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Error-Detection Schemes for Analog
Content-Addressable Memories

Ron M. Roth

Abstract—Analog content-addressable memories (in short,
a-CAMs) have been recently introduced as accelerators for
machine-learning tasks, such as tree-based inference or imple-
mentation of nonlinear activation functions. The cells in these
memories contain nanoscale memristive devices, which may be
susceptible to various types of errors, such as manufacturing
defects, inaccurate programming of the cells, or drifts in their
contents over time.

The objective of this work is to develop techniques for
overcoming the reliability issues that are caused by such error
events. To this end, several coding schemes are presented for the
detection of errors in a-CAMs. These schemes consist of an en-
coding stage, a detection cycle (which is performed periodically),
and some minor additions to the hardware. During encoding,
redundancy symbols are programmed into a portion of the a-
CAM (or, alternatively, are written into an external memory).
During each detection cycle, a certain set of input vectors is
applied to the a-CAM. The schemes differ in several ways, e.g.,
in the range of alphabet sizes that they are most suitable for, in the
tradeoff that each provides between redundancy and hardware
additions, or in the type of errors that they handle (Hamming
metric versus L1 metric).

Index Terms—Analog computation, Content-addressable mem-
ory, Error-detecting codes, Lee metric, Memristive devices.

I. INTRODUCTION

For integers a ≤ b, denote by [a : b] the integer subset
{z ∈ Z : a ≤ z ≤ b} and by [a : b〉 the set [a : b − 1]; we
will use the shorthand notation [b〉 for [0 : b〉.

Let q ≥ 2 be a positive integer which will stand for the
alphabet size. A q-comparator is a circuit that implements the
bivariate function Lq : [q〉 × [q〉 → {0, 1} which is defined by

L(x, ϑ) = Lq(x, ϑ) =
{

1 if x ≤ ϑ
0 otherwise . (1)

The argument x is called the input and ϑ is called the
threshold.1

Nanoscale analog content-addressable memories (in short,
a-CAMs) have been recently introduced in [17] and proposed
as accelerators for machine-learning applications, including
fast inference on decision trees [23], and computation of
various functions: analog-to-digital conversion, nonlinear acti-
vation functions [30],[33], and bivariate functions [32]. Such
a-CAMs use q-comparators as building blocks, which are
arranged in m × n arrays with each entry (i, j) ∈ [m〉 ×
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1In practice, the threshold ϑ is also allowed to take a negative value, in
which case x 7→ L(x, ϑ) is always 0, and x is allowed to take an “infinite”
value (in fact, any x > q−1 will suffice), for which ϑ 7→ L(x, ϑ) is always 0.

[n〉 implementing the function x 7→ Lq(x, ϑi,j), for some
threshold ϑi,j .2 The input to the a-CAM array is a vector
x = (xj)j∈[n〉 ∈ [q〉n, with xj serving as the input to all the
comparators along column j. Each row (“match line”) in the
array computes the conjunction (“and”, “∧”) of the outputs
of the comparators along the row, and the m results form
the output vector, v ∈ {0, 1}m, of the array. The nonzero
entries in v are referred to as “matches,” and in practice one
might be interested in finding all the matches (i.e., knowing the
whole vector v), or just their number (namely, the Hamming
weight of v), or the index i of the first match in v. The
comparator in each position (i, j) contains a memristive device
whose conductance is set, during the programming stage, to
(a value which is proportional to) the threshold ϑi,j .3 These
conductances are assumed to change much less frequently than
the input vector x.

Figure 1 presents a schematic diagram of (our abstract
model of) an a-CAM. It consists of an m × n array of cells,
where each cell consists of a comparator (represented by a
triangular shape) and a memory device (namely, a memristor)
which stores the threshold value that is associated with the cell.
Each comparator has two q-ary input terminals and one output
binary terminal. One input terminal is fed by the memory
device of the cell, while the other is connected through a
column conductor to an entry of the input vector x. The output
terminals of the n comparators along each row i ∈ [m〉 are
“and”ed together to produce the match line value, MLi. Under
normal operation of the a-CAM, the output value vi of row i
equals MLi. (The red components in the figure are additions
to the a-CAM to be suggested below in this work.)

The operation of an a-CAM is prone to errors from sev-
eral sources, such as: inaccuracies in the conductance values
during programming, drifts in conductance values over time,
noise while reading, or manufacturing defects of cells (e.g.,
short cells or open cells). In this work, we present several
schemes for detecting errors in the programmed thresholds in
an a-CAM array. For the case of (ordinary) binary CAMs,
the error-handling problem was addressed in [20],[21],[28],
where the prevailing proposed solution involved a hardware

2In the design of [17] (which is used in the mentioned applications), some
of the comparators implement functions where the inequality in the right-hand
side of (1) is reversed to “x ≥ ϑ”. Conceptually, this can be realized by an
implementation of x′ 7→ L(x′, q−1−ϑ) with the input x′ ← q−1−x.

3Thus, the thresholds in the design of [17] are in effect real values, and
so are the entries of the input vector x (as they are set therein by voltages).
However, in the mentioned intended applications, the thresholds are quantized,
and in most cases so are the inputs. The schemes to be presented in this
work will use (by design) discrete inputs over the same alphabet, [q〉, of the
thresholds. Hence our description of a-CAMs as consisting of comparators
with discrete thresholds and inputs.
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Fig. 1. Schematic diagram of an a-CAM.

modification of the sense amplifiers along each match line. As
for ternary CAMs (TCAMs), it was shown in [16] that such
an approach would require no less redundancy (i.e., overhead)
than just having multiple copies of the contents of the TCAM,
thereby resulting in a prohibitively large redundancy. The
error-detection scheme in our previous work [3],[4] proposed
a different approach for error handling in TCAMs. That
work, along with our more recent papers on coding schemes
for vector–matrix multipliers [26],[27], inspired, in part, the
schemes to be presented in the sequel; however, substantial
changes are warranted due to the different operation of an a-
CAM. To the best of our knowledge, our results herein are the
first attempt to address the error-detection issue in a-CAMs.

Similarly to the general paradigm of operation of [3],[4],
all our schemes entail:
• some modification to the a-CAM hardware,
• an encoding stage while programming the a-CAM array,

and—
• an error detection cycle, which is performed periodically

and consists of applying to the array a certain set of pre-
selected input test vectors.

For the schemes to work, redundancy symbols should be
added to the array, on top of the task-driven thresholds,
namely, the thresholds that are determined by the computation
task. These redundancy symbols are calculated during the
encoding stage and can be stored in one of two ways:
• Internal redundancy: The redundancy symbols are pro-

grammed as thresholds in certain columns in the array
that have been designated as redundancy columns.

• External redundancy: The redundancy symbols are stored
in an external “ordinary” memory (e.g., an SRAM).

We will consider both these scenarios in our schemes, starting
with the internal-redundancy approach (this approach was

also used in our prior work [3],[4],[26],[27]). The external-
redundancy approach does require an additional component
in the hardware design, yet, as we will see, it offers some
advantages in terms of error detection.

During each detection cycle, all the rows that contain
incorrect threshold values are identified, assuming that the
number of erroneous thresholds per row does not exceed some
prescribed number τ . The parameter τ is selected so that the
probability of the event of misdetecting an erroneous row is
sufficiently small according to the design specifications. As
is typically done in storage and communication systems, τ
can be decided upon either by computation (when there is a
sound probabilistic model of the error events in the hardware),
or through empirical measurements.

Our schemes differ in the trade-off that they offer between
several attributes, including:
• amount of changes and additions to the hardware,
• range of values of the alphabet size q,
• number of redundancy columns, and—
• time complexity (or latency) of the detection cycle.

Like in [3],[4], most of our schemes will take advantage of the
parallel operation of the a-CAM in that all rows are fed with
the input x and produce their respective match line outputs
concurrently; as such, the time complexity of the detection
cycle in these schemes will not depend on the number of rows
in the a-CAM.

We find it convenient to regard the threshold values ϑi,j
as elements in the ring, Zq , of integers modulo q. The a-
CAM is then viewed as an m × n array over Zq , with ϑi =
(ϑi,j)j∈[n〉 standing for the vector of thresholds along row
i ∈ [m〉. The encoding will generally be carried out so that
each ϑi forms a codeword of some code (subset) C of Znq .
For a prescribed k (which depends on the code C), the first k
entries in ϑi contain the task-driven threshold values, which
are selected freely (during the programming phase) according
to the desired computation task, while the remaining r = n−k
entries form the redundancy part and are determined by an
encoder for C (again, during the programming phase); clearly,
we seek to minimize r subject to the prescribed number of
errors that we wish to be able to detect.

In our reference to errors so far, we have (implicitly)
assumed the Hamming metric, where an error event means
that a threshold value is incorrect, irrespective of the (integer)
difference between the correct and erroneous values. This
metric is the most conservative as it can model a variety of
sources of errors, such as malfunctioning of a comparator or
drifts in the programmed threshold values. If only drift errors
are expected, then there is a merit in considering the L1-
metric instead, thereby ending up with detection schemes that
require less redundancy. Under this metric, an error event is
defined as changing a threshold value by ±1 (larger changes
are interpreted as having multiple errors at the same threshold).
We will consider both the Hamming metric and the L1-metric
(or, more precisely, the Lee metric, which is the L1-metric
counterpart for Zq).

This work is organized as follows. In Section II, we summa-
rize some definitions and properties relating to codes. When
the alphabet size q is a prime (in which case Zq is a field),
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these properties are well known and can be found in any
coding textbook (see, for example, [25]). For our purposes,
however, we will formulate them to suit also the case where q
is not a prime.

In Section III, we present two detection schemes for the
Hamming metric: the bit-interleaving scheme (Construction A
in Section III-A) and the shift-and-count scheme (Construc-
tion B in Section III-B). Their exposition will first be made
for the internal-redundancy scenario; the external-redundancy
approach will then be discussed in Section III-C.

In Section IV, we present two coding schemes for the Lee
metric: the Gray conversion scheme, which is based on Gray
codes (Construction C in Section IV-A), and the Lee-metric
shift-and-count scheme (Construction D in Section IV-B).

In all the detection schemes of Sections III and IV, the
number of test vectors grows linearly with the alphabet size q
and super-linearly with the number of columns n, yet does
not depend on the number of rows m in the a-CAM. In
contrast, in Section V we present a detection scheme in
which the number of test vectors grows linearly with m
yet does not depend on the alphabet size and grows only
logarithmically with the number of columns. This scheme uses
the circuitry that already exists in the a-CAM for reading the
cells (since the programming phase of an a-CAM is typically
accompanied with a read-after-write). As one of its building
blocks, the scheme will require a code with certain (non-
standard) properties; constructions of such codes, along with
bounds on their parameters, will be presented in Section VI.

Section VII contains a summary of the parameters of the
various coding schemes that are presented in this work.

II. DEFINITIONS AND NOTATION

We will consider codes C ⊆ Znq that are linear and
systematic over Zq; namely, there exists a k × n matrix G
over Zq , referred to as the generator matrix, such that
• (the linear property)

C =
{
c = uG : u ∈ Zkq

}
,

with operations carried out in Zq , and—
• (the systematic property) G contains an invertible k × k

submatrix over Zq .
In such a code, the rows of G form a basis of C; thus, |C| = qk.
The parameters n, k, and r = n − k are called the length,
dimension, and redundancy of C, respectively. By possibly
permuting the columns of G and applying invertible linear
operations on the rows of G, we can obtain a generator matrix
of the form (

Ik A
)
, (2)

where Ik is the k × k identity matrix. The encoding in this
case can be easily carried out by the mapping

u 7→ uG = (u |uA), (3)

namely, u forms part of the codeword. It is for this reason that
we require the systematic condition (on top of linearity, which
will be useful for the detection process as well): to exploit the
full functionality of the a-CAM, the encoding scheme should

not impose any constraints on the first (say) k task-driven
threshold values in each row.

Remark 1. The linear and systematic properties imply that C
is a free Zq-module, since it has a basis [31, p. 70]. However,
there are free modules which are (linear but) not systematic,
such as the code over Z6 which is spanned by the rows of the
2× 3 matrix: (

1 2 2
2 0 1

)
.

The rows of this matrix are linearly independent over Z6, yet
none of its 2× 2 submatrices is invertible over this ring. This
means that while the 36 linear combinations of the two rows
form distinct vectors in Z3

6, none of the projections of these
vectors onto any two coordinates will produce all the 36 pairs
in Z2

6. We note that when q is a prime, linearity always implies
the systematic property.

The minimum (Hamming) distance of C, denoted by d, is
the smallest number of positions on which any two distinct
codewords differ; equivalently, it is the smallest Hamming
weight of any nonzero codeword in C. If a codeword is subject
to any pattern of no more than τ = d − 1 errors, then
such an event can always be detected. Also, if a codeword
is subject to any pattern of no more than b(d− 1)/2c errors,
then the codeword can always be recovered.4 The length n,
dimension k, and minimum distance d of a systematic linear
code will usually be written as a triple [n, k, d].

A parity-check matrix of a code C ⊆ Znq is an r×n matrix
over Zq such that C forms its right kernel:

C =
{
c ∈ Znq : Hc> = 0r

}
(where 0r stands for the all-zero column in Zrq and (·)>
denotes transposition). Every systematic linear [n, k=n−r, d]
code has an r × n parity-check matrix that contains an
invertible r × r submatrix; in particular, when G has the
form (2), then (

−A> Ir
)

is such a matrix. Conversely, any r × n matrix over Zq
which contains an invertible r× r submatrix is a parity-check
matrix of a systematic linear [n, k=n−r, d] code over Zq . The
minimum distance of such a code can be characterized through
any of its parity-check matrices H as follows: it is the largest
integer d such that every d − 1 columns in H are linearly
independent over Zq .

Given a row vector y ∈ Zn, the syndrome vector of y with
respect to an r × n parity-check matrix H of a code C ⊆ Znq
is the column r-vector

σ = Hy>.

Thus, the codewords of C are all the vectors in Znq whose
syndrome is all-zero.

The notion of systematic linear codes extends in a straight-
forward manner to codes over the integer ring Z (except that
in this case the code will have infinite size).

4In this work, however, we focus on detection only, which corresponds to
just locating the a-CAM rows that contain errors. The recovery (correction)
process is then carried out by re-programming the erroneous rows.
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III. CODING SCHEMES

In this section, we present two error-detection coding
schemes for a-CAM arrays, under the Hamming metric.
Throughout, m and n stand for the number of rows and
columns in the array, respectively, and τ is the largest number
of errors that we expect to have in a row (and we wish
to detect). Each scheme uses a certain systematic linear
[n, k=n−r, d=τ+1] code C. In Construction A (Section III-A)
the code is binary, while in Construction B (Section III-B)
the code is over Zq . In each coding scheme, the encoding
algorithm will be identical for all rows and will be carried out
by an encoder of the form (3). In addition, we will exploit
the nature of operation of the a-CAM in that the detection
process will apply the same set of (pre-selected) input test
vectors—in parallel—to all rows (in particular, the latency of
the process will not depend on the number of rows). We will
first describe the schemes assuming the internal-redundancy
approach, where r (out of n) columns in the a-CAM are set
aside for storing the redundancy symbols as thresholds; we
refer to r as the column redundancy. The external-redundancy
approach will be discussed in Section III-C.

Since both the encoding and detection processes are uniform
across rows, we use the notation ϑ = (ϑj)j∈[n〉 to stand for the
vector of thresholds along a generic row in the array, omitting
the index i of the row.

A. Construction A: Bit-interleaving scheme

The coding scheme to be presented in this section—referred
to as the bit interleaving scheme or Construction A—applies
to cases where the alphabet size q is a power of 2. Assuming
that τ is much smaller than n, we will take C to be an
[n, k=n−r, d=τ+1] binary alternant code (in particular, a
BCH code) whose redundancy is given by

r(τ, n) =


τ

2
· dlog2 (n+ 1)e if τ is even

τ − 1
2
· dlog2 ne+ 1 if τ is odd

(4)

(see [25, Ch. 5 and Problem 8.12]). Writing b = log2 q (which
is a positive integer), we regard the row vector ϑ as a b × n
binary array

Φ = Φ(ϑ) = (φs,j)(s,j)∈[b〉×[n〉, (5)

with column j in Φ being the b-vector in {0, 1}b representing
(the integer) ϑj to base 2:

ϑj =
∑
s∈[b〉

2s · φs,j , j ∈ [n〉. (6)

The encoding is carried out so that for each s ∈ [b〉, row s
in Φ, namely, φs = (φs,j)j∈[n〉, is a codeword of C (hence
the name bit interleaving). Thus, for r = r(τ, n) as in (4),
the first k = n− r entries in ϑ are freely selected (according
to the computation task), while the remaining r entries are
determined by the encoder.

We turn to describing the detection process. The underlying
principle is as follows: given an r × n binary parity check
matrix H = (H`,j)(`,j)∈[r〉×[n〉 of C, error detection will be

achieved through testing, in each detection cycle, that the
following equality holds for every s ∈ [b〉:

Hφ>s = 0 (7)

(where the equality is over Z2). For this test, we will need a
modulo-2 counter (toggle bit) to be added to each match line:
it is synchronized with the clock of the input n-vectors to the
a-CAM and flips its value each time its input is a 1. This
added hardware is shown in red in Figure 1, with REG therein
standing for a one-bit memory and the circled “+” standing
for addition modulo 2.

As part of the test (7), we will employ these counters to
extract the values φs,j for each s ∈ [b〉 and j ∈ [n〉: this will
be carried out by applying the q/2s − 1 test vectors

a · 2s · ej , a ∈ [1 : q/2s〉,

where ej denotes the standard unit vector that contains its
(only) 1 at position j. It is easy to see that the number of
matches will then equal bϑj/2sc which, when taken modulo 2,
equals φs,j (see (6)). Based on this simple observation, we next
define the set of input test vectors, X ⊆ [q〉n, which is applied
to the a-CAM during each detection cycle.

For each ` ∈ [r〉, denote by J` the support of row ` in H:

J` =
{
j ∈ [n〉 : H`,j 6= 0

}
.

Also, for (`, s) ∈ [r〉× [b〉, let X`,s be the following subset of
[q〉n:

X`,s =
{
a · 2s · ej : a ∈ [1 : q/2s〉, j ∈ J`

}
. (8)

The set X is now defined as the union

X =
⋃

(`,s)∈[r〉×[b〉

X`,s.

Figure 2 presents the detection cycle. In that figure, MLi and
MODCi stand for the (binary) contents of the match line and
the modulo-2 counter, respectively, of row i. In each iteration
over (`, s), the test vectors in X`,s compute entry ` in the
vector Hφ>s ; if it is nonzero at some row, an error is flagged
at that row (referring to Figure 1, during the detection cycle,
we actually switch the output vi of row i to be MODCi instead
of MLi).

Observe that as long as row i has not been flagged for error,
we will have MODCi = 0 at the beginning of each iteration
of the loop over s. Hence, for a given (`, s), we can reuse
computations made earlier for (`, s′ > s). This, in turn, allows
us to reduce each subset X`,s so that a in (8) ranges just over
the odd values in [1 : q/2s〉, namely,

X`,s =
{

(2α+ 1) · 2s · ej : α ∈ [q/2s+1〉, j ∈ J`
}
.

This set is of size (q/2s+1) · |J`| and so we have:

|X | =
(∑
s∈[b〉

q

2s+1

)
·
∑
`∈[r〉

|J`| = (q − 1) · ‖H‖, (9)

where ‖H‖ denotes the total number of 1’s in the matrix H .
This number is at most r ·n, and for r > 1 it is typically close
to r · n/2.
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for each i ∈ [m〉 do 1

MODCi ← 0; 2

for each ` ∈ [r〉 do 3

for s← b−1, b−2, . . . , 0 do 4

for each x ∈ X`,s do 5

apply x to the a-CAM; 6

for each i ∈ [m〉 do 7

MODCi ← (MODCi + MLi) mod 2; 8

for each i ∈ [m〉 do 9

if MODCi 6= 0 then flag error in row i. 10

Fig. 2. Detection cycle of Construction A.

In summary, the detection process consists of applying at
most (q−1)·r ·n test vectors to the a-CAM (and typically half
that number). The required column redundancy is determined
by (4).

Remark 2. The index s = b − 1 corresponds to checking
the most-significant bit of the base-2 representations of the
thresholds in ϑ, and the size of X`,s in this case is |J`|. That
size doubles as we decrease s until reaching the size (q/2)|J`|
for the index s = 0, which corresponds to the least-significant
bit (l.s.b.) of the thresholds. Thus, in terms of time complexity,
the l.s.b.’s are the costliest to check. Now suppose that for
some λ ∈ [b〉, we elect to skip the detection of errors in the
λ l.s.b.’s (say, because the computation task is insensitive to
changes smaller than ±2λ in the threshold values). Under this
scenario, we can stop the iteration over s at λ which, in terms
of complexity, is equivalent to decreasing q by a factor of
2λ.

Example 1. Consider an a-CAM with m = 512 rows and
k = 50 columns, which is susceptible to errors. A naive
approach of detecting errors would be reading periodically
the thresholds in the whole a-CAM directly: that would entail
m · k = 25, 600 reads. In comparison, Table I presents the
column redundancy r and the number of test vectors when
we use Construction A, for q = 8, 16 and τ = 1, 2, 3.5 We
have used (9) to compute X . For τ = 1, the matrix H is the
1 × 51 all-one vector (1 1 . . . 1). For τ = 2 it is a 6 × 56
parity-check matrix of a shortened binary Hamming code, with
the columns ranging over the lightest (in terms of Hamming
weight) nonzero binary 6-vectors.6 And for τ = 3 it is a 7×57
parity-check matrix of a shortened extended binary Hamming
code, with the columns ranging over the lightest binary 7-
vectors with odd Hamming weight.

Construction A can be generalized by changing the radix 2
therein to any radix ρ ≥ 2 with q = ρb for some positive
integer b. Respectively, the counters in each row will now

5The determination of the number τ of errors per row to be detected can
be made either through simulations or through analysis that is based on some
probabilistic model of failure of the devices in the a-CAM.

6A redundancy of 6 is the smallest possible for any binary linear
[n, k=50, d=3] code. By increasing the column redundancy r, we may
sometimes reduce ‖H‖—and, thus, |X |. For example, for (k, τ) = (50, 2)
and r = 7, 8, 9, 10, 11 we get ‖H‖ = 136, 130, 123, 115, 111, respectively.

TABLE I
PARAMETERS OF CONSTRUCTION A FOR AN A-CAM WITH k = 50

TASK-DRIVEN COLUMNS.

τ r n ‖H‖ |X |
q = 8 q = 16

1 1 51 51 357 765

2 6 56 156 1, 092 2, 340

3 7 57 187 1, 309 2, 805

be modulo ρ and the code C will be over Zρ. There is one
significant caveat though: we will need C to have a 0–1 parity-
check matrix, namely, a matrix whose entries are constrained
to the subset {0, 1} of Zq . Otherwise, an implementation of
the check of the equality (7) will require a different (and
potentially much larger) set X of test vectors.

We discuss such codes in Section VI and present construc-
tions for q = 2b as well as for τ ∈ [1 : 4] (and any q). As
these constructions are based on (binary) alternant codes, their
redundancy equals r(τ, n) as in (4), except for the case τ = 4
and q that is a multiple of 3, in which case the redundancy is
(at most) r(5, n).

In this more general setting, the sets X`,s are defined by

X`,s =
{
a · ρs · ej : a ∈ [1 : q/ρs〉, ρ - a, j ∈ J`

}
,

and the expression (q−1) · ‖H‖ for |X | (as in (9)) still holds.
A special (interesting) case of this generalization is q = ρ

(in which case b = 1; admittedly, the term “bit interleaving”
becomes a misnomer in this particular case). For the param-
eters of Example 1, the figures in Table I apply also to this
case; yet recall that we will need the counters to be modulo q
rather than modulo 2. Nevertheless, this case will turn out to
be useful in the scheme that we present in Section V.

B. Construction B: Shift-and-count scheme

The construction to be presented in this section—referred to
as the shift-and-count scheme or Construction B—will have a
smaller column redundancy than Construction A, at the price
of using more complex counters at the a-CAM rows. The
construction will require that q be a prime, namely, that Zq is
the finite field GF(q); to make this clear, we will use in this
section the notation p instead of q. In contrast to Construc-
tion A, where we looked at the base-2 representation of the
threshold vector ϑ, here we look at the base-2 representation
of the entries of the parity-check matrix of the underlying
code that defines the scheme. This approach was also used
in [7] to construct linear codes over Zp with 0–1 parity-
check matrices (see Construction 1 in Section VI), although
the resulting construction herein will be different; in fact, the
threshold vectors will be codewords of C.

Let C be a linear [n, k=n−r, d=τ+1] code over Zp and let
H = (H`,j)(`,j)∈[r〉×[n〉 be an r × n parity-check matrix of C
over Zp. Write b = dlog2 pe and, for each (`, j) ∈ [r〉 × [n〉,
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let h`,j = (hs,`,j)s∈[b〉 ∈ {0, 1}b be the base-2 representation
of H`,j , when regarded as an integer in [p〉:

H`,j =
∑
s∈[b〉

2s · hs,`,j .

Then, for any ϑ = (ϑj)j∈[n〉 ∈ Znp we have

Hϑ> = 0 (10)

(over Zp), if and only if the following equality holds for every
` ∈ [r〉: ∑

s∈[b〉

2s
∑
j∈[n〉

h`,s,j · ϑj = 0 (11)

(over Zp). The shift-and-count scheme consists of an encoding
stage, which sets the redundancy entries so that (10) holds, and
a detection cycle, which verifies (11) by applying to the a-
CAM (as before) a set of test vectors X ∗ ⊆ [p〉n, yet requires
counters modulo p which can also multiply by 2 (modulo p).

We now describe the set X ∗. To this end, we find it
convenient to define an (rb) × n 0–1 matrix H∗ which is
obtained from H by replacing each entry, H`,j , by the column
b-vector h`,j ∈ {0, 1}b. Specifically, the rb rows of H∗ are
indexed by pairs (`, s) ∈ [r〉 × [b〉 and its n columns are
indexed by j ∈ [n〉, and (H∗)(`,s),j = (h`,s,j). Denoting by
J∗`,s the support of row (`, s) in H∗, we define the set X ∗ as
the union

X ∗ =
⋃
`∈[r〉

⋃
s∈[b〉

X ∗`,s,

where, for each ` ∈ [r〉 and s ∈ [b〉,

X ∗`,s =
{
a · ej : a ∈ [1 : q〉, j ∈ J∗`,s

}
.

We have

|X ∗| = (q − 1) ·
∑
`∈[r〉

∑
s∈[b〉

|J∗`,s| = (q − 1) · ‖H∗‖. (12)

Figure 3 presents the detection cycle, which verifies the
equality (11) for every ` ∈ [r〉 and s ∈ [b〉. The notation
MODSCi stands for a counter which can also multiply by 2
modulo p. In each iteration over (`, s), the number of matches
seen in line 10 (namely, the number of vectors x ∈ X ∗`,s for
which MLi = 1) equals∑

j∈J∗`,s

ϑj =
∑
j∈[n〉

h`,s,j · ϑj ,

where the sums here are over Z. Therefore, lines 6 and 10 in
effect compute into MODSCi the left-hand side of (11) (over
Zp).

Example 2. Revisiting the a-CAM of Example 1, Table II
presents the parameters for Construction B, where we have
changed the values q = 8, 16 into the primes p = 11, 17,
respectively. For τ = 1, the matrix H is again the all-one
vector. For τ = 2 it is a 3 × 53 parity-check matrix of a
shortened Hamming code over Zp (while selecting columns so
as to minimize ‖H∗‖), and for τ = 3 it is a 4×54 parity-check
matrix of (a shortening of) the code presented in Problem 3.44
in [25], while minimizing ‖H∗‖ over all possible choices for
the irreducible polynomial f(·, ·) therein and for the entries in

for each i ∈ [m〉 do 1

MODSCi ← 0; 2

for each ` ∈ [r〉 do 3

for s← b−1, b−2, . . . , 0 do 4

for each i ∈ [m〉 do 5

MODSCi ← (2 · MODSCi) mod p; 6

for each x ∈ X ∗`,s do 7

apply x to the a-CAM; 8

for each i ∈ [m〉 do 9

MODSCi ← (MODSCi + MLi) mod p; 10

for each i ∈ [m〉 do 11

if MODSCi 6= 0 then flag error in row i. 12

Fig. 3. Detection cycle of Construction B.

TABLE II
PARAMETERS OF CONSTRUCTION B FOR AN A-CAM WITH k = 50

TASK-DRIVEN COLUMNS.

τ r n
‖H∗‖ |X ∗|

p = 11 p = 17 p = 11 p = 17

1 1 51 51 51 510 816

2 3 53 148 138 1, 480 2, 208

3 4 54 218 209 2, 180 3, 344

the second and third rows, and adding to the fourth row all
possible linear combinations of the first three rows.

If we take C to be a normalized alternant code over Zp then
(under the assumption that τ ≤

√
n),

r = 1 +
⌈
p− 1
p
· (τ − 1)

⌉
· dlogp ne (13)

(see [25, Ch. 5 and Problem 8.12]). For large p, this expression
is roughly (1/2) log2 p smaller than the column redundancy,
r(t, n) (in (4)), of Construction A. The number of rows in H∗

is

r · b = r · dlog2 pe
(13)
≈ p− 1

p
· τ log2 n

and, so, if we estimate ‖H∗‖ to be r ·b ·n/2 and, respectively,
estimate ‖H‖ to be r(t, n) · n/2 in (9), then the size of X ∗
in (12) is twice the size of X in Construction A. Note that
in the case of Example 2, our estimates are quite pessimistic
as we have found matrices H∗ that are considerably sparser:
e.g., for τ = 2, the size of X ∗ for p = 17 in Table II is in fact
smaller than the respective size of X for q = 16 in Table I.

Table III summarizes the (approximate) values of the col-
umn redundancy and of the number of test vectors for Con-
structions A and B when τ > 1 (notice the different base
of logarithms). When computing the number of test vectors,
we have taken in (9) and (12) the (conservative) estimate that
half of the entries in H and H∗ are 1. For τ = 1, the column
redundancy in both schemes is 1 and the number of test vectors
is n(q − 1).
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TABLE III
APPROXIMATE COLUMN REDUNDANCY AND NUMBER OF TEST VECTORS

FOR CONSTRUCTIONS A AND B (τ > 1).

Scheme Column redundancy Number of test vectors

A. Bit interleaving
1

2
· τ log2 n

1

4
· (q−1) · n · τ log2 n

B. Shift and count
q−1

q
· τ logq n

1

2
·

(q−1)2

q
· n · τ log2 n

C. External redundancy

Constructions A and B, as presented in Sections III-A–III-B,
use some of the columns in the a-CAM array in order to
store the redundancy symbols in each row; those symbols
are programmed as thresholds, similarly to the task-driven
thresholds.

In the alternate approach that we consider in this section, the
redundancy symbols are stored in a separate external memory,
instead of in the a-CAM; we will refer to this memory as a
RAM (without committing to any specific technology).7 This
approach can be applied to both Constructions A and B; for the
sake of conciseness, we will demonstrate it for Construction A
only.

The conceptually simplest way to utilize such an external
memory would probably be pre-computing into the memory—
during the encoding stage—the contribution of the redundancy
symbols to the left-hand side of (7), thereby eliminating
the need for the redundancy columns in the a-CAM. Such
an external-redundancy scheme, however, assumes that the
redundancy symbols are arranged in columns (similarly to the
a-CAM) and that they are susceptible to errors as any a-CAM
cell. Yet these assumptions can be relaxed, since we are free
to arrange the redundancy symbols in the RAM as we see
fit, and we can use standard error correction and detection
techniques to protect those symbols against errors. Thus, for
the purpose of error detection of the a-CAM, we can assume
that the redundancy symbols are error-free.

Doing so (with the same parity-check matrix H), we can use
the full m×n a-CAM array (instead of just an m×k array) for
the task-driven thresholds, with each row filled (freely) with a
threshold vector ϑ ∈ Znq . Instead of requiring the equality (7),
the encoding stage computes for each s ∈ [b〉 the syndrome
vector of φs with respect to the r×n parity-check matrix H:

σs = (σ`,s)`∈[r〉 = Hφ>s . (14)

Each syndrome vector σs is a ρ-ary r-vector (in particular, a
binary r-vector when the radix ρ is 2) and so is each difference

∆s,i = (∆`,s,i)`∈[r〉 = σs+1 − σs, s ∈ [b〉,

where we define σb = 0 and make explicit the dependence
of ∆s,i on the row index i in the a-CAM. These differences,
which amount to br symbols, are stored in the RAM. The

7In addition to random-access memory, the acronym “RAM” can stand here
for redundancy auxiliary memory.

role of the detection cycle will be now to verify (14) (instead
of (7)). This is achieved by changing the initialization of the
modulo-ρ counters MODCi in lines 1–2 in Figure 2 into

MODCi ← ∆`,s,i

and placing it after line 4.
Using a RAM for the redundancy has several advantages.

First, the length of the codes that we use does not need to
go beyond the number of columns that is dictated by the
computation task. This, in turn, reduces the number of test
vectors, as there are no redundancy columns to test; moreover,
as we show in Example 3 below, affording a shorter code
sometimes implies a smaller redundancy. Secondly, using a
RAM allows the alphabet of the redundancy to be larger than
the native alphabet of the a-CAM. For example, if the native
alphabet is 8 and we wish to use Construction B, then we need
to take p = 11. The task-driven thresholds, which are freely
selected, can still be constrained to [8〉, yet the redundancy (or
syndrome) symbols may also take values in [8 : 11〉, namely,
outside the range of thresholds that can be programmed into
the a-CAM.

When using Construction A, a RAM offers an additional
advantage in allowing unequal error protection to lower ver-
sus higher significant bits. E.g., lower bits might need less
(or no) protection if they do not affect the result; or they
may need higher protection since they are more susceptible
to drifts in the values of the programmed thresholds. This
flexibility can be achieved by selecting different codes Cs (all
of length n), with respective (binary) parity-check matrices
Hs and redundancies rs, for different indexes s ∈ [b〉 of the
radix-ρ representation of the thresholds. With such varying
codes, we may be able to reduce the overall number of redun-
dancy/syndrome symbols (we omit further details). Yet even
if we stick to equal error protection (or use Construction B),
storing the (error-free) syndrome in a RAM may also allow
us to use codes C with (the same minimum distance yet with)
smaller redundancy. We demonstrate this in the next example.

Example 3. We revisit the a-CAM of Example 1 yet
with alphabet size q = 7 and consider Construction B with
τ = 3. With internal redundancy, we would need C to be
a linear [n, k=50, d=4] code over Z7, and the shortest such
code currently known has length n = 55, corresponding to
redundancy r = 5 [14]. On the other hand, with external
syndrome, we can have redundancy r = 4 by taking H to be
the 4×50 parity-check matrix of the linear [n=50, k=46, d=4]
code over Z7 presented in Problem 3.44 in [25].

IV. CODING SCHEMES FOR THE LEE METRIC

While the previous section dealt with coding schemes for
the Hamming metric, in this section we introduce two schemes
for the L1-metric. We will in fact employ known codes for the
slightly more conservative Lee metric over Zq , which we next
recall for completeness.

For an integer q ≥ 2, we consider the elements of the
alphabet [q〉 as elements of the ring Zq and view

bq/2c+ 1, bq/2c+ 2, . . . , q − 2, q − 1
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as the “negative” elements in Zq . The absolute value of an
element z ∈ Zq is defined as the integer

|z|q =
{

z if z is “nonnegative”
q − z otherwise

(where, for computing the right-hand size, z is regarded as
an integer). The Lee distance between any two vectors y =
(yj)j∈[n〉 and y′ = (y′j)j∈[n〉 in Znq is defined by

dL(y,y′) =
∑
j∈[n〉

|yj − y′j |q.

It is easy to see that (y,y′) 7→ dL(y,y′) is a metric and it
never exceeds the L1-distance between y and y′ (when viewed
as integer vectors).

For simplicity of the exposition, we will present the coding
schemes under the framework of internal redundancy. As the
codes will all be linear, the discussion in Section III-C will
apply also to the constructions herein.

A. Construction C: Gray conversion scheme

The scheme to be presented here—referred to as the Gray
conversion scheme or Construction C—uses the Lee-metric
codes presented in [24] and suits the cases where q = 2b.
Those codes are based on Gray-code mappings from (the set of
binary presentations of) Zq to Zb2; in such mappings, elements
of Zq that are at Lee distance 1 apart, map to vectors in Zb2 that
are at Hamming distance 1 apart. In particular, under such a
mapping, a Lee-metric error becomes a Hamming error; hence,
we can use binary codes for the Hamming distance in order
to handle Lee-metric errors. Moreover, since there are Gray-
code mappings that are linear over Z2, we can in fact obtain
in this way codes for the Lee metric that are linear over Z2.
For binary (and, more generally, ρ-ary) Gray codes, see [29]
and references therein.

We now get to the details of Construction C. Given q = 2b,
n, and τ , let C be a linear [bn, k, d=τ+1] code over Z2 and
let H be an r×bn parity-check matrix of C, where r = bn−k.
We will write

H =
(
H0 H1 . . . Hb−1

)
, (15)

where Hs is an r × n submatrix of H , for each s ∈ [b〉.
Let M = (Mt,s)(t,s)∈[b〉×[b〉 denote the following b × b

matrix8 over Z2:

M =


1 −1

1 −1
. . . . . .

1 −1
1

 . (16)

One well-known construction for a Gray code (see [29]) is the
mapping Zq → Zb2 which is defined for every w ∈ Zq by

w 7→Mw,

8The signs are unnecessary over Z2, yet we have included them for
reference in Remark 3 below.

where w is a binary column b-vector whose entries form the
base-2 representation of (the integer) w, namely,

w = (1 2 4 . . . 2b−1) ·w.

For s ∈ [b〉, define the r × n matrix Ĥs by

Ĥs =
∑
t∈[b〉

Mt,sHt = Hs −Hs−1, (17)

where we define H−1 to be the all-zero r×n matrix. Similarly
to what we have done in Construction A, we regard the vector
ϑ = (ϑj)j∈[n〉 of thresholds in a given row as a b× n binary
array Φ in which each column j is the representation of ϑj to
base 2 (see (5)–(6)). The encoding is carried out so that the b
rows of Φ, namely, φs = (φs,j)j∈[n〉 for s ∈ [b〉, satisfy the
equality ∑

s∈[b〉

Ĥsφ
>
s = 0 (18)

(over Z2); equivalently, the row bn-vector

φ =
(
φ0 φ1 . . . φb−1

)
is a codeword of the linear code of length bn over Z2 with an
r × bn parity-check matrix

Ĥ =
(
Ĥ0 Ĥ1 . . . Ĥb−1

)
. (19)

From (17) and (18) we get∑
t∈[b〉

Ht

∑
s∈[b〉

Mt,s · φ>s = 0.

Thus, the b rows of MΦ, which we denote by ct, t ∈ [b〉,
satisfy the equality ∑

t∈[b〉

Htc
>
t = 0. (20)

It follows from (15) and (20) that the row bn-vector

c =
(
c0 c1 . . . cb−1

)
is a codeword of C. Hence, we can detect any pattern of up
to τ Hamming-metric errors in c. Recalling that the n columns
of MΦ are the Gray-code mappings of the n entries of ϑ, we
conclude that we are able to detect any pattern of up to τ
Lee-metric errors in ϑ.

The detection cycle is identical to that of Construction A in
Figure 2, except for the selection of the test vectors (since for
a given pair (`, s), we cannot reuse computations made earlier
for (`, s′ > s)). Specifically, for (`, s) ∈ [r〉 × [b〉 we let

X̂`,s =
{
a · 2s · ej : a ∈ [1 : q/2s〉, j ∈ Ĵ`,s

}
, (21)

where Ĵ`,s is the support of row ` in Ĥs = Hs −Hs−1. The
set of test vectors is defined as the union

X̂ =
⋃

(`,s)∈[r〉×[b〉

X̂`,s (22)

and we have

|X̂ | =
∑
s∈[b〉

( q
2s
− 1
)
· ‖Ĥs‖. (23)
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Taking C as a binary alternant code, the column redundancy
of this scheme is⌈

r(τ, bn)
b

⌉
≈ 1

2
· τ logq (bn) ≈ 1

2
· τ logq n (24)

(see (4); the second approximation in (24) neglects the term
(τ/2) · logq(log2 q) = (τ/2) · (log log2 q)/ log q). Comparing
with Table III, this column redundancy is smaller by almost
a factor of b than that of Construction A, and is also smaller
than that of Construction B. From (23) and (24) we get that
the number of test vectors is at most

r(τ, bn) · n · (q − 1)

and typically half that number, namely:

|X̂ | ≈ 1
4
· (q − 1) · n · τ log2 n. (25)

For small τ (specifically, when τ < q/2), we can reduce
the size of X̂ (yet typically by less than a factor of 2), by
observing that if the number of errors is τ or less, then Lee
errors that occur in any entry of ϑ will necessarily affect the
λ l.s.b.’s of that entry, where λ = dlog2 (τ+1)e; moreover, the
effect of the errors on the λ l.s.b.’s is the same as if those λ
bits are seen as the binary representation of an element of Z2λ .
Hence, for the purpose of error detection, it suffices to protect
only the λ l.s.b.’s of the task-driven entries in ϑ, as shown in
Figure 4. This approach is useful also for handling alphabet
sizes q that are not powers of 2, as long as (τ <) 2λ ≤ q;
in this case, we will constrain the elements in the redundancy
columns to belong to [2b〉 where b = blog2 qc (≥ λ), while the
task-driven thresholds will be represented by b̂ = dlog2 qe bits
(of which only the λ l.s.b.’s will partake in the error-detection
scheme).

λ

b

l.s.b.’s

unprotected m.s.b.’s
redundancy

columns

k r

Fig. 4. Organization of the entries in Φ.

Getting into the details, denote J = [0 : k〉 and J ′ = [k : n〉,
which are, respectively, the index sets of the k task-driven
columns and of the r = n−k redundancy columns (where we
determine r below). The respective b×k and b×r submatrices
of Φ will be denoted by (Φ)J and (Φ)J′ . During the encoding
stage, we compute br redundancy bits into (Φ)J′ as if the
b̂− λ m.s.b.’s in all the columns in (Φ)J are zero, namely, as
if (φs)J = 0 for all s ∈ [λ : b̂〉. Correspondingly, we assume
that (Ĥs)J = 0 for s ∈ [λ : b̂〉 when computing the set X̂
in (21)–(22). This, in turn, reduces (23) to

|X̂ | =
∑
s∈[λ〉

( q
2s
−1
)
·‖Ĥs‖+

∑
s∈[λ:b〉

( q
2s
−1
)
·‖(Ĥs)J′‖. (26)

TABLE IV
PARAMETERS OF CONSTRUCTION C FOR AN A-CAM WITH k = 50

TASK-DRIVEN COLUMNS.

(a) q = 8

τ r n ‖ bH0‖ ‖ bH1‖ ‖( bH2)J′‖ | bX|
1 1 51 51 0 0 357

2 3 53 124 87 3 1, 132

3 3 53 143 106 6 1, 325

(b) q = 16

τ r n ‖ bH0‖ ‖ bH1‖ ‖( bH2)J′‖ ‖( bH3)J′‖ | bX|
1 1 51 51 0 0 0 765

2 2 52 124 84 2 2 2, 411

3 2 52 140 104 4 4 2, 844

Moreover, taking (Ĥs)J to be zero for s ∈ [λ : b̂〉 means that
the detection capabilities of the scheme is determined only by
the following r × n̂ submatrix of H:(
H0 H1 . . . Hλ−1 (Hλ)J′ (Hλ+1)J′ . . . (Hb−1)J′

)
,

(27)
where n̂ = λn+ (b− λ)r = λk+ br. Thus, r can be taken to
be the smallest integer satisfying

br ≥ r(τ, λk + br). (28)

By properly selecting the order of columns in H (thus affecting
the definitions of the submatrices Hs, for s ∈ [b〉), we can
optimize over the right-hand side of (26).

Example 4. Revisiting the a-CAM of Example 1, Ta-
ble IV(a) presents the parameters for Construction C with
q = 8. For τ = 1, the numbers are the same as in Table I. For
τ = 2, 3 we have λ = 2 and b = 3 and, thus, from (28), the
column redundancy is r = |J ′| = 3. For τ = 2, the matrix
in (27) was selected to be a parity-check matrix of a shortened
binary Hamming code of length n̂ = 109 and redundancy 7.
Thus, H0 and H1 are 7× 53 matrices and (H2)J′ is a 7× 3
matrix. The (distinct nonzero) columns of each matrix were
selected greedily so as to minimize the expression in (26).
Specifically, the 53 lightest nonzero columns of Z7

2 were
selected into H0; then 53 new columns were selected into H1

so as to minimize ‖H1−H0‖; and, finally, three new columns
were selected into H2 so as to minimize ‖(H2 − H1)J′‖. A
similar strategy was applied for τ = 3, now using as columns
odd-weight vectors in Z8

2. Table IV(b) presents the respective
numbers for q = 16: here b = 4 and, for τ = 2, 3, we have
λ = 2 and r = 2.

Remark 3. One could consider generalizing Construction C
to any radix ρ ≥ 2, as we did in Construction A. Indeed,
the b × b matrix M in (16), when viewed as a matrix over
Zρ, defines a Gray-code mapping Zq → Zbρ for any ρ ≥ 2.
However, we will run into the challenge of finding linear codes
C over Zρ for which the matrix Ĥ in (19) (rather than the
parity-check matrix H of C) is a 0–1 matrix. In addition, with
respect to the column redundancy, the advantage of the Lee-
to-Hamming conversion technique diminishes as ρ becomes
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TABLE V
PARAMETERS OF CONSTRUCTION D FOR AN A-CAM WITH k = 50

TASK-DRIVEN COLUMNS.

τ r n
‖H∗‖ |X ∗|

p = 11 p = 17 p = 11 p = 17

1 1 51 51 51 510 816

2 2 52 135 114 1, 350 1, 824

3 3 53 167 152 1, 670 2, 432

larger (corresponding to a smaller b). In fact, when b = 1, we
reduce to Construction A.

B. Construction D: Lee-metric shift and count

The construction that we consider in this section, referred to
as Construction D, is essentially the same as Construction B
in Section III-B, except that the code C is selected to have
minimum Lee distance τ+1. When specifying the parameters
of a linear code, we will write [n, k, d]L to indicate that d is
the minimum Lee distance.

There are several known constructions for codes for the
Lee metric, and we will concentrate here on two families
of linear [n, k=n−r, d=τ+1]L codes over prime fields Zp,
where τ < p. These two families are the (possibly shortened)
Berlekamp codes (for τ even) and normalized alternant codes
(for τ odd) [25, Ch. 10], and their redundancies are given by:

rL(τ, n, p) =


τ

2
· dlogp (2n+ 1)e if τ is even

τ − 1
2
· dlogp ne+ 1 if τ is odd

.

(29)

Example 5. Revisiting the a-CAM of Example 1, Table V
presents the parameters for Construction D for alphabet sizes
p = 11, 17.

Remark 4. When the alphabet size q is not a prime, we
can still use Construction D over any prime p in the range
τ < p < q (the overhead in redundancy will be minimized if p
is selected to be the largest in this range). While task-driven
thresholds may take any value in [q〉, their effective values
for encoding and detection purposes will be their remainders
modulo p (being values in [p〉). This indeed works since the
L1-distance between any element in [p〉 and its remainder in
[p〉 is at least p (> τ) and, thus, error events cannot substitute
one for the other.

The approximations (24) and (25) for the column redun-
dancy and the number of test vectors apply also to Construc-
tion D.

V. CODING SCHEME BASED ON THE READ CIRCUITRY

The detection schemes that were presented in Sections III
and IV take advantage of the inherent parallelism of the a-
CAM operation in that all rows produce their outputs on their
match lines simultaneously for each input test vector; as such,
these schemes do not depend on the number of rows m in the

a-CAM. On the other hand, in all these schemes, the number
of test vectors scales like q · τ · n log n and, in particular, it
grows linearly with the alphabet size q.

In this section, we present another detection strategy, which
may suit large alphabets. Instead of using the match lines
for output, we will use a circuitry which allows to read
the (integer) sum of the thresholds on selected cells along a
selected row. That circuitry exists on board the a-CAM as it is
utilized during the programming stage, when each cell is read
after it has been written. Specifically, this circuitry allows to
select a row i and cells (i, j) along that row, with j ranging
over a prescribed subset J ⊆ [n〉, by setting the input vector
x = (xj)j∈[n〉 so that xj = 0 for j ∈ J and xj =∞ otherwise
(where “∞” means any value greater than q − 1, namely, a
value for which L(x, ϑ) = 0 for any ϑ ∈ [q〉). With the same
voltage applied across each memristive device along row i, a
dedicated “word line” conductor, WLi, then collects the sum of
currents that flow through the selected cells; this sum, in turn,
is proportional to the integer sum

∑
j∈J ϑi,j and, in fact, can

be read as an integer through an analog-to-digital converter
(ADC). Thus, the a-CAM circuitry supports instantaneous
analog computation of sums of subsets of thresholds along a
row (yet this computation is done separately for each row);
in other words, we trade the parallelism across rows (per
a particular column) for parallelism across columns (per a
particular row).9

Our coding scheme herein, which we refer to as Construc-
tion E, uses this machinery in conjunction with Construction A
(from Section III-A) when applied to the special case b = 1
(where the radix ρ equals q). We select the underlying code to
be a linear [n, k=n−r, τ+1] code C over Zq with an r×n 0–1
parity-check matrix H over Zq . Such codes will be discussed
in Section VI; in particular, we present such codes when q
is a power of 2 or when τ ∈ [1 : 4]. In either case, the
redundancy r of these codes equals r(τ, n) as in (4), except
when τ = 4 and q that is a multiple of 3, in which case it is
(at most) r(5, n).

The set of test vectors, X , consists of r vectors x` =
(x`,j)j∈[n〉, ` ∈ [r〉, which are defined as follows. For ` ∈ [r〉,
let J` be the support of row ` of H . Then,

x`,j =
{

0 if j ∈ J`
∞ otherwise .

Denoting by ϑi the vector of thresholds along row i, upon
selecting row i and applying (sequentially) the r test vectors
of X to the a-CAM, we will read in WLi (sequentially) the r
entries of the integer vector

σ = Hϑ>i .

This vector is the syndrome of ϑi with respect to the parity-
check matrix H , and each entry in σ is an integer in [0 :
n(q−1)].
τ -error detection can be achieved in one of several methods.
• Using external memory to store the entries of σ, thus re-

quiring rdlog2(n(q−1)+1)e bits per row, and comparing
the computed syndrome with the stored one.

9In principle, more than one row could be selected at a time; however, this
would require multiple ADC units, which are rather expensive.
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• Doing the same, yet storing only the remainders of
the entries of σ modulo q; this requires only rdlog2 qe
bits per row but also requires a circuit to compute the
remainders upon each read from WLi.

• Using internal redundancy and encoding the r redundancy
columns so that Hϑ>i ≡ 0 (mod q). This method, too,
requires a remaindering circuit at the output of WLi.

When q is a power of 2, the remaindering in the latter two
methods is immediate, as it amounts to reading the log2 q
l.s.b.’s of the ADC. Hence, for such alphabets, these two
methods are preferable over the first.

In each detection cycle, the set of test vectors, X , is
applied m times, once for each row in the a-CAM, thereby
totaling to r · m test vectors. The naive detection scheme—
where each cell in the array is read individually—corresponds
to the (trivial) case where H is the n×n identity matrix (and,
therefore, r = n). In the cases where r equals (4) (e.g., when q
is a power of 2), the column redundancies of Constructions A
and E are the same and, with respect to the number of test
vectors, Construction E improves on Construction A when
(q − 1) · ‖H‖ > r · m, which (for τ > 1) occurs when
q & 2m/n.

Example 6. Revisiting the a-CAM of Example 1, Table VI
presents the parameters for Construction E (the values of r
and n are the same as those in Table I).

TABLE VI
PARAMETERS OF CONSTRUCTION E FOR AN A-CAM WITH m = 512

ROWS AND k = 50 TASK-DRIVEN COLUMNS.

τ r n |X | ·m
1 1 51 512

2 6 56 3, 072

3 7 57 3, 584

Remark 5. The strategy that was presented in this section
can also be applied to Constructions B and D, yet we would
then need to add to the remaindering circuits the shift operation
(i.e., multiplication by 2). The number of test vectors to be
applied to each row would then be the number of rows in
the matrix H∗, namely, roughly r · b = r · dlog2 pe. Yet
with r as in (4) or (29), we do not get an improvement over
Construction A.

VI. 0–1 PARITY-CHECK MATRICES

The problem of constructing linear [n, k=n−r, d] codes that
have 0–1 parity-check matrices has been studied in several
papers, for various applications [2],[7],[8],[11],[12]. In those
papers, the underlying alphabet is either Z or the finite field
Zp. For our purposes, we consider here the more general
setting of systematic linear codes over Zq where q is not
necessarily a prime.

Writing t = b(d − 1)/2c, by the ordinary sphere-packing
bound we have, for any code of size qn−r in Znq ,

Vq(n, t) ≤ qr,

where Vq(n, t) is the volume of a Hamming sphere of radius t
in Znq , namely

Vq(n, t) =
∑
i∈[0:t]

(
n

i

)
(q − 1)i

(see, e.g., [25, §4.2]). Equivalently,

r ≥ log Vq(n, t)
log q

≥ t · log (q−1) + log (n/t)
log q

. (30)

For the special case where the code is linear and systematic
over Zq with a 0–1 parity-check matrix H , we also have

Vw+1(n, t) ≤ (tw + 1)r, (31)

for any positive integer w < q/t: this follows from enumer-
ating over all linear combinations of at most t columns of H
where the coefficients are taken from [0 : w] and observing
that all the resulting vectors are distinct in [0 : tw]r (see [7,
Theorem 3.1]). It follows from (31) that for any positive
w < q/t:

r ≥ log Vw+1(n, t)
log (tw + 1)

≥ t · logw + log (n/t)
log (tw + 1)

. (32)

In the range where t .
√
n, the right-hand side of (32) is

maximized for w = 1, in which case (32) becomes

r ≥ log V2(n, t)
log (t+ 1)

≥ t · log (n/t)
log (t+ 1)

. (33)

Combining (30) and (33) and noting that Vq(n, t) ≥ V2(n, t),
we get

r ≥ max
{

log Vq(n, t)
log q

,
log V2(n, t)
log (t+ 1)

}
≥ t · log (n/t)

log (min{q, t+ 1})
. (34)

As we are mainly interested in the regime where t � n, we
use (34) as a reference when evaluating code constructions.

The case of prime q was considered in [7], where it was
shown that, up to a constant factor, the lower bound (34) can
be attained; the proof, however, is nonconstructive. A construc-
tion is given in Appendix B in [7] with a value of r which
is greater than (33) (or (34)) by roughly 2((q− 1)/q) · log2 d.
For completeness, we describe the construction next.

Construction 1. Given a prime p, let C̃ be a linear
[n, n−r̃, d] code over Zp and let H̃ = (H̃`,j)`,j be an r̃ × n
parity-check matrix of C̃ over Zp. Writing b = dlog2 pe and
r = r̃ · b, we construct an r × n 0–1 matrix H by replacing
each entry, H̃`,j , by the column b-vector h`,j ∈ {0, 1}b whose
entries form the representation of (the integer) H̃`,j to base 2:

H̃`,j = (1 2 4 . . . 2b−1) · h`,j .

(Notice that the relationship between H̃ and H herein is the
same as the relationship between the matrices H and H∗ in
Construction B in Section III-B. In both places, H stands for
the parity-check matrix of the code of interest, yet here the
0–1 matrix is H while in Construction B it is H∗.) It is shown
in [7] that H inherits from H̃ the property that every d − 1
of its columns are linearly independent over Zp (in fact, H is
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a parity-check of a code that is a subcode of C̃). If C̃ is taken
as a normalized alternant code over Zp then

r = r̃ · b = r̃ · dlog2 pe
(13)
≈ p− 1

p
· d · log2 n,

which is greater than (33) (or (34)) by a factor of (approxi-
mately) 2((p− 1)/p) · log2 d (recall that t = b(d− 1)/2c.

In the next construction, we reduce this factor to only log2 d.
The construction applies to (not necessarily prime) q that is
sufficiently large (relative to d, in a precise sense to be stated).

Construction 2. Let H be an r × n parity-check matrix
of a linear [n, n−r, d] code C over Z2, e.g., C is a binary
alternant code, in which case r = r(d−1, n) ≈ (d/2) log2 n
(as in (4)). Since every d − 1 columns in H are linearly
independent over Z2, they are also so when H is regarded
as a matrix over Z; namely, every d − 1 columns in (the
integer 0–1 matrix) H contain a (d− 1)× (d− 1) submatrix
whose (integer) determinant is odd (and, therefore, nonzero).
In addition, H contains an r×r submatrix whose determinant
is odd. It readily follows that (the integer matrix) H is a parity-
check matrix of a systematic linear code over Z; moreover,
if q is a power of 2 then H (when now regarded as a matrix
over Zq) is a parity-check matrix of a systematic linear code
over Zq . In what follows we consider the case where q has an
odd divisor.

Denote by T (m) the largest absolute value of the determi-
nant of any m ×m integer 0–1 matrix. From the properties
of H as an integer matrix we can conclude that every d − 1
columns in H are linearly independent over Zq , for any q that
is not divisible by any of the odd primes in [3 : T (d− 1)]. To
guarantee the systematic property over Zq , we will select H
so that it has an r× r submatrix which is unimodular over Z
(i.e., its determinant is ±1); e.g., we can take H such that it
contains Ir as a submatrix (which is always possible).

Now, it is known that

T (m) ≤ 2−m · (m+ 1)(m+1)/2,

with equality holding if and only if an (m + 1) × (m + 1)
Hadamard matrix exists (see [5],[13, Problem 523]). This
number grows rapidly with m, yet we will be interested in
small values of m. The first few values of T (m) (taken from
https://oeis.org/A003432) are listed in Table VII.

TABLE VII
LARGEST ABSOLUTE VALUE OF THE DETERMINANT OF ANY m×m

INTEGER 0–1 MATRIX, FOR m ∈ [1 : 6].

m 1 2 3 4 5 6

T (m) 1 1 2 3 5 9

Remark 6. We note that T (m) is also the largest absolute
value of the determinant of any (m + 1) × (m + 1) integer
0–1 matrix that contains the all-one row vector 1m+1 =
(1 1 . . . 1) as one of its rows (say, the first row). Indeed,
if B is such a matrix, we can subtract the first row from any

other row that starts with a 1. The resulting matrix takes the
form (

1 1m
0m B̃

)
where B̃ is an m×m matrix over {0,−1}. Hence, |det(B)| =
|det(B̃)| ≤ T (m).

We next consider the performance of Construction 2 for few
small values of d.
d = 2. We take the 1 × n matrix H = 1n, which is the

parity-check of the binary [n, n−1, 2] parity code. Since T (d−
1) = T (1) = 1, Construction 2 applies to any q ≥ 2 and its
redundancy, 1, is the smallest possible for minimum distance 2.
d = 3. We let r = dlog2(n + 1)e, which is the smallest

integer that satisfies (33), and take H to be an r×n 0–1 matrix
whose columns are all nonzero and distinct, with r of the
columns forming the submatrix Ir. This choice corresponds
to taking C as a binary [n, n−r,≥3] (possibly shortened)
Hamming code (which is a special case of an alternant code).
Since T (d − 1) = T (2) = 1, Construction 2 applies to any
q ≥ 2 and, in view of (34), it has the smallest redundancy
possible.
d = 4. We let r = dlog2 ne+ 1 and take H to be an r × n

0–1 matrix whose first row is 1n and whose columns are all
distinct, with r of the columns forming the following r × r
submatrix: (

1 1r−1

0r−1 Ir−1

)
. (35)

This choice corresponds to C being a binary [n, n−r,≥4]
(possibly shortened) extended Hamming code. Let J be any
subset of size 3 of the coordinate set of C and let (H)J be the
r × 3 submatrix of H that is formed by the columns that are
indexed by J . The matrix (H)J has full rank (of 3) over Z2

and, so, it has full rank also over Z. In particular, we can find
a 3 × 3 submatrix B in (H)J which is nonsingular over Z;
moreover, we can always assume that the first row in B is
(1 1 1). Yet by Remark 6 we also have |det(B)| ≤ T (2) = 1,
thereby implying that |det(B)| = 1. This means that (H)J has
full rank also over Zq , for any q ≥ 2. In summary, compared to
the case d = 3, we have increased the redundancy by at most 1.
Now, among all binary linear codes of minimum distance 4
with a given redundancy r, the extended Hamming code is
the longest possible. It readily follows that (at least) when q
is even, the code C is the longest possible among all linear
[n, n−r, 4] codes over Zq with a 0–1 parity-check matrix.
d = 5. We let r = 2dlog2(n+1)e and take H to be an r×n

parity-check matrix of a binary [n, n−r,≥5] alternant code
which contains Ir as a submatrix. Here T (d−1) = T (4) = 3,
so Construction 2 applies to q = 2b and to any odd q that is
not divisible by 3.

For odd q that is divisible by 3, we let r = 2dlog2 ne + 1
and take H to be an r × n parity-check matrix of a binary
[n, n−r,≥6] alternant code, with the first row being 1n and
with r of the columns forming the r×r submatrix (35) (such a
selection is always possible). Similarly to what we have done
in the case d = 3, we show that every four columns in H are
linearly independent over Zq . Specifically, given any subset J
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of size 4 of the coordinate set of the code, the r×4 submatrix
of (H)J has rank 4 over Z and, so, it contains a nonsingular
4× 4 submatrix B whose first row is 1. By Remark 6 we get
that |det(B)| ≤ T (3) = 2 (in Z), i.e., (H)J has full rank also
over Zq , for any odd q.

Finally, we consider the case where q is even with an odd
divisor. Writing q = 2b ·q′ where q′ ≥ 3 is odd, it follows from
the Chinese remainder theorem that whenever the construction
works over Zq′ , then it also works over Zq [15, Section 3.4].

Comparing the redundancy r with the lower bound (34), we
see that it is optimal (up to an additive constant) when q = 2;
however, for larger q, the main term of the lower bound is

2
log2 3

· log2 n ≈ 1.26 log2 n,

so r is larger than the bound by a factor of (approxi-
mately) log2 3 ≈ 1.585. It turns out, however, that the lower
bound (34) is not tight for d = 5 and can be improved to

∼1.73 log2 n, (36)

thus making r sub-optimal only by a factor of (roughly)
1.15. The lower bound (36) was proved in [10] (improving
earlier results in [18] and [19]) and applies, in fact, to the
(looser) setting of constructing the largest possible set of
integer vectors in {0, 1}r such that the sums h1 + h2 are
different for all distinct pairs {h1,h2} of vectors in the set.
Such a set is called a Sidon set or a B2-sequence (in {0, 1}r)
[1],[9],[22] (for an application, see [6]). Clearly, the columns
of any 0–1 parity-check matrix of a linear [n, n−r,≥5] code
over Z necessarily form such a Sidon set. In fact, the following
almost-converse also holds.

Proposition 1. Let H be an r×n integer 0–1 matrix whose
columns form a Sidon set in {0, 1}r and let H ′ be obtained
by adding an all-one row to H . Then H ′ is a parity-check
matrix of a linear [n,≥n−r−1,≥5] code over Z.

Proof. We assume that the rows of H ′ are linearly indepen-
dent; otherwise, we can remove rows (while keeping the first
row) and obtain a parity-check matrix for the same code. Since
the columns of H ′ are distinct and start with a 1, any three
of them are linearly independent over Z2 and, thus, also over
Z. Hence, the minimum distance of the code is guaranteed to
be at least 4. We next show that any four columns in H ′ are
linearly independent as well. Let J denote the index set of
any four columns and suppose, to the contrary, that

(H ′)J · a = 0r+1

(over Z) for some nonzero column vector a = (aj)4j=1 ∈ Z4;
note that a may not contain any zero entries. Now, the rank
of the (r + 1) × 4 submatrix (H ′)J is at least 3 and, so, it
contains a 3 × 4 submatrix B of full rank 3 whose first row
is the all-one vector 1 and

Ba = 0; (37)

in particular,
1 · a = 0. (38)

For j ∈ [1 : 4], let Bj denote the 3× 3 submatrix of B that is
obtained by removing the jth column. By Cramer’s rule for

TABLE VIII
SUMMARY OF THE (APPROXIMATE) PARAMETERS OF

CONSTRUCTIONS A–E (τ > 1).

Scheme Column redundancy Number of test vectors

A. Bit interleaving
1

2
· τ log2 n

1

4
· (q−1) · n · τ log2 n

B. Shift and count
q−1

q
· τ logq n

1

2
·

(q−1)2

q
· n · τ log2 n

C, D Lee metric
1

2
· τ logq n

1

4
· (q−1) · n · τ log2 n

E Read circuitry
1

2
· τ log2 n

1

2
·m · τ log2 n

solving linear equations we get that, up to scaling, the solution
of (37) for a is given by

aj = (−1)j · det(Bj), j ∈ [1 : 4].

By Remark 6 it follows that det(Bj) = ±1 for all j, where
we rule out the case det(Bj) = 0 since a must be all-nonzero.
From (38) we then get that—up to scaling—two of the entries
of a equal 1 and the remaining two equal −1. This, in turn,
implies that we can find in H two distinct pairs of columns,
{h1,h2} and {h3,h4}, such that h1 + h2 = h3 + h4. This,
however, contradicts the assumption that the columns of H
form a Sidon set.

VII. SUMMARY

Table VIII summarizes the (approximate) parameter values
of the coding schemes that were presented in this work, when
used in an m× n array with alphabet size q for detecting up
to τ errors per row (the upper half of the table coincides with
Table III). Constructions A and C suit cases where the alphabet
size q is a power of 2 and use modulo 2 counters at the match
lines, whereas Constructions B and D suit cases where q is a
prime and use counters modulo q that can also multiply by 2.
In all these constructions, the number of test vectors scales
linearly with (q · n) · τ log2 n and does not depend on m. In
contrast, in Construction E, the number of test vectors scales
linearly with m·τ log2 n and does not depend on q; the rows in
this scheme are tested one at time by using an ADC, possibly
with a remaindering circuit modulo q.
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