
When Data Must Satisfy Constraints Upon Writing
Erik Ordentlich

Hewlett–Packard Laboratories
Palo Alto, CA 94304

erik.ordentlich@hp.com

Ron M. Roth
Computer Science Department

Technion, Haifa, Israel
ronny@cs.technion.ac.il

Abstract—We initiate a study of constrained codes in which
any codeword can be transformed into any other codeword by a
sequence of single symbol changes such that the intermediate
words (after each symbol change) all satisfy the underlying
constraint. We shall refer to a set of constrained words with
this property as being Hamming connected. Hamming connected
constrained codes might be useful for encoding data in storage
media when a constraint must be met upon writing data, as
might be the case in some emerging storage technologies. The
stated property would permit overwriting encoded data without
violating the constraint during intermediate writes. We study the
Hamming connectedness of (d, k)-run-length limited constraints
and a few other special cases. We also consider the decidability
of Hamming connectedness for finite memory constraints.

I. INTRODUCTION

The traditional role of constrained coding in storage systems
has been to facilitate the reading of data by controlling inter-
symbol interference and easing symbol timing recovery. In
contrast, emerging data storage technologies such as memris-
tor crossbars may benefit if the stored data satisfies certain
constraints prior to the (over-)writing of each new bit [1]. In
both cases, information must be coded into constrained words
or patterns for storage onto the physical medium. In the case of
write enabling constraints, however, an additional property is
required to allow overwriting of stored data. Namely, it must
be possible to meet the constraint during each intermediate
step of the overwriting process which ultimately transforms
the state of the physical medium from one encoded pattern to
another.

This motivates the definition and study of Hamming con-
nected constrained codes. Given a symbol alphabet Σ, for
each positive integer n let S(n) denote the constraint satisfying
words of length n over Σ and let S =

⋃∞
n=1 S(n). A Hamming

connected constrained code of block length n with respect to
the constraint S is a subset C ⊆ S(n) with the property that
for all pairs of elements (e.g., codewords) c1 and c2 of C
there exists a sequence of words w1,w2, . . . ,wm satisfying
w1 = c1, wm = c2, wi ∈ S(n) for each i ∈ {2, 3, . . . ,m−1},
and dH(wi,wi+1) = 1 for each i ∈ {1, 2, . . . ,m−1}, where
dH(·, ·) denotes Hamming distance. Any two words in S(n)

with this property will be said to be Hamming connected
within S. Notice that this relation is an equivalence relation
(in particular, it is symmetric).

This work was supported in part by Grant No. 2008058 from the United-
States–Israel Binational Science Foundation. The work of R.M. Roth was
done in part while visiting Hewlett–Packard Laboratories, Palo Alto, CA.

The customary definitions of encoder, decoder, and rate
apply directly for such a code. The Hamming connectedness
property allows for transforming a codeword into any other
codeword by changing one symbol at a time such that all
intermediate words are constraint satisfying. This permits the
above noted constraint satisfying overwrite process required
for write enabling constrained coded systems.

Given a constraint S, we can define the Hamming connect-
edness capacity cH(S) as

cH(S) = lim sup
n→∞

1
n

log2

(
max
C⊆S(n) :

C is Hamming connected

|C|
)
.

If the codes corresponding to the sets S(n) are Hamming
connected for each n, we shall say that the constraint is
Hamming connected. In this paper, we determine cH(S) for
several illustrative classical constraints S. For the special case
of finite memory constraints, we give some partial results on
the problem of deciding whether a given such constraint is
Hamming connected, which we have not been able to resolve.
With the obvious extension of the Hamming connectedness
concept to two-dimensional arrays in mind, we also analyze
the Hamming connectedness properties of constraints that
may be relevant to the aforementioned memristor crossbar
application.

In the sequel we use the following notation. For a word
x = x1x2 . . . xn we denote by xi:j the subword xixi+1 . . . xj .
The subset of all words of a given length n in a set of words
(in particular, a constraint) S will be denoted by S(n).

A set of words S over an alphabet Σ is called a finite
memory (or finite type) constraint [2] if there is a finite list
L of words, known as a forbidden list, such that a word x
over Σ is in S if and only if none of the subwords xi:j are
in L. A (finite memory) constraint S is irreducible if for any
pair of words x,y ∈ S there is a word w ∈ S such that the
concatenation xwy is also in S . An irreducible constraint S
is primitive if the length of such a w can be set to some fixed
`, independent of x and y. The (ordinary) Shannon capacity
of a constraint S will be denoted by c(S).

II. EXAMPLES

A. No-isolated-bits (NIB) constraint

This constraint, denoted SNIB, is defined as the finite
memory constraint with forbidden list {101, 010}. Notice that
given a word in SNIB, inserting a 1 in the middle of a run of

consecutive 0’s or a 0 in the middle of a run of consecutive
1’s would yield words not satisfying the constraint. Thus, it
would seem to be impossible to break or merge runs via single
bit changes. Nevertheless, SNIB turns out to be Hamming
connected. The trick is to utilize either boundary of the word,
noting that, say for a word x1x2 . . . xn, it may be allowed to
set (x1, x2) ∈ {(0, 1), (1, 0)}. This means that a word of the
form, e.g., 0r11r20r3 . . . (denoting r1 0’s, followed by r2 1’s,
and so on) can be transformed into 0r1−11r2+10r3 . . . and then
into 0r1−21r2+20r3 . . . , and ultimately into 1r2+r10r3 This
can be continued with a new phase to eliminate the starting
run of 1’s, with the first word being 1r2+r1−10r3+1 . . . , until
the all–0 word is obtained. Thus, all words are Hamming
connected to the all–0 word and therefore, by the symmetry of
Hamming connectedness, SNIB is fully Hamming connected.

Notice that the Hamming connectedness of SNIB makes
critical use of the boundary, relying, in particular, on the fact
that the boundary values are “less” constrained. In fact, a
simple modification to a constrained word, such as inserting
00 into the middle of a run of 1’s in the middle of the
word requires completely rewriting, possibly several times,
all values out to the boundary. In some scenarios, this may
be impractical, such as in a large storage medium which is
partitioned into blocks that need to be updated independently
and are separated by “guard symbols” to enforce the constraint
throughout the medium. Such scenarios can be modeled by
fixing one or more boundary values and not allowing them
to be changed. We can then consider a boundary restricted
Hamming connectedness capacity wherein for a given k we
further constrain the above definitions to words x which
have the same values for their k-prefix (i.e., x1:k) and k-
suffix (xn−k+1:n). In particular, this means in the definition
of connectedness that the intervening words all share these
values at the boundary. The restricted connectedness capacity
may then depend on these values.

The NIB constraint is no longer Hamming connected under
any fixed-boundary condition, since there is no way to break
or merge runs. However, it turns out that the capacity (i.e.,
the growth rate of number of Hamming connected words) still
equals the ordinary Shannon capacity, c(SNIB), of SNIB, for
all fixed k and corresponding boundary values. To show this,
we note that since SNIB is irreducible and since the number
of distinct runs of consecutive symbols grows at most linearly
in n, there exists an ` > k, a sequence of positive integers
(Rn)n, and binary words u and v of length `, such that u1:k

and v`−k+1:` are equal to the fixed left and right boundary
values, and such that the set of words

Dn = {x ∈ S(n)
NIB : x1:` = u,xn−`+1:n = v, x`+1 = 0,

x`+1:n−` has Rn distinct runs}

satisfies limn→∞(1/n) log2 |Dn| = c(SNIB). It is then easy to
see that the runs comprising the inner portions of the words
belonging to Dn can be expanded and reduced via single
symbol switches to obtain any other word in Dn. The set Dn

is thus Hamming connected within SNIB.

B. (d, k)-run-length limited (RLL) constraints

In the case of (d, k)-RLL constraints [2, p. 6], the Hamming
connectedness of the constraint depends on the relative values
of d and k. Specifically, we prove the following; hereafter, Sd,k

denotes the set of all binary (d, k)-RLL constrained words, for
given d and k.

Proposition 2.1: The constraint Sd,k is Hamming con-
nected (and, therefore, cH(Sd,k) = c(Sd,k)) if and only
k ≥ 3d+ 1.

Proposition 2.2:

cH(Sd,k) =
{

0 if k ≤ 2d
c(Td,k) if 2d < k < 3d+ 1 ,

where Td,k is the finite memory constraint defined by the
following forbidden list:

{0k+1} ∪ {10r1 : r ∈ [0, d−1] ∪ [k−d, 2d]} .

Proof of Proposition 2.1: The case of d = 0 is almost
immediate, since, starting with a constraint satisfying word,
any 0 can be switched to a 1 without violating the constraint,
leading ultimately to the all–1 word. Thus, all words are
Hamming connected to the all–1 word which implies that the
constraint is Hamming connected. In the rest of the proof we
will assume d > 0.

Suppose k < 3d + 1 and consider a word containing a
subword 10r1 positioned at least d away from either boundary,
with r = min(k, 2d). We claim that no symbol of this subword
can be legally switched, irrespective of the rest of the word.
Clearly, it is not possible to switch any 0, since this would
result in at least one of the two resulting runs being shorter
than d. Moreover, neither the starting nor ending 1 can be
switched since this would merge the run with a neighboring
run of length at least d resulting in a total run-length at least
min(k+ d+ 1, 3d+ 1) > k. Thus, no word containing such a
subword can be converted into a word with say, only runs of
length d, and it follows that for k < 3d + 1, the (d, k)-RLL
constraint is not Hamming connected.

Suppose that k ≥ 3d+ 1. We show how any word in Sd,k

can be converted into a word with all runs equal to at most
d (the only runs possibly shorter than d would be those at
the boundary). First, it should be easy to see that any run
longer than 2d can be broken up into shorter runs of length
at most 2d (e.g., by switching every (d+1)st 0 from the start
of the run until within 2d of the end of the run). We can thus
assume that we are starting with a word x = x1x2 . . . xn in
S(n)

d,k having only runs of length 2d or shorter. Moreover, we
can further assume that the initial (left-most) run of 0’s is of
length d or shorter, for if it were otherwise, we could change
the (d+1)st 0 from the end of this run to a 1. Now, suppose
the ith run of 0’s begins at position ti (i.e., xti−1 = 1) and
that, inductively, x is Hamming connected to a word of the
form 0r110d10d. . .10d1xti:n = 0r110d10d. . .10d10ri1xti+1:n

where ri ≤ 2d. The following chain of transformations can

then be carried out via legal single symbol changes:

0r110d10d. . .10d10ri1xti+1:n → 0r110d10d. . .10d+ri+11xti+1:n →
0r110d10d. . .10ri10d1xti+1:n → · · · →
0r110ri10d. . .10d10d1xti+1:n → 0r1+ri+110d. . .10d10d1xti+1:n →
0r1+ri−d10d. . .10d10d1xti+1:n → 0r′110d. . .10d10d1xti+1:n

with r′1 ≤ d. In the above chain of transformations, the first
transformation therein is legal since d+ri+1 ≤ 3d+1 ≤ k,
and the first two transformations are repeatedly applied moving
backwards along the word to obtain the final word. The entire
process can then be repeated for the run starting at ti+1, and so
on, until a word of the form 0r10d10d. . .10d10s, with r, s ≤ d
has been reached. Moreover, words of this form are readily
seen to be Hamming connected via transformations of the form

0r10d10d10d. . .10d10s → 0r+d+110d10d. . .10d10s →
0r−110d+110d10d. . .10d10s → 0r−1102d+210d. . .10d10s →
0r−110d10d+110d. . .10d10s → · · · →
0r−110d10d. . .10d10s+1

which is valid since for d ≥ 1, 2d+2 ≤ 3d+1 ≤ k.
Proof of Proposition 2.2: For k ≤ 2d it follows from

the observations in the previous proof that for any constraint
satisfying word the symbols comprising non-boundary runs
cannot be legally switched, irrespective of the rest of the word.
Thus, cH(Sd,k) = 0 in these cases.

Suppose that 2d < k < 3d+ 1. We can transform any word
in Td,k having any run in the range [2d+1, k] into a word
having runs only in the range [d, k−d−1] as in the above
proof, by switching the (d+1)st 0 of the longer runs (in the
range [2d+1, k]). Each such longer run is broken into two
runs of lengths d and at most k−d−1, respectively. The above
iterative procedure can then be used to transform the resulting
word into one consisting entirely of runs of length d (or shorter
at the boundaries).

This establishes that cH(Sd,k) ≥ c(Td,k). To show the
inequality in the other direction, consider the constraint L with
forbidden list {0k+1} ∪ {10r1 : r ∈ [0, d− 1]} ∪ {0d10r10d :
r ∈ [k−d, 2d]}. Notice that L ⊆ Sd,k. Moreover, since each
word in the forbidden list of Td,k is a subword of some word
in the forbidden list of L, it follows that Td,k ⊆ L. It is
also not hard to see that the distinction between the forbidden
lists of Td,k and L is only relevant for symbols near the start
and end of a word, and, more specifically, that for n > 2d
it holds that {xd+1:n−d : x ∈ L(n)} = T (n−2d)

d,k . It follows
from the theory of finite memory constraints that the boundary
conditions do not impact the exponential growth rate of |L(n)|
so that limn→∞(1/n) log2 |L(n)| = c(Td,k), and, moreover,
that there exists a constant α such that

|L(n)| ≤ α · 2n c(Td,k). (1)

We will now prove that the cardinality of any Hamming
connected component of S(n)

d,k is no larger than the right-
hand side of (1), for each n, where a Hamming connected
component is defined as an equivalence class of the Hamming
connectedness equivalence relation on words within S(n)

d,k .
We proceed by induction. The base case is immediate

since for sufficiently small n (e.g., n ≤ d), L(n) coincides

with S(n)
d,k . Now fix n, and assume that the cardinality of

any Hamming connected component is bounded from above
by α · 2n′c(Td,k) for all n′ < n. By definition, each word
x ∈ S(n)

d,k belongs to one and only one Hamming connected
component. Suppose, x ∈ S(n)

d,k \ L(n) so that x contains a
subword 0d10r10d for some r in the stated forbidden range.
It is easy to see that irrespective of the rest of the word,
no single symbol of this subword can be legally switched.
Suppose that this subword starts at index t within x. Thus,
all other words in the connected component containing x also
contain this subword at index t. Let M denote this connected
component. Note that the set of words of length n−r−1 given
by M′ = {y1:t−10d10dyt+r+2d+2:n : y ∈ M} is then
contained in a Hamming connected component in S(n−r−1)

d,k

and that |M′| = |M|. It follows by the induction hypothesis
that

|M| ≤ α · 2(n−r−1)c(Td,k) ≤ α · 2n c(Td,k)

and that, therefore, |M| ≤ α · 2n c(Td,k), establishing the
induction step for this case. Suppose, on the other hand, that
x ∈ L(n). The above considerations for words not belonging
to L(n) imply that the Hamming connected component con-
taining x must be a subset of L(n). The induction step for
this case then follows from (1). The proposition is thereby
established since cH(Sd,k) coincides with the growth rate of
the largest Hamming connected component.

C. Row–column Hamming weight constrained arrays

Consider the set An×n of all n × n arrays A = (Ai,j)i,j

over {0, 1} such that the Hamming weight of each row and
column is at most u and at least ` namely, for every i, j ∈
{1, 2, . . . , n},

` ≤
n∑

h=1

Ai,h ≤ u and ` ≤
n∑

k=1

Ak,j ≤ u . (2)

The case of ` = 0 and u = n/2 is the constraint alluded to in
Section I as having been proposed (e.g., [1]) to facilitate the
writing process in a next generation memory technology based
on crossbars of memristive devices. This case is readily seen to
be Hamming connected (assuming the obvious generalization
thereof to this setting) since changing any 1 to a 0 in a legal
array results in another legal array, thereby implying that all
legal arrays are Hamming connected to the all–0 array.

Another potentially useful case for the crossbar application
turns out to be ` = n/2−δ and u = n/2+δ for some positive
δ � n (e.g., δ = o(n)). This case may also be useful in the
memristor crossbar application, especially in conjunction with
alternative write voltage biasing schemes differing from the
one associated with the baseline case above. Here, we omit
further details of this potential application and focus on the
Hamming connectedness property for such u and `. This case
is more challenging than the ` = 0 case, since there is not
necessarily a “minimal” or “maximal” array. Nevertheless, we
have the following.

Proposition 2.3: For all 0 ≤ ` < u ≤ n, the set An×n

defined by (2) is Hamming connected.

Proof: We shall say that a row or column is minimal (resp.,
maximal) if its Hamming weight is ` (resp., u). Given two
arrays X and Y in An×n, we will demonstrate how to change
X into Y in accordance with the Hamming connectedness
property. We can assume that all 0’s in X which must be
changed to 1 in Y belong to a maximal row or column.
Otherwise, any 0 to 1 change not satisfying this condition
can be made legally, one at a time, until the stated assumption
holds. Similarly, we can assume that all 1’s to be changed
to a 0 belong to a minimal row or column. Let (i1, j1) be
the row–column indices of a 0 to 1 change. Let’s assume
that, say, row i1 is maximal. Since Y is in the constraint
there must exist j2 6= j1 such that (i1, j2) corresponds to a
1 to 0 change. Moreover, by the above assumptions, column
j2 is minimal, and thus there must exist an i2 6= i1 such
that (i2, j2) corresponds to a 0 to 1 change. It follows, by
assumption, that i2 is maximal, and that there is j3 6= j2 such
(i2, j3) is a 1 to 0 transition. Note that j3 might equal j1. If
not, we can continue this process until either the row index
or column index, after each respectively changes, coincides
with a previously encountered row or column index. Suppose
(w.l.o.g.) it is the row index which is the first to repeat. In
this case, by dropping all indices encountered prior to and
including the first time the repeated row is encountered, we
will have found a “cyclic” sequence of row–column index pairs
(i′1, j

′
1), (i′2, j

′
1), (i′2, j

′
2), . . . , (i′t−1, j

′
t), (i

′
t, j
′
t), with i′t = i′1

and i′s all distinct for s < t and j′s all distinct for s ≤ t, and
such that the index pairs, starting with the first, alternatingly
correspond to 1 to 0 and 0 to 1 changes, and, finally, such that
each index pair is in a maximal row and a minimal column.
Notice that each row and column that contains an element of
this sequence, contains precisely two elements.

We now claim that there must either be a 1 in row i′1 that
is not in a minimal column or a 0 in column j′1 that is not in
maximal row. Suppose neither of these were the case. Since
row i′1 is maximal, it would then follow from the first part not
holding that the total number of 1’s in the array is at most
u`+ (n−u)u while it would follow from the second part not
holding that the total number of 1’s is at least (n− `)u+ `2.
However, subtracting the latter from the former, yields

u`+(n−u)u−(n−`)u−`2 = −u2 +2u`−`2 = −(u−`)2 ,

which is negative for u > `, leading to a contradiction. Sup-
pose (w.l.o.g.) the claim holds with a 1 in row i′1 and column
j′′, where the latter is not minimal. Thus, j′′ /∈ {j′1, j′2, . . . , j′t}.
We can then temporarily change this 1 to a 0, to “unlock” row
i′1, that is, to render the row non-maximal. This, in turn, allows
us to make the 0 to 1 change at location (i′t, j

′
t) = (i′1, j

′
t),

which in turn renders column j′t non-minimal. And this in
turn, allows us to make the 1 to 0 change at location (i′t−1, j

′
t),

in the cyclic sequence above. We can continue this process,
working backwards in the sequence, until we have made all
of the changes in the sequence, noticing that each successive
change renders the next row or column non-maximal or non-
minimal, thereby allowing the next change to be made. Since,
as noted above, each row and column undergoes both a 0 to 1

and a 1 to 0 change in this sequence of changes, the Hamming
weights of all rows and columns, after the changes, are as they
were just after the “unlocking” 1 to 0 change at (i′1, j

′′). We
are thus free to change the 0 back to a 1 at this location.

It should be clear that repeated applications of the above
procedure will transform X into Y , via the requisite, constraint
satisfying, single symbol changes.

III. DECIDABILITY OF HAMMING CONNECTEDNESS

A natural question concerning the Hamming connectedness
of finite memory constraints, as defined in Section I, is whether
it is decidable in the classical sense of Turing decidability.
Specifically, given a finite alphabet Σ (e.g., the binary alphabet
with Σ = {0, 1}), we ask if there is an algorithm (i.e., Turing
machine) that takes as input the forbidden list L defining a
finite memory constraint and halts with an indication as to
whether the corresponding constraint is Hamming connected.
An equivalent question is whether there is a computable
function f : P → Z, with domain P being the set of
all finite subsets of words over the alphabet Σ, with the
property that the corresponding finite memory constraint S
with forbidden list L is Hamming connected if and only if
S(f(L)) is Hamming connected. So far we have been unable
to obtain such a computable f(L). Notice that the trivial
algorithm which simply tests Hamming connectedness of S(n)

for n = 1, 2, . . . and returns the first n for which Hamming
connectedness does not hold would not generate an output
f(L) for a constraint that is Hamming connected. We next
present some partial results of relevance to this problem.

A. Role of the memory of the constraint

It is natural to conjecture that there is some connection
between a computable f(L) with the above properties and the
length of the longest word in L. One less than this coincides
with the memory of the constraint [2].

Figure 1, depicting a family of constraints over the alphabet
{0, 1, . . . , N} for some N ∈ Z+, shows that any such connec-
tion is weak at best. For each N , the corresponding constraint
is comprised of the vertex labels of all finite walks on the
depicted graph. The corresponding forbidden list consists of
those words of length 2 for which no directed edge connects
the vertex labeled with the first symbol to the vertex labeled
with the second. It is not hard to see that for each N , the
corresponding constraint is Hamming connected for block
length N−2 (or smaller), but not for block length N−1: for the
latter, notice that no single symbol of the word 2, 3, 4, . . . , N
can be changed. Thus, for arbitrarily large block lengths n,
there exist constraints S with memory 1 that are not Hamming
connected, yet S(n) is Hamming connected.

B. Connection to two-dimensional constraints of finite type

Let L be the forbidden list of a given finite memory
constraint S with ` denoting the maximum length of words
in L. Consider the forbidden list of two-dimensional 2 × `

2 3

N-1 N

0

1

N-2 …
4

Fig. 1. Graph representation of a finite memory constraint over the alphabet
{0, 1, . . . , N} with memory 1 which is not Hamming connected, but which
is block Hamming connected for block lengths up to length N−2.

patterns:

L′ = {X ∈ {0, 1}2×` : X1,i:j ∈ L for some i ≤ j, or
X2,i:j ∈ L for some i ≤ j, or dH(X1,:, X2,:) > 1} ,

where Xk,i:j denotes the word Xk,i, Xk,i+1, . . . , Xk,j and
Xk,: denotes the kth row of X . We shall say that a two-
dimensional constraint (corresponding to a set of valid m×n
arrays over some alphabet with m,n ∈ Z+) is irreducible
if the one-dimensional constraints corresponding to arrays
with a fixed number of columns (or vertical stripes) are all
irreducible. For a given stripe-width w, let Bw denote the one-
dimensional vertical stripe constraint with forbidden list L′

given above. Notice that Bw has memory 1 and irreducibility
is thus equivalent to the property that for any pair of words
x,y ∈ S(w), there exists an m × w array X in Bw with
X1,: = x and Xm,: = y.

Proposition 3.1: The constraint S (corresponding to L)
is Hamming connected if and only if the two-dimensional
constraint corresponding to L′ is irreducible.

Proof: The Hamming connectedness of S implies the ir-
reducibility of each Bw, since for any x,y ∈ S(w), the
array formed by stacking the sequences corresponding to the
transformation of x into y via single symbol changes, is
readily seen to belong to Bw. Conversely, for x,y ∈ S(w),
the rows of the array X guaranteed by the irreducibility of
Bw can be modified to obtain the required transformation for
Hamming connectedness by introducing the symbol changes
in each successive row one symbol change at a time. This
can be done, since the forbidden list defining Bw forbids pairs
of consecutive rows in X from differing in more than one
symbol within corresponding words not longer than the longest
word in the forbidden list of S. Thus, undoing any subset of
these changes (e.g., to implement them one at a time) will not
introduce a violation of the forbidden list of S.

With Proposition 3.1, we have reduced the decidability of
Hamming connectedness for finite memory constraints to the
decidability of the irreducibility of the above family of two-
dimensional constraints. This problem, in turn, is reminiscent
of the famous undecidable tiling problem [3] which roughly
asks if there exists an infinite array not containing any pat-
tern in a finite forbidden list. Our two-dimensional problem,

however, does not appear to have the generality of the tiling
problem, as the constraint in the vertical direction is a specific
one.

If we require a uniform bound h on the merging word
length in the irreducibility for all stripe widths w, then, under
this restriction, decidability follows from the decidability of
the equivalence of a pair of one-dimensional sofic shifts [2,
Theorem 3.4.13], where a sofic shift is defined simply as a
symbol-wise mapping of a finite memory shift (of finite type)
and is representable as the sequences of labels of walks on
an edge-labeled graph. The two sofic shifts to be compared,
in this case, would be the product shift {S(n) × S(n)}∞n=1,
comprised of all pairs of equal length words belonging to
S, and the sofic shift obtained by applying the symbol-wise
mapping that returns the top and bottom symbols of an h× 1
column word to the columns of the one-dimensional shift of
finite type comprised of the horizontal h×n, n ∈ Z+, stripes
(arrays) not containing the forbidden subarrays in L′.

IV. CONSTANT PREFIX–SUFFIX HAMMING
CONNECTEDNESS

Rather than allowing arbitrary single symbol changes, one
may consider constant prefix–suffix restricted Hamming con-
nectedness, similar to what was considered in the context of
the NIB constraint in Section I. Under this restriction, if the
starting and ending words have a common prefix of m symbols
or longer, where m is equal to the memory of the constraint,
there is a legal transformation in which the first m symbols
remain unchanged in all intermediate words and if there is
a common suffix of m symbols or longer, there is a legal
transformation in which the last m symbols are unchanged.
Additionally, if there is both a common prefix and suffix of
length m, then there is a legal transformation preserving both
the first m and last m symbols.

Proposition 4.1: Constant prefix–suffix Hamming con-
nectedness is decidable for primitive finite memory con-
straints.

Proof sketch: It suffices to check constant prefix–suffix
Hamming connectedness up to a block length n where n is at
least 3m+2k, with k being such that for all pairs of constraint
satisfying words of length m there is a constraint satisfying
word of length 2m+ k having the respective m length words
as a prefix and suffix. The existence of such a k follows from
the primitivity assumption. Assuming constant prefix–suffix
Hamming connectedness for all such block lengths, we can
use irreducibility and induction to show constant prefix–suffix
Hamming connectedness with an intermediate word sharing a
sufficiently long prefix and suffix with the starting word and
a sufficiently long middle portion with the ending word. .

REFERENCES

[1] E. Ordentlich and R.M. Roth, Low complexity two-dimensional weight-
constraint codes, IEEE Trans. Inf. Theory, 58 (2012), 3892–3899.

[2] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and
Coding, Cambridge University Press, 1995.

[3] R. Berger, The undecidability of the domino problem, Mem. Amer. Math.
Soc., 66, 1966.

