2/2 + 1)/3. Now,
each codeword in S3∩C covers three words in S2 and, hence,
the over-covering of S2 (with respect to C) satisfies∑

y∈S2

(|B1(y) ∩ C| − 1)

= 3 |S3 ∩ C| − |S2| >
n2

2
+ 1−

(
n

2

)
=
n

2
+ 1.

On the other hand, by Corollary 2, |B1(y) ∩ C| ∈ {1, 2} for
every y ∈ S2. Hence, there are at least n/2 + 1 words y ∈ S2

for which |B1(y) ∩ C| = 2, which means that at least two
of these words, say y1 and y2, must have a ‘1’ at the same
position. Let x be the word in S1 that has its (only) ‘1’ at that
position. Then B1(x) contains two words, y1 and y2, each
covered by two codewords, thereby contradicting Lemma 1.
We thus conclude that |B2(0) ∩ C| > 2.

The next theorem presents the counterpart of Theorem 3 for
radius-2 balls that are centered at codewords of an NP1CC.

Theorem 6. Let C be an (n,M) NP1CC. For every code-
word c ∈ C,

|B2(c) ∩ C| = 2.

Proof. We consider the sum

ρ =
∑

x∈Fn
2

|B2(x) ∩ C| .

Every codeword c ∈ C is counted in this sum exactly
|B2(c)| = |B2(0)| times; so,

ρ = M · |B2(0)| = M ·
((

n

2

)
+ n+ 1

)
= M ·

(
n2

2
+
n

2
+ 1
)
.

Next, we write ρ = σ + τ , where

σ =
∑

x∈Fn
2 \C

|B2(x) ∩ C|

and
τ =

∑
c∈C
|B2(c) ∩ C| . (6)

By Theorem 3 it follows that

σ = (2n −M)
(n

2
+ 1
)

= M · (n− 1)
(n

2
+ 1
)

= M ·
(
n2

2
+
n

2
− 1
)

and, so,
τ = ρ− σ = 2M.

Now, by Lemma 5, each of the M summands in (6) is at
least 2; hence, each of them must in fact be equal to 2.

For any codeword c in an NP1CC C, the unique other
codeword c′ in B2(c) will be called the partner of c. A
pair of partners {c, c′} in which c and c′ are at distance 1
(respectively, 2) apart will be called a Type I (respectively,
Type II) pair.

Corollary 7. Let C be an (n=2r,M=2n−r) NP1CC.
Then C can be partitioned uniquely into M/2 = 2n−r−1

(unordered) pairs {c, c′}, where c and c′ are partners.

For a pair of partners {c, c′}, consider the “capsule”
B1(c) ∪ B1(c′). We can distinguish between two types of
capsules, depending on whether the pair {c, c′} is of Type I
or of Type II. Interestingly, the two types of capsules have
the same size, 2n. The midwords are precisely the words that
belong to the intersections B1(c) ∩B1(c′) when the pair is
of Type II.

Theorem 8. Let C be an (n=2r,M=2n−r) NP1CC. There
are exactly M = 2n−r words in Fn

2 that are covered by two
codewords of C and no word is covered by more than two
codewords.

Proof. Each codeword of C covers n+ 1 words of Fn
2 and,

so, ∑
x∈Fn

2

|B1(x) ∩ C| = M(n+ 1) = |Fn
2 |+M.

The result follows from Corollary 2 and Theorem 6, which
imply that |B1(x) ∩ C| ∈ {1, 2} for every x ∈ Fn

2 .
The words in Theorem 8 that are covered by two codewords

are (i) the midwords and (ii) the partners in Type I pairs.
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We end this section by presenting sufficient conditions for
a code to be an NP1CC.

Corollary 9. Let C an (n,M) code where M is even,
and suppose that C can be partitioned into M/2 unordered
pairs {c, c′} where d(c, c′) 6 2. Suppose in addition that the
respective M/2 capsules form a partition of Fn

2 . Then C is an
NP1CC.

Proof. The code C is 1-covering since every word in Fn
2 is

contained in some capsule. And since the size of each capsule
is 2n we get equality in (5).

Corollary 10. Let C an (n=2r,M=2n−r) code where
r is a positive integer. Then C is an NP1CC, if and only if
|B2(c) ∩ C| = 2 for every codeword c ∈ C.

Proof. Theorem 6 establishes the “only if” part, so we
prove sufficiency. Let C an (n=2r,M=2n−r) code such that
|B2(c) ∩ C| = 2 for every codeword c ∈ C. We can then
partition C (uniquely) into M/2 unordered pairs {c, c′} where
d(c, c′) 6 2. We show that the capsules that correspond to
distinct pairs are disjoint.

Indeed, suppose that the capsules that correspond to the
pairs {c1, c2} and {c3, c4} intersect, i.e., there exists a word
x ∈ Fn

2 in the intersection

(B1(c1) ∪B1(c2)) ∩ (B1(c3) ∪B1(c4)) .

This means that x ∈ B1(ci) ∩ B1(cj) for some i ∈ {1, 2}
and j ∈ {3, 4}. By the triangle inequality,

d(ci, cj) 6 d(ci,x) + d(cj ,x) 6 2,

which means that ci and cj are in the same capsule. Yet this
is possible only if {c1, c2} = {c3, c4}.

Since the M/2 capsules are disjoint, the size of their union
is (M/2)(2n) = 2n. Hence, they form a partition of Fn

2 , and
the result follows from Corollary 9.

III. ELEMENTARY CONSTRUCTIONS OF NP1CCS

All the constructions of NP1CCs which will be presented
in this section are based on perfect codes and their properties.
Hence, we start this section by presenting some basics of
perfect codes. Recall that a perfect code is a code that meets
the bounds (1) and (2). We will consider only codes for
which R = 1 in these equations; such codes have length
n = 2r − 1 and size M = 2n−r. For each length n, there
is an essentially unique linear perfect code—the Hamming
code. A perfect code can be a zeroed perfect code or its non-
zeroed translate. It is known that the number of nonequivalent
(nonlinear) perfect codes grows (at least) doubly-exponentially
with n [6, pp. 296–310], [12], [24], [28].

An extended zeroed perfect code is obtained from a zeroed
perfect code C by adding an even parity to each codeword of C.
We distinguish between two types of non-zeroed translates of
an extended zeroed perfect code of length 2r: an odd translate
of such a code contains only words with odd weight including
exactly one word of weight 1, and an even translate contains
only words of even weight including 2r−1 words of weight 2.

The following two lemmas are straightforward.

Lemma 11. Puncturing an extended zeroed perfect code on
any one of its coordinates yields a zeroed perfect code.

Lemma 12. Let C be an extended zeroed perfect code of
length n = 2r.
(1) Each word in Fn

2 of odd weight has a unique 1-neighbor
in C.

(2) Each word in Fn
2 of even weight has a unique 1-neighbor

in any odd translate of C.
(3) Each word in Fn

2 of odd weight has a unique 1-neighbor
in any even translate of C.

The simple construction in the next theorem yields NP1CCs
for all the three types that were listed in Section I.

Theorem 13. Let C1 and C2 be (n−1,M/2) perfect codes,
where n = 2r and M = 2n−r. Then the code

C , {(c1, 0) : c1 ∈ C1} ∪ {(c2, 1) : c2 ∈ C2}

is an (n,M) NP1CC.

Proof. Since |C| = M = 2n−r, it suffices to show that
d(x, C) 6 1 for every word x ∈ Fn

2 . Write x = (y, b)
where b ∈ F2. Since C1 and C2 are perfect codes we have
d(y, C1) 6 1 and d(y, C2) 6 1; hence, d(x, C) 6 1 regardless
of b.

Corollary 14. Using the notation of Theorem 13, the code C
therein is
(1) of Type A, if C1 = C2,
(2) of Type B, if C1 ∩ C2 = ∅, and—
(3) of Type C, if C1 and C2 are distinct and, in addition,
|C1 ∩ C2| = k > 0, where k is the number of Type I pairs
in C.

Proof. The pairs of partners in C range over all pairs
{(c1, 0), (c2, 1)} where c1 ∈ C1, c2 ∈ C2, and d(c1, c2) 6 1,
with Type I pairs corresponding to the case where c1 = c2 (∈
C1 ∩ C2).

Corollary 14(3) raises an interesting question regarding
(n,M) NP1CCs of Type C: for which integers k ∈ [M/2− 1]
do there exist NP1CCs with exactly k pairs of Type I (and
M/2 − k pairs of Type II)? The corollary implies that such
NP1CCs can be constructed from two perfect codes that inter-
sect on exactly k codewords. It was proved in [2] that when
r > 4, for any even integer k in

[
0 : 22r−2r

]
there exist two

perfect codes of length 2r − 1 whose intersection has size k.
See also [1], [12], [13], [17], Corollary 22 in Section IV, and
the paragraph before Proposition 31 in Section VI.

Corollary 15. There exist NP1CCs of Type A, of Type B,
and of Type C.

The next theorem and corollary provide a complete charac-
terization of NP1CCs of Type A.

Theorem 16. A code C is a zeroed (n=2r,M=2n−r)
NP1CC of Type A, if and only if it is the union of an extended
zeroed perfect code of length n = 2r with an odd translate of
an extended zeroed perfect code of the same length.

Proof. Suppose that C is a zeroed (n=2r,M=2n−r)
NP1CC of Type A. Since C can be partitioned into Type I
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pairs, exactly half of the codewords have even weight. More-
over, since there are no two codewords in C at distance 2 apart,
it follows that the sub-code that consists of the even-weight
(respectively, odd-weight) codewords has minimum distance
(at least) 4. Therefore, the even-weight codewords in C form an
extended zeroed perfect code, and the odd-weight codewords
form an odd translate of an extended zeroed perfect code.

Conversely, suppose that C = C1 ∪ C2, where C1 is an
extended zeroed perfect code of length n = 2r and C2 is
an odd translate of an extended zeroed perfect code of the
same length. By Lemma 12(1), every word x ∈ Fn

2 of odd
weight has a 1-neighbor in C1 (and that applies also when
x ∈ C2); similarly, by Lemma 12(2), every word x ∈ Fn

2

of even weight has a 1-neighbor in C2 (and that includes the
case where x ∈ C1). Moreover, |C| = 2n−r and, hence, C is a
zeroed NP1CC of Type A.

Corollary 17. A code is a non-zeroed translate of an
(n=2r,M=2n−r) NP1CC of Type A, if and only if it is the
union of an even translate of an extended zeroed perfect code
of length 2r with an odd translate of an extended zeroed
perfect code of the same length.

Other constructions in which an NP1CC of one type is
obtained from an NP1CC of another type will be given in
Section VI.

IV. WEIGHT DISTRIBUTION OF NP1CCS

In this section, we characterize the weight distribution of
NP1CCs. In particular, we show that zeroed NP1CCs can have
one out of two weight distributions: one distribution is unique
to NP1CCs of Type A, and the other is unique to NP1CCs of
Type B (zeroed NP1CCs of Type C can have any of these two
distributions).

Our analysis will make use of some known properties of
weight distributions, all of which can be found in Chapters 5
and 6 in [22]. For the ease of reference, we have summarized
them in Section IV-A.

A. Definitions and background

Given an (n,M) code C, the weight distribution of C is the
integer vector A = AC = (Ai)i∈[0:n] with entries

Ai = |C ∩ Si| .

The respective weight enumerator is the bivariate homoge-
neous polynomial

A(x, y) =
∑

i∈[0:n]

Aix
n−iyi,

or the univariate polynomial A(y) , A(1, y). The distance
distribution of an (n,M) code C is the rational vector B =
BC = (Bi)i∈[0:n] whose entries are

Bi =
1
M

∣∣{(c, c′) ∈ C × C : d(c, c′) = i
}∣∣ .

Thus,
B =

1
M

∑
e∈C

Ae+C . (7)

The respective distance enumerator is the bivariate homoge-
neous polynomial

B(x, y) =
∑

i∈[0:n]

Bix
n−iyi,

or the univariate polynomial B(y) , B(1, y).
A zeroed code C is called distance invariant if Ae+C = AC

for every codeword e ∈ C. For such codes we have B = A.
All linear codes are distance invariant.

Let z = (zj)j∈[n] be a vector of real indeterminates and
define the ring

Rn = R[z]/〈z2
1 − 1, z2

2 − 1, . . . , z2
n − 1〉.

Namely, the elements and arithmetic in Rn are obtained from
those in R[z] by reducing modulo 2 the exponents of powers
of the indeterminates (and so those powers can be seen as the
elements 0 and 1 of F2). For v = (vj)j∈[n] ∈ Fn

2 , we introduce
the shorthand notation

zv ,
∏

j∈[n]

z
vj

j .

For each u = (uj)j∈[n] ∈ Fn
2 , we define the character

χu : Rn → R which maps any

G = G(z) =
∑

v∈Fn
2

gvzv ∈ Rn

to its value at z = ((−1)uj )j∈[n]:

χu(G(z)) =
∑

v∈Fn
2

gv · (−1)〈u,v〉,

where 〈·, ·〉 denotes dot product. Clearly, χu is linear over R
and multiplicative.

With each (n,M) code C we associate its generating
function in Rn:

C(z) =
∑
v∈C

zv.

Given an (n,M) code C, the transform of the weight
distribution AC is the rational vector A′ = A′C = (A′i)i∈[0:n]

with the entries

A′i =
1
M

∑
u∈Si

χu(C(z)). (8)

In particular, A′0 ≡ 1. The respective enumerator polynomial,

A′(x, y) =
∑

i∈[0:n]

A′ix
n−iyi,

is related to A(x, y) by MacWilliams’ identities:

A′(x, y) =
1
M
· A(x+ y, x− y) (9)

and
A(x, y) =

M

2n
· A′(x+ y, x− y). (10)

When C is linear, the transform A′ is the weight distribution
of the dual code, C⊥, of C.
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Example 2. Let C1 be the Type A linear NP1CC in
Example 1. The dual code C⊥1 is the simplex code padded
with an extra zero coordinate; hence,

A′C1(x, y) = xn + (n− 1)xn/2yn/2.

The weight enumerator of C1 is therefore AC1(y) = A1(y),
where

A1(y) ,
1
n

(1 + y)n +
(

1− 1
n

)
(1 + y)n/2(1− y)n/2

=
1
n

(1 + y)n +
(

1− 1
n

)
(1− y2)n/2. (11)

Let C2 be the Type B linear NP1CC in that example. The dual
code C⊥2 is the simplex code padded with a replica of one of
the coordinates. Here

A′C2(x, y) = xn +
(n

2
− 1
)
xn/2yn/2 +

n

2
xn/2−1yn/2+1

and, so, AC2(y) = A2(y), where

A2(y) ,
1
n

(1 + y)n +
(

1
2
− 1
n

)
(1 + y)n/2(1− y)n/2

+
1
2

(1 + y)n/2−1(1− y)n/2+1. (12)

The transform of the distance distribution B is the rational
vector B′ = (B′i)i∈[0:n] with the entries

B′i =
1
M2

∑
u∈Si

(
χu(C(z))

)2
. (13)

The respective enumerator polynomial,

B′(x, y) =
∑

i∈[0:n]

B′ix
n−iyi,

is related to B(x, y) by MacWilliams’ identities (9)–(10), with
A(x, y) and A′(x, y) therein replaced by B(x, y) and B′(x, y).
When a zeroed code C is distance invariant we have B′ = A′.

By (13) it follows that

B′i = 0 ⇐⇒ χu(C(z)) = 0 for all u ∈ Si. (14)

Hence, by (8),

Supp(A′) ⊆ Supp(B′). (15)

The external distance of C is defined by

s′ = |Supp(B′) \ {0}| = w(B′)− 1.

Theorem 18 ([22, Ch. 6, Thm. 20]). Let C be an (n,M)
code with external distance s′. Then for any e ∈ Fn

2 , the
entries of Ae+C are uniquely determined by n, M , Supp(B′),
and the first s′ entries of Ae+C .

It follows from (the proof of) this theorem that a code
is distance invariant whenever its external distance does not
exceed its minimum distance. Moreover, the external distance
bounds from above the covering radius of the code.

B. Characterization of the weight distribution of NP1CCs

Our next theorem will be the main tool for characterizing
the weight distribution of NP1CCs. Our proof will use the
following notation. For i ∈ [0 : n], we let Yi(z) be the ith
elementary symmetric function in the entries of z:

Yi(z) =
∑
v∈Si

zv.

It is known (see [22, p. 135]) that for any u ∈ Sw,

χu(Yi(z)) = Pi(w), (16)

where Pi(·) is the ith Krawtchouk polynomial:

Pi(w) ,
∑

j∈[0:i]

(−1)j

(
w

j

)(
n− w
i− j

)
.

Theorem 19. Let C be an (n,M) NP1CC and let B′ be
the transform of its distance distribution. Then

Supp(B′) ⊆ {0, n/2, n/2 + 1},

i.e., s′ 6 2.

Proof. Let C(z) be the generating function of C and
consider the following multinomial (in Rn):

C(z) ·
∑

v∈S1∪S2

zv = C(z) (Y1(z) + Y2(z)) .

For any word x ∈ Fn
2 , the coefficient of zx in this multinomial

equals the number of codewords at distance 1 or 2 from x.
By Theorems 3 and 6, this number is

n

2
+ 1 if x is a non-codeword,

1 if x is a codeword.

Hence,

C(z)
(n

2
+ Y1(z) + Y2(z)

)
=

(n
2

+ 1
) ∑

v∈Fn
2

zv

=
(n

2
+ 1
) ∏

j∈[n]

(1 + zj)n

and, so, for every u ∈ Fn
2 \ {0},

χu

(
C(z)

(n
2

+ Y1(z) + Y2(z)
))

= 0.

By (16) and the additivity and multiplicativity of χu(·) we get

χu(C(z)) · β(w(u)) = 0, (17)

where β(·) is the following polynomial:

β(w) =
n

2
+ P1(w) + P2(w)

=
n

2
+ (n− 2w) +

((
n

2

)
− 2nw + 2w2

)
= 2

(
w − n

2

)(
w − n

2
− 1
)
.

Let w be a nonzero element in Supp(B′), namely, B′w 6= 0.
By (14), there exists at least one word u ∈ Sw such that
χu(C(z)) 6= 0. Hence, by (17), we conclude that

β(w) = 0
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TABLE I
PARAMETERS OF THE FOUR POSSIBLE WEIGHT DISTRIBUTIONS OF NP1CCS.

Case A0 A1 A′n/2 A′n/2+1 Types
e ∈ C and |B1(e) ∩ C| = 2 1 1 n− 1 0 A,C
e ∈ C and |B1(e) ∩ C| = 1 1 0 n/2− 1 n/2 B,C
e 6∈ C and |B1(e) ∩ C| = 2 0 2 n/2− 1 −n/2 B,C
e 6∈ C and |B1(e) ∩ C| = 1 0 1 −1 0 A,B,C

(see Lemma 19 in [22, Ch. 6]), i.e., w ∈ {n/2, n/2+1}.
Let C be an (n,M) NP1CC which, without any loss of

generality, we assume to be zeroed, and let e + C be any
of its translates. By Theorem 19 we have s′ 6 2 and, so, by
Theorem 18, the weight distribution, A = (Ai)i∈[0:n], of e+C
is uniquely determined by its first two entries, namely, by the
pair (A0 A1). And by Corollary 2 and Theorem 6, this pair can
take (only) four values, as shown in the first three columns in
Table I. In what follows, we compute the explicit dependence
of the weight enumerator A(y) (and, hence, of the weight
distribution A) on (A0 A1). We do this by first determining
the transform A′(x, y) using the first set of MacWilliams’
identities (9); then, we use the second set (10) to obtain the
complete weight enumerator A(x, y).

Substituting (x, y) = (1, 1) in both sides of (9) and recalling
that A′0 ≡ 1 and (from (15) and Theorem 19) that Supp(A′) ⊆
Supp(B′) ⊆ {0, n/2, n/2 + 1}, we get

1 +A′n/2 +A′n/2+1 = n.

Next, differentiating both sides of (9) with respect to y and
doing the same substitution yields

n

2
A′n/2 +

(n
2

+ 1
)
A′n/2+1 =

n

2
(nA0 −A1).

Solving the last two equations for A′n/2 and A′n/2+1 in terms
of (A0 A1) results in:

A′n/2 = nA0 −
n

2
(1−A1)− 1

A′n/2+1 =
n

2
(1−A1).

The fourth and fifth columns in Table I present the solutions
for A′n/2 and A′n/2+1 (and, thus, the complete characterization
of the transform A′(x, y)) for each of the four cases in the
table. Knowing now all the nonzero coefficients in A′(x, y),
we get from (10) the complete weight enumerator A(y), in
terms of (A0 A1):

A(y) =
1
n

(1 + y)n

+
(
A0 −

1−A1

2
− 1
n

)
(1 + y)n/2(1− y)n/2

+
1−A1

2
· (1 + y)n/2−1(1− y)n/2+1.

Rearranging terms leads to the following result.

Theorem 20. Let C be a zeroed (n,M) NP1CC and let e
be a word in Fn

2 . Then the weight enumerator of e+C is given
by

A(y) =
1
n

(1 + y)n

+
(
A0 −

1
n

+
(
A0+A1−1− 1

n

)
y

)
(1−y)(1−y2)n/2−1,

(18)

where (A0 A1) is determined from C and e according to
Table I.

We next present an explicit expression for the entries of the
weight distribution A = (Ai)i∈[0:n]. For i ∈ [0 : n], let

∆i , (−1)di/2e
(
n/2− 1
bi/2c

)
(where the binomial coefficient is assumed to be zero for
invalid parameters); it can be verified that

(1− y)(1− y2)n/2−1 =
∑

i∈[0:n]

∆iy
i.

By (18) it then follows that for every i ∈ [0 : n],

Ai =
1
n

(
n

i

)
+
(
A0 −

1
n

)
∆i +

(
A0 +A1 − 1− 1

n

)
∆i−1.

When (A0 A1) = (1 1), Eq. (18) becomes A1(y) in (11).
Note that this case can occur only when C is either of Type A
or of Type C (see the last column in Table I). Moreover,
if C is of Type A, then A1(y) is the weight enumerator of
e + C for every codeword e ∈ C. Hence, Type A codes are
distance invariant: in their case B = A and B′ = A′ and,
consequently, their external distance is 1 (which is also their
minimum distance).

When (A0 A1) = (1 0), Eq. (18) becomes A2(y) in (12).
This case can occur only when C is either of Type B or of
Type C. By a similar reasoning as before we conclude that
Type B codes are distance invariant as well and their external
distance, as well as their minimum distance, is 2 (except when
n = 2, where the external distance is 1).

The case (A0 A1) = (0 2) also pertains to Type B and
Type C codes, as it occurs when e is a midword. Eq. (18) is
then similar to (12) except that the sign of the last term in (12)
is flipped.
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Finally, the case (A0 A1) = (0 1) corresponds to e being a
non-codeword that is not a midword. This case can occur in
all types, and the weight enumerator is

1
n

(
(1 + y)n − (1− y2)n/2

)
.

Type C codes cannot be distance invariant, since a fraction
B1 ∈ (0, 1) of the codewords have 1-neighbors while the
other codewords do not. Still, by (7), we get a complete
characterization of their distance enumerator:

B(y) = B1 · A1(y) + (1−B1) · A2(y).

Corollary 21. Let C be an (n,M) N1PCC where n > 2.
Then exactly half of the codewords in C have even weight.

Proof. It follows from (18) that∑
i even

Ai −
∑
i odd

Ai = A(−1) = 0.

Corollary 22. Let C be an (n,M) N1PCC where n > 2.
Then the number, k, of Type I pairs in C is even (and so is the
number, M/2− k, of Type II pairs). Moreover, exactly half of
the Type II pairs consist of even-weight partners.

Proof. Within each Type I pair, one (and only one) of the
partners has even weight. Hence, in the subset CI of C formed
by the union of all Type I pairs, exactly half of the codewords
have even weight. By Corollary 21 it then follows that the
same must hold in the subset CII = C \ CI, which is formed
by the union of all Type II pairs. Yet in each Type II pair,
the parity of the partners must be the same; hence, there are
as many Type II pairs with even-weight partners as such pairs
with odd-weight partners. We conclude that |CII| is even and,
therefore, so is k = |CI| = M/2− |CII|.

Remark 1. The weight distributions of Type A and Type B
NP1CCs were shown in [4] using a different technique.
Another approach for computing the weight distributions of
the three types was suggested by the reviewer and is based
on equitable partitions and quotient matrices [20], [23]. This
method completely solves the weight and distance distributions
for Type A and Type B. For Type C, we need to consider
the same technique for the extended code and analyze its
punctured code after the solution of the weight distribution.
However this method does not recover any information on the
distance distribution.

V. BALANCED NEARLY PERFECT COVERING CODES

Some NP1CCs have additional special properties. One ex-
ample of such a property pertains to (n,M) codes of Type A
where for any coordinate there is at least one codeword that
disagrees with its partner on that coordinate (this property
will turn out to be useful in Section VI). In this section,
we construct such codes. Moreover, in the codes that we
present, the number of codewords that disagree with their
respective partners on any given coordinate equals M/n (i.e.,
it is the same for all coordinates). Such a code will be called
a balanced NP1CC.

We start by introducing some notation. A self-dual sequence
is a binary cyclic sequence that is equal to its complement.
If there is no periodicity in the sequence (which will the case
henceforth), then it can be written as [X X ], where X is the
binary complement of X . Letting n be the length of X , the
orbit of [X X ], denoted Orb(X), is the set of all words in
Fn

2 that are obtained by reading any n (cyclically-)consecutive
symbols in [X X ]. Equivalently, defining the complemented
cyclic shift operator ϕn : Fn

2 → Fn
2 by

ϕn(x1 x2 x3 . . . xn) = x2 x3 . . . xn x1,

the elements of Orb(X) are all the distinct words of the form
ϕi

n(X), for some integer i > 0 (where ϕ0
n(X) ≡ X) [16,

p. 171–173]. It is easy to see that |Orb(X)| divides 2n (in
our case there will be equality) and that ϕn(·) is distance
preserving: for any x,y ∈ Fn

2 ,

d(ϕn(x), ϕn(y)) = d(x,y).

For each r > 3, we define the code Cr of length n = 2r by

Cr =
⋃

[X X ]∈Gr

Orb(X), (19)

where Gr is a set of 2n−2r−1 self-dual sequences of length 2n
that will be defined recursively. We show by induction on r
that Cr is an NP1CC of Type A, and the balancing property
will then follow from the closure of Cr under ϕn(·).

For r = 3, we take

G3 = {[00011010 11100101], [00011011 11100100]}, (20)

resulting in an (8, 32) code C3. Since the sequences in G3 differ
only in two positions (the eighth and the 16th), each codeword
in C3 has a 1-neighbor in C3; moreover, a simple inspection
reveals that no two codewords in C3 are at distance 2 apart.
Hence, by Corollary 10, the code C3 is a (non-zeroed) NP1CC
of Type A.

Example 3. Three more pairs of sequences can be used
instead of (20) (the pairs can be obtained from one another
by decimation):

{[01001110 10110001], [01001111 10110000]},
{[01110110 10001001], [01110111 10001000]},
{[00100011 11011100], [00100010 11011101]}.

Now, given some r > 3, write n = 2r and suppose (by
induction) that Gr is a set of 2n−2r−1 self-dual sequences
of length 2n for which the construction (19) yields an
(n=2r,M=2n−r) NP1CC of Type A. Also, let Er be the set
of all 2n−2 even-weight words in Fn

2 that start with a ‘0’. We
define Gr+1 to be the following set of self-dual sequences of
length 4n:

Gr+1 ,
{

[U U+X U U+X] : U ∈ Er and [X X ] ∈ Gr

}
.

(21)
This recursive construction of Gr+1 from Gr is very similar to
the constructions presented in [8], [10], [11] and is reminiscent
of the well-known (u,u+v) code construction method [22,
p. 76].
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Example 4. Applying the recursion, we can compute the
set G4 (of size 128) from the set G3 in (20). Some of the
sequences of G4 are shown in Table II.

Proposition 23. Under the induction hypothesis on Cr
and |Gr|, the code Cr+1 that is constructed from Gr+1 by (19)
is a balanced (2n, 22n−r−1) NP1CC, and |Gr+1| = 22n−2r−3.

Proof. We first show that every word in F2n
2 has a

1-neighbor in Cr+1. Let y = (y1,y2) ∈ F2n
2 where

y1,y2 ∈ Fn
2 . Since (by induction) Cr is an NP1CC of Type A,

there exists c ∈ Cr such that y1 + y2 = c + e, for some
e ∈ S1 (and that holds also when y1 + y2 ∈ Cr). Let [X X ]
be the self-dual sequence in Gr whose orbit contains c; then
X = ϕi

n(c), for some i ∈ [0 : 2n−1]. Since ϕ2n(·) is distance
preserving and Cr+1 is closed under this operator, it suffices
to show that the word u = ϕi

2n(y) has a 1-neighbor in Cr+1.
Writing u = (u1,u2) where u1,u2 ∈ Fn

2 , we have

u1 + u2 = ϕi
n(y1 + y2) = ϕi

n(c + e) = X + e′, (22)

for some e′ ∈ S1 (which is a rotation of e by i positions).
Now, if u1 has even weight, then

(u1,u1+X) (22)= (u1,u2+e′)

is a codeword of Cr+1 at distance 1 from u. Otherwise, u′1 ,
u1 + e′ has even weight, in which case

(u′1,u
′
1+X) (22)= (u′1,u2)

is a codeword of Cr+1 at distance 1 from u. In summary, every
word y ∈ F2n

2 has a 1-neighbor in Cr+1 (and that applies also
when y ∈ Cr+1).

Turning now to the size of Cr+1, we have

|Cr+1|
(19)
6 4n · |Gr+1|

(21)
6 4n · |Er| · |Gr| 6 22n−r−1,

namely, Cr+1 is an NP1CC of Type A and the inequalities in
the last equation all hold with equality; in particular, |Gr+1| =
22n−2r−3. Finally, the balancing property follows from the
closure of Cr+1 under ϕ2n(·).

The construction Cr was defined and analyzed for another
purpose in [5], where it was mentioned (without proof) that
it is 1-covering. The construction will also work with self-
dual sequences on other 1-covering of Fn

2 if every word in Fn
2

(including codewords) has a 1-neighbor.

VI. EXTENDED NP1CCS AND THEIR PROPERTIES

In this section, we study the properties of extended NP1CCs.
Given an (n=2r,M=2n−r) NP1CC C, the respective ex-

tended NP1CC (in short, ENP1CC) is the (n+1,M) code C∗
that is obtained by adding to each codeword of C an even
parity as an (n+1)st coordinate. The next property follows
from Theorem 6.

Proposition 24. In an ENP1CC C∗, for each codeword
c ∈ C∗ there is a unique codeword c′ ∈ C∗ such that
d(c, c′) = 2 (and d(c, c′′) > 4 for any other codeword
c′′ ∈ C∗ \ {c, c′}).

Similarly to NP1CCs, two codewords in an (n+1,M)
ENP1CC C∗ that are at distance 2 apart will be called partners,
and the M/2 pairs of partners form a partition of C∗.

Corollary 10 and Proposition 24 imply the following con-
sequence (compare with Lemma 11).

Corollary 25. Puncturing an ENP1CC on any one of its
coordinates yields an NP1CC.

Thus, ENP1CCs induce a partition of the set of NP1CCs
into equivalence classes, where two NP1CCs are said to be
equivalent if one can be obtained from the other by extension
followed by puncturing. Each equivalence class can contain
NP1CCs of several types, and we are interested in identifying
which of the three types of NP1CCs can belong to the same
equivalence class.

A necessary and sufficient condition that a puncturing of
an ENP1CC will be of a certain type can be inferred as an
immediate observation from the definitions of Type A, Type B,
and Type C.

Lemma 26. Let C∗ is an ENP1CC. The type of an NP1CC
obtained by puncturing of C∗ on a given coordinate j is
determined as follows:
(1) it is of Type A, if and only if all codewords in C∗ disagree

with their respective partners on the jth coordinate,
(2) it is of Type B, if and only if all codewords in C∗ agree

with their partners on that coordinate, and—
(3) it is of Type C otherwise (i.e., there is at least one

codeword in C∗ that agrees with its partner on the jth
coordinate and at least one codeword that doesn’t).

Proposition 24 and Lemma 26 imply the following negative
result.

Proposition 27. There are no ENP1CCs whose punctured
codes are all of Type A, or all of Type B.

Proposition 28. Let C be an (n,M) NP1CC obtained from
the union of an extended zeroed perfect code C1 and an odd
translate C2 of C1. The punctured codes of C∗ are either of
Type A or of Type B (with at least one code of each type).

Proof. Noting that C2 = e + C1 where e ∈ S1, let
Supp(e) = {j}. All codewords in C disagree with their
respective partners on the jth coordinate (and only on that
coordinate). Therefore, all codewords in C∗ disagree with their
partners on that coordinate and on the (n+1)st coordinate
(and agree on the remaining n − 1 coordinates). Thus, by
Lemma 26(1), puncturing on one of these two coordinates
yields an NP1CC of Type A, while, by Lemma 26(2), punc-
turing on any of the remaining n − 1 coordinates yields an
NP1CC of Type B.

It is easy to verify by Lemma 26 that Proposition 28
characterizes all the ENP1CCs whose punctured codes are of
Type A or of Type B (with at least one code of each type).

Proposition 29. Let C be an NP1CC of Type A in which for
each coordinate there is at least one codeword that disagrees
with its partner on that coordinate. The punctured codes of C∗
are either of Type A or of Type C (with at least one code of
each type).
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TABLE II
ELEMENTS OF THE SET G4 , SORTED ACCORDING TO THE STANDARD LEXICOGRAPHIC ORDERING ON E3 × G3 .

[00000000 00011010 11111111 11100101], [00000000 00011011 11111111 11100100],
[00000011 00011001 11111100 11100110], [00000011 00011000 11111100 11100111],
[00000101 00011111 11111010 11100000], [00000101 00011110 11111010 11100001],
[00000110 00011100 11111001 11100011], [00000110 00011101 11111001 11100010],
[00001001 00010011 11110110 11101100], [00001001 00010010 11110110 11101101],
[00001010 00010000 11110101 11101111], [00001010 00010001 11110101 11101110],
[00001100 00010110 11110011 11101001], [00001100 00010111 11110011 11101000],
[00001111 00010101 11110000 11101010], [00001111 00010100 11110000 11101011],

...
[01111000 01100010 10000111 10011101], [01111000 01100011 10000111 10011100],
[01111011 01100001 10000100 10011110], [01111011 01100000 10000100 10011111],
[01111101 01100111 10000010 10011000], [01111101 01100110 10000010 10011001],
[01111110 01100100 10000001 10011011], [01111110 01100101 10000001 10011010].

Proof. Clearly, C is one of the punctured codes (of Type A)
and, so, by Lemma 26(1), every codeword in C∗ disagrees
with its partner on the (n+1)st coordinate. Since partners
in each pair in C∗ are at distance 2 apart, there can be at
most one additional coordinate on which all codewords in C∗
disagree with their partners (in which case puncturing on that
coordinate yields an NP1CC of Type A). For each of the
remaining coordinates there exists some codeword that agrees
with its partner on that coordinate (and, by the condition of
the proposition, also some codeword that doesn’t). Hence, by
Lemma 26(3), puncturing on any of these coordinates yields
an NP1CC of Type C.

We note that a balanced NP1CC is an NP1CC of Type A
which satisfies the requirements of Proposition 29. It is easy
to verify by Lemma 26 that Proposition 29 characterizes all
the ENP1CCs whose punctured codes are of Type A or of
Type C.

Proposition 30. Let C∗ be an ENP1CC whose punctured
codes range over all three types (with at least one code of each
type). There is exactly one coordinate on which all codewords
in C∗ disagree with their respective partners, and at least one
coordinate on which all agree with their partners.

Proof. By Lemma 26(1), there is a least one coordinate on
which all codewords in C∗ disagree with their partners. Now,
if there were two such coordinates, then all codewords would
have to agree with their partners on the remaining coordinates,
thereby contradicting Lemma 26(3). Finally, by Lemma 26(2),
there is a least one coordinate on which all codewords agree
with their partners.

We next construct an ENP1CC that satisfies the conditions
of Proposition 30, based on an idea presented in [12]. By [12],
there exist two zeroed perfect codes of length n− 1 = 2r − 1
which differ only in 2n/2−1 codewords and only on one
coordinate, say the first coordinate. Let C1 be the extended
code of the first code and C2 be an odd translate of the
extended code of the second (where the extended code and
its translate differ only on the last coordinate).

Proposition 31. Given the above notation, the ENP1CC C∗
obtained by extending the code C , C1 ∪ C2 is an ENP1CC
whose punctured codes range over all three types.

Proof. There is one coordinate—the (n+1)st—on which
all the codewords in C∗ disagree with their respective partners;
two coordinates—the first and the nth—on which some (but
not all) the codewords agree with their partners; and n − 2
coordinates on which there is full agreement. The result
follows from Lemma 26.

Propositions 27–29 and 31 raise the question whether there
exists an ENP1CC with no punctured codes of Type A.

We end this section by a characterization of the weight
distribution of a zeroed ENP1CC. This distribution turns out
to be unique and independent of the type of the NP1CC that
was extended (this also implies that ENP1CCs are distance
invariant).

Theorem 32. Let C∗ be a zeroed (n+1=2r+1,M=2n−r)
ENP1CC. Its weight enumerator is given by

A∗(y) =
1

2n
(
(1 + y)n+1 + (1− y)n+1

)
+
(

1− 1
n

)
(1− y2)n/2.

Proof. Let C be the zeroed (n,M) NP1CC that was ex-
tended and let A(y) =

∑n
i∈[0:n]Aiy

i be its weight enumerator.
It is easy to see that the weight distribution of C∗ is given by

A∗0 = 1, A∗n+1 = 0,

and, for i ∈ [n]:

A∗i =
{
Ai +Ai−1 if i is even

0 otherwise.

Hence,

A∗(y) =
∑

i∈[0:n+1]

A∗i y
i

=
1
2
(
A(y) + A(−y) + y(A(y)− A(−y))

)
=

1
2
(
(1 + y)A(y) + (1− y)A(−y)

)
. (23)
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Substituting either (11) or (12) into (23) yields the result.

VII. CONCLUSION AND FUTURE WORK

In this work, we studied the structure of NP1CCs. We
showed that NP1CCs can be classified into three types,
depending on the distribution of the Hamming distances
between neighboring codewords. Properties of these types
were presented, including a characterization of their weight
and distance distributions. We derived several methods for
constructing codes for each type, including a method that is
based on puncturing ENP1CCs. The latter method motivated
us to study which types of NP1CCs can be obtained from any
given ENP1CC.

Our exposition leads to several interesting open problems.
1) Is it true that there exist two (n−1,M/2) perfect codes

that intersect on exactly k codewords, if and only if
there exists an (n,M) NP1CC with exactly k pairs of
Type I? What is the maximum possible number of pairs
of Type I in an NP1CC of Type C?

2) Let X and Y be two distinct nonempty sets of pairwise
disjoint capsules in Fn

2 such that⋃
V ∈X

V =
⋃

V ∈Y
V.

What is the minimum size of X and Y?
3) Is there an NP1CC of Type B such that for each pair of

coordinates there exists some codeword that disagrees
with its partner on both of these coordinates?

4) We proved that there exist NP1CCs of Type A that
are balanced. Is there a counterpart of this result for
codes of Type B? One possible definition for bal-
anced (n,M) NP1CCs of Type B is that for any two
(cyclically-)adjacent coordinates there are exactly M/n
codewords that disagree with their respective partners
only on those coordinates.

5) Is there an ENP1CC such that none of its punctured
codes is of Type A?
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