
Hamming-Weight Constrained Coded Arrays Based
on Covering Codes

Erik Ordentlich
Hewlett–Packard Laboratories

Palo Alto, CA 94304
erik.ordentlich@hp.com

Ron M. Roth
Computer Science Department

Technion, Haifa, Israel
ronny@cs.technion.ac.il

Abstract—We present a framework based on covering codes
over the set of binary n-words for coding data into n × n
binary arrays with a prescribed upper bound on the Hamming
weight (i.e., number of 1’s) in each row and column. We obtain
previously presented schemes for the case when the upper bound
is n/2 as special cases of this framework and we study also
another potentially practically relevant specialization when the
underlying covering code is the first-order Reed–Muller code.
Like the previous schemes for the n/2 case, the proposed
framework and schemes may have applications in improving
the performance of a next-generation memory based on pro-
grammable resistive devices arranged in a crossbar architecture.

I. INTRODUCTION

Consider the set An,r of all n × n arrays A = (Ai,j)i,j

over the binary alphabet F = {0, 1} such that the (Ham-
ming) weight of each row and each column is at most r
for some prescribed r ≤ n/2; i.e., w

(
(Ai,s)n

s=1

)
≤ r and

w
(
(As,j)n

s=1

)
≤ r for each i and j. We are interested in

the problem of efficiently encoding and decoding arbitrary
data to and from (a subset of) An,r. Following the usual
formal definitions, a code for this problem consists of a subset
C ⊆ An,r, an encoder (mapping) f : M → C from a message
set M of size M = |C| and a decoder g : C → M such that
g(f(u)) = u for all u ∈ M. Of interest are codes for which
f and g can be computed with low complexity and M is as
large as possible. The gap n2 − log2M is the redundancy of
the code.

In previous work, we presented two efficient schemes for the
case of r = n/2 [1]. These are the iterative flipping code and
the antipodal matching code with respective redundancies of
2n−1 and 2n. Both schemes have linear complexity decoding,
with the antipodal matching code having also linear complex-
ity encoding. In this work, we present a general framework
based on covering codes for constructing schemes that are also
applicable to cases when r < n/2. The respective schemes
of [1] will be seen to essentially be special cases of the
framework when the covering code is the trivial repetition code
consisting of the all-zero and all-one codewords.

The work of R. M. Roth was carried out in part while visiting Hewlett–
Packard Laboratories, Palo Alto, CA. This work was supported in part
by Grant No. 2008058 from the United-States–Israel Binational Science
Foundation.

Regarding hereafter the alphabet F as the finite field GF(2),
the proposed framework assumes a linear code over F with
a prescribed covering radius, and yields two constructions
that encode into An,r: an iterative flipping version similar
to the iterative scheme in [1] and another version based
on antipodal matchings, which were defined in [1]. Recall
that the covering radius ρ of a code C ⊂ Fℓ is defined as
ρ = ρ(C) = maxx∈Fℓ minc∈C d(x, c), where d(·, ·) denotes
Hamming distance. The iterative flipping encoder uses a
linear [n, k] code with covering radius r and has redundancy
2kn − k2, while the antipodal matching code uses a linear
[n−1, κ] code with covering radius r−1 and has redundancy
2κn (typically κ is slightly larger than k). The advantage of
our schemes is seen mainly in the range where r is large
(i.e., close to n/2), in which case k is small (e.g., logarithmic
in n), resulting in an overall redundancy of approximately
2kn. While the redundancy of An,r is generally smaller (yet
always grows at least linearly with n—even for r = n/2 [2]),
selecting a small k allows us to achieve efficient encoding and
decoding.

Before presenting the details of our constructions, we review
the motivation for row–column weight-limiting codes from [1].
A recently proposed next-generation memory ([3] and refer-
ences therein) is based on arranging memristive devices in a
crossbar architecture comprised of a set of row conductors
and a set of column conductors with a memristive device
connecting each column conductor to each row conductor.
Information may be stored (“written”) in such a memory by
applying suitably large positive and negative voltages to row
and column conductors of a target device, while grounding
the remaining conductors, thereby switching the target device
between persistent low and high resistance states. One poten-
tial problem is that a significant amount of parasitic current
may leak through the so-called half-selected devices, which
are the devices connected to either the same row or the same
column conductors as the targeted device. The use of row–
column weight-constrained codes, such as those presented
herein, may serve to mitigate this problem. The idea is to
store data only after it has been encoded into such constrained
arrays, with a 1 (resp. 0) in array location (i, j) indicating that
the device spanning the ith row and jth column conductors
be put in the low (resp. high) resistance state. If encoded
arrays are overwritten in a judicious manner that ensures

that all intermediate arrays satisfy the constraint (e.g., by
first writing the high resistance states, followed by the low
resistance states), it may be possible to significantly reduce
the aforementioned parasitic current since the half-selected
devices in the low resistance state, which would contribute to
the greatest current leakage, would be limited in number. The
new framework and, in particular, the instantiation considered
in Section IV, expand the range over which the leakage current
and redundancy can be traded off relative to the r = n/2
constrained schemes of [1].

We next establish some notation that will be used throughout
this work. For integers a ≤ b, we denote by ⟨a : b⟩ the set
{a, a+1, a+2, . . . , b}, with ⟨b⟩ standing for ⟨1 : b⟩. For an
array A = (Ai,j) and ordered subsets of indices (elements in
increasing order) I and J , we denote by AI,J the |I| × |J |
sub-array of A whose rows (resp. columns) are indexed by I
(resp. J). For the case where I is a singleton {i}, we will use
the simpler nation Ai,J (and similarly when J is a singleton);
e.g., A⟨n⟩,j stands for the jth column of an n × n array A.
All arithmetic operations involving binary words and arrays
are assumed to be in the binary field F.

II. ITERATIVE COVERING CODE FRAMEWORK

Set C to be a linear [n, k] code over F with covering radius
r, and, without real loss of generality, suppose that C has a
k × n generator matrix G (over F) of the form

G =
(
g1 g2 . . . gn

)
=

(
G̃ | I

)
, (1)

where gj denotes the jth column of G and I is the k × k
identity matrix. The information symbols are thus assumed to
occupy the highest k positions in a codeword.

Our first construction initializes the upper-left (n−k) ×
(n−k) portion of an n× n array with the input data and the
remainder with 0’s. Then, iteratively, for each row or column
with weight greater than r, a codeword is found in C within
Hamming distance r of the respective row or column which is
then replaced by its componentwise sum (in F) with the found
codeword. The process stops when all rows and columns have
weight at most r. This construction thus has a redundancy of
n2 − (n− k)2 = 2nk− k2, which is the number of boundary
positions initialized to 0 and encodes into An,r. As will be
shown below, the encoded entries in the boundary positions
can be used, together with the remaining entries, to undo the
encoding process and decode the input bits.

The encoding algorithm is detailed in Figure 1. The afore-
mentioned initialization is carried out in Steps 1 and 2, and
the row–column iterations are carried out in Steps 3 and 4.
Depending on the covering code C, there may be efficient
algorithms for finding a codeword at the suitable Hamming
distance in these steps. Some (low rate) covering codes, when
viewed as error-correcting codes, have efficient maximum-
likelihood decoding algorithms for the binary symmetric chan-
nel. In these cases, the error-correcting decoding algorithm can
be applied to the constraint violating row or column to obtain
a codeword within the covering radius. In Section IV, we will
specifically consider the case when the covering code is the

Input: Arbitrary sequence u of (n−k)2 bits.
1) Arrange u into an (n−k)× (n−k) array U .
2) Extend U into an n×n array A by adding k rows and columns

of 0’s.
3) For i ∈ ⟨n⟩ do:

If w(Ai,⟨n⟩) > r, do the following:
a) Find c ∈ C such that d(Ai,⟨n⟩, c) ≤ r.
b) Set Ai,⟨n⟩ ← Ai,⟨n⟩ + c.

4) For j ∈ ⟨n⟩ do:
If w(A⟨n⟩,j) > r, do the following:
a) Find c ∈ C such that d(A⟨n⟩,j , c

T) ≤ r.
b) Set A⟨n⟩,j ← A⟨n⟩,j + cT .

5) If a row or column was replaced in Steps 3 or 4, go to Step 3,
otherwise terminate and output the final array.

Output: n× n binary array A.

Fig. 1. Encoding algorithm for iterative flipping code based on linear covering
code.

first-order Reed–Muller code and comment on the complexity
of this step.

Notice that the replacement rows and columns in Steps 3
and 4 have r or fewer 1’s, since the weights of these replace-
ments coincide precisely with the Hamming distance between
the original row (resp. column) and the found codeword. More-
over, the above iterative process is guaranteed to terminate
since each row and column replacement in Steps 3 and 4
decreases the corresponding number of 1’s in the array by
at least 1 (the number of 1’s in the affected row or column
decreases from r + 1 or more to r or fewer).

The following proposition establishes that the encoding
operations of Figure 1 can be inverted to yield the input
sequence u (equivalently, the array U).

Proposition 2.1: Given an array A that is the output of the
encoding algorithm of Figure 1, the corresponding input bit
Ui,j placed into position (i, j) in Step 1 can be recovered by

Ui,j = Ai,j + gT
i A⟨n−k+1:n⟩,j +Ai,⟨n−k+1:n⟩gj

+ gT
i A⟨n−k+1:n⟩,⟨n−k+1:n⟩gj , (2)

where G = (gj)n
j=1 is the generator matrix of the form (1).

Proof: We will prove that for each (i, j) ∈ ⟨n−k⟩ ×
⟨n−k⟩, the expression

Ũi,j = Ai,j + gT
i A⟨n−k+1:n⟩,j +Ai,⟨n−k+1:n⟩gj

+ gT
i A⟨n−k+1:n⟩,⟨n−k+1:n⟩gj (3)

is invariant to any possible row and column modifications in
Steps 3 and 4 in Figure 1. The proposition will then follow,
since after Step 2, Ai,j = 0 whenever either i ≥ n−k+1 or
j ≥ n−k+1, implying that Ũi,j = Ai,j = Ui,j .

First, note that Ũi,j is affected only when Ai,⟨n⟩, A⟨n⟩,j ,
or A⟨n−k+1:n⟩,⟨n−k+1:n⟩ are modified. The latter array com-
ponents are modified only if one of the highest indexed k
columns or rows is modified. Assume first that Ai,⟨n⟩ is
modified to A′

i,⟨n⟩ with

A′
i,⟨n⟩ = Ai,⟨n⟩ + c = Ai,⟨n⟩ + c⟨n−k+1:n⟩G , (4)

where (4) follows from our assumption (1) on the generator
matrix G. Considering only the terms of (3) depending on the
updated A′

i,⟨n⟩ we get that

A′
i,j +A′

i,⟨n−k+1:n⟩gj = Ai,j + c⟨n−k+1:n⟩gj

+ (Ai,⟨n−k+1:n⟩ + c⟨n−k+1:n⟩)gj

= Ai,j +Ai,⟨n−k+1:n⟩gj ,

thereby proving that Ũi,j is invariant to updating Ai,⟨n⟩.
Invariance with respect to updates to A⟨n⟩,j can be established
similarly.

Next, assume that for some ℓ > n−k, the row Aℓ,⟨n⟩ is
modified to A′

ℓ,⟨n⟩, with a dependence on c analogous to (4).
Let A′ denote the overall modified array and let e(ℓ) denote
a column unit vector with its 1 in the ℓth position. Again,
considering only the terms of (3) affected by this change, we
get that

gT
i A

′
⟨n−k+1:n⟩,j + gT

i A
′
⟨n−k+1:n⟩,⟨n−k+1:n⟩gj

= gT
i (A⟨n−k+1:n⟩,j + e(ℓ)cj)

+ gT
i (A⟨n−k+1:n⟩,⟨n−k+1:n⟩ + e(ℓ)c⟨n−k+1:n⟩)gj

= gT
i (A⟨n−k+1:n⟩,j + e(ℓ)c⟨n−k+1:n⟩gj)

+ gT
i (A⟨n−k+1:n⟩,⟨n−k+1:n⟩ + e(ℓ)c⟨n−k+1:n⟩)gj (5)

= gT
i A⟨n−k+1:n⟩,j + gT

i A⟨n−k+1:n⟩,⟨n−k+1:n⟩gj ,

where (5) follows from (4). This establishes the invariance
of (3) with respect to changes to rows with indices n−k+1
or larger. Invariance with respect to changes to columns with
indices in this range is similarly established.

III. ANTIPODAL MATCHING COVERING CODE FRAMEWORK

In this section, we present the construction based on an-
tipodal matchings that avoids the—at present—unknown and,
possibly, large (but still polynomially large) number of non-
parallelizable iterations of the iterative flipping encoder of the
previous section. We recall from [1] that an antipodal matching
is a mapping ϕ : Fℓ → Fℓ with the properties:
(i) w(x) + w(ϕ(x)) = ℓ.

(ii) If w(x) ≥ ℓ/2 then ϕ(x) ≤ x componentwise.
(iii) ϕ(ϕ(x)) = x.
Thus, from property (ii), no component of x that is a 0 can
become a 1 in ϕ(x).

The antipodal matching weight-limiting code of [1], which
addresses the special case r = n/2, applies antipodal match-
ings to weight constraint-violating rows (resp. columns) in-
stead of bit-flipping as in the iterative flipping code, thereby
avoiding the creation of new constraint-violating columns
(resp. rows) and the resulting additional iterations to fix these.
Reserved positions in the array are used to encode the rows
and columns to which antipodal matchings are applied, thus
allowing the decoder to invert the process.

Here, we show that antipodal matchings can similarly be
used to eliminate iterations from the iterative version of
covering code framework of the previous section. Referring to
Figure 1, one key modification is to the processing of columns

in Step 4, where rather than summing in the Hamming distance
reducing codeword cT , we instead apply an antipodal match-
ing to the sub-word of positions in the constraint-violating
column corresponding to the positions with indices in the set
⟨n−k⟩ in which c is 1.

Formally, given a binary word y = (yi) in Fℓ, let S(y) =
{i ∈ ⟨ℓ⟩ : yi = 1} denote the ordered set of indices, from
smallest to largest, in which y is 1, and let Sc(y) = ⟨ℓ⟩\S(y).
Define the mapping ψ : Fℓ × Fℓ → Fℓ as z = ψ(x,y) with

zS(y) = ϕ(xS(y)) and zSc(y) = xSc(y) (6)

(recall that, for a generic word v, we have defined vI to be
the sub-word that is indexed by I). Note that if y is all-zero
then S(y) = ∅ and ψ(x,y) = x.

The following proposition states the key properties of ψ that
are needed for our construction.

Proposition 3.1: For x ∈ Fℓ with w(x) > r, let y be a
word satisfying d(x,y) ≤ r. Then ψ(x,y) ≤ x (component-
wise) and w

(
ψ(x,y)

)
= d(x,y) ≤ r.

Proof: Note the relations w
(
xS(y)

)
+ w

(
(x + y)S(y)

)
=

|S(y)| and that w
(
xSc(y)

)
= w

(
(x + y)Sc(y)

)
. Since by

assumption w(x) > d(x,y) = w(x + y), it follows from
the latter relation that w

(
xS(y)

)
> w

(
(x + y)S(y)

)
, and,

then from the former relation that w
(
xS(y)

)
> |S(y)|/2. We

thus have from property (ii) of ϕ and the definition of ψ that
ψ(x,y) ≤ x. From property (i) of ϕ and the definition of ψ
we have that

w(ψ(x,y)) = |S(y)| − w
(
xS(y)

)
+ w

(
xSc(y)

)
= w(x + y) = d(x,y) ≤ r , (7)

where (7) follows from the first two relations noted at the
beginning of the proof.

Figures 2 and 3, respectively, present a possible encoder
and a corresponding decoder based on this approach. The
antipodal matching underlying ψ would ideally be the linear
time computable one described in [1]. As in the iterative con-
struction, rows and columns with indices n−κ+1 or larger are
reserved for storing information required to enable decoding
of the encoded array. In contrast to the iterative construction,
however, we use here a linear [n−1, κ] code with covering
radius r−1; moreover, κ2 additional reserved positions turn
out to be necessary in this case. In Figure 2, it is assumed that
κ2 ≤ n − κ, and, therefore, the additional reserved positions
can be confined to the diagonal elements (diag(A)) of the
(sub)array A⟨n−κ⟩,⟨n−κ⟩ (Steps 1 and 2). This assumption
holds when κ is sufficiently small and, in particular, when
the covering code is the first-order Reed–Muller code, as will
be considered in the next section. The main consequence of
these reserved positions is that we do need the covering radius
to be r−1 in order to guarantee the weight constraint of r on
the rows and columns of the array.

As can be seen in Steps 4 and 5, the antipodal matching en-
coder applies ψ in the column processing phase to constraint-
violating columns (with the diagonal entries ignored) and
again during the processing of the last κ rows. Specifically,

Input: Arbitrary sequence u of (n−κ)2 − κ2 (= n2 − 2κn) bits.
1) Arrange u into positions ⟨n−κ⟩×⟨n−κ⟩\{(i, i)}n−κ

i=n−κ−κ2+1

of an (n−κ)× (n−κ) binary array U .
2) Extend U into an n×n array A by adding κ rows and columns

of 0’s.
3) For i ∈ ⟨n−κ⟩ do:

If w(Ai,⟨n⟩\{i}) ≥ r, do the following:
a) Find c ∈ C such that d(Ai,⟨n⟩\{i}, c) < r.
b) Set Ai,⟨n⟩\{i} ← Ai,⟨n⟩\{i} + c.

4) For j ∈ ⟨n⟩ do:
If w(A⟨n−κ|j⟩) ≥ r, do the following:
a) Find c ∈ C such that d(A⟨n⟩\{min(j,n−κ)},j , c

T) < r.
b) Set A⟨n−κ|j⟩,j←ψ

(
A⟨n−κ|j⟩,j , c

T
⟨n−κ−1⟩

)
.

c) Set A⟨n−κ+1:n⟩,j ← cT
⟨n−κ:n−1⟩.

5) For i ∈ ⟨n−κ+1 : n⟩ do:
If w(Ai,⟨n⟩\{i}) ≥ r, do the following:
a) Find c ∈ C such that d(Ai,⟨n⟩\{i}, c) < r.
b) Set Ai,⟨n⟩\{i} ← ψ

(
Ai,⟨n⟩\{i}, c

)
.

c) Set (diag(A))⟨(i−2)κ−n(κ−1)+1,(i−1)κ−n(κ−1)⟩
← c⟨n−κ:n−1⟩.

Output: n× n array A

Fig. 2. Encoding algorithm for antipodal matching code based on covering
codes.

letting ⟨n−κ|j⟩ stand for the set ⟨n−κ⟩ \ {min(j, n−κ)},
the (n−κ−1)-prefix, A⟨n−κ|j⟩,j , of each constraint-violating
(punctured) column is replaced by ψ

(
A⟨n−κ|j⟩,j , c

T
⟨n−κ−1⟩

)
,

where c is a codeword in the covering code within Ham-
ming distance less than r of the column. The κ-suffix
of the column is set as A⟨n−κ+1:n⟩,j = cT

⟨n−κ:n−1⟩ in
order to allow the decoder to recover S(c), the indices
to which the antipodal matching was applied. Note that,
since prior to such a step A⟨n−κ+1:n⟩ has zero entries, we
have d

(
A⟨n−κ|j⟩,j , c

T
⟨n−κ−1⟩

)
< r − w(c⟨n−κ:n−1⟩), and,

therefore, by Proposition 3.1, w
(
ψ(A⟨n−κ|j⟩,j , c

T
⟨n−κ−1⟩)

)
+

w
(
c⟨n−κ:n−1⟩

)
< r, and hence the entire column, after this

step, has weight at most r. Moreover, by the monotonicity
property of Proposition 3.1, no new constraint violations are
created in the first n−κ rows when processing the columns.

A similar analysis applies to the processing of the last κ
rows in Step 5. In this case, however, the information symbols
necessary for recovering S(c) are stored in the previously
reserved κ2 diagonal positions of the array, which can be done
for each such row provided that κ2 ≤ n − κ. Note that the
setting of each diagonal value might potentially increase by 1
the weights of the containing row and column. If it happens
that κ2 > n−κ, then we would reserve additional off-diagonal
elements of the array for this purpose, and, accordingly, C
should then be selected to be (shorter and) with covering radius
smaller than r−1.

The preceding discussion establishes the following.
Proposition 3.2: Assuming κ2 ≤ n−κ, the output array of

the encoder of Figure 2 belongs to An,r.
The corresponding decoding algorithm detailed in Figure 3

reverses the above encoding steps and recovers the input se-

Input: n× n array A.
1) For i ∈ ⟨n−κ+1 : n⟩ do:

a) Set c← (diag(A))⟨(i−2)κ−n(κ−1)+1,(i−1)κ−n(κ−1)⟩G.
b) Set Ai,⟨n⟩\{i} ← ψ

(
Ai,⟨n⟩\{i}, c

)
.

2) For j ∈ ⟨n⟩ do:
a) Set c← (A⟨n−κ+1:n⟩,j)

TG.
b) Set A⟨n−κ|j⟩,j←ψ

(
A⟨n−κ|j⟩,j , c

T
⟨n−κ−1⟩

)
.

3) For i ∈ ⟨n−κ⟩ do:
a) Set c← Ai,⟨n−κ+1:n⟩G.
b) Set Ai,⟨n−κ|i⟩ ← Ai,⟨n−κ|i⟩ + c⟨n−κ−1⟩.

Output: n2−2κn bits in positions of A that are indexed by ⟨n−κ⟩×
⟨n−κ⟩ \ {(i, i)}n−κ

i=n−κ−κ2+1
.

Fig. 3. Decoding algorithm for antipodal matching code.

quence u. In Decoding Step 1, the reserved diagonal positions
are partitioned into groups of κ information symbols which are
used to reconstruct, via the generator matrix G of the covering
code, the sub-words of the last κ rows to which the antipodal
matching was applied (if applied at all, as indicated by a non-
zero codeword). These antipodal matchings are inverted. Then,
in Step 2, the column encoding is inverted by recovering the
sub-words to which antipodal matchings were applied from
the information symbols stored in the last κ positions of each
column. These matchings are then inverted. Finally, the first
n−κ rows, excepting the diagonal positions, are recovered
using information symbols in the last κ columns. We thus
have the following.

Proposition 3.3: The n2−2κn information symbols in A in
positions ⟨n−κ⟩×⟨n−κ⟩\{(i, i)}n−κ

i=n−κ−κ2+1, after Decoding
Step 3 in Figure 3, coincide with the corresponding input bit
array entries created in Encoding Step 1 in Figure 2.
An optimality property. As an aside, we note the following
optimality property of the antipodal matching in the context
of the covering codes framework.

Proposition 3.4: Suppose that n, k, and r are such that there
exists a linear [n, k, 2r+1] perfect code over F (with covering
radius r), and let C be such a code. Then the minimum of∑

x∈Fn−k

d(x, f(x)⟨n−k⟩)

over all one-to-one mappings f from Fn−k to the set {z ∈
Fn : w(z) ≤ r} is attained by f∗(x) = ψ(x, c), where c =
arg minz∈C d

(
(x 0 . . . 0),z

)
, with ψ defined in (6).

Thus, in such an ideal scenario, the antipodal matching
based mapping ψ, as applied via f∗, requires the fewest
symbol changes between the input and the first n−k bits
of the output, among all one-to-one mappings between the
above sets. The proposition is proved by noting that the
antipodal matching only changes 1’s to 0’s, and thus f∗ attains
a pointwise lower bound on the number of symbol changes
between two words given the respective weights of the words.

IV. PRACTICAL COVERING CODES

As mentioned above, we can essentially obtain the iterative
flipping and antipodal matching codes of [1] by instantiating

the above framework with the simple [n, 1] repetition code
consisting of the all-zero and all-one codewords. This covering
code has a covering radius of ⌊n/2⌋ and the overall scheme
encodes into An,⌊n/2⌋ in the case of the iterative scheme and
into An,⌊n/2⌋+1 in the case of the antipodal matching scheme.
For the antipodal matching case, we do not quite obtain the
corresponding scheme from [1], since that scheme is able meet
the weight constraint of n/2 for all n, even with the extra
reserved diagonal bit relative to the iterative scheme. We do
not yet know if such an optimization is possible in general.

Another potentially practical instantiation of the framework
is with the [n=2k−1, k] first-order Reed–Muller code as the
covering code. This code is known to have a covering radius
of at most (n−

√
n)/2 [6, p. 242], and also to have an efficient

maximum likelihood decoder (based on a fast Hadamard
transform) with a complexity of O(n log2 n) bit operations [7,
§14.4]. Thus, the iterative and antipodal matching Reed–
Muller code instantiated frameworks could be used to encode
into An,⌊(n−

√
n)/2⌋, and An,⌊(n−

√
n)/2⌋+1, respectively, with

a redundancy on the order of 2n log2 n. Note that the Reed–
Muller code satisfies the constraint that k2 ≤ (n − k) for
k ≥ 7, which allows the antipodal matching version to store
the additional reserved bits along the main diagonal.

From Figure 2, we see that encoding according to the
antipodal matching construction requires 2n computations of
covering codewords, and at most n + k applications of the
antipodal matching. Since the latter can be done in O(n)
register operations, or O(n log n) bit operations, the overall
encoding complexity is dominated by the covering codeword
computation. Thus, for the first-order Reed–Muller code case,
the overall encoding complexity is O(n2 log2 n) bit operations.
Decoding, on the other hand, for both the iterative and
antipodal matching versions of the scheme, is less complex
and can be carried out in O(n2 log n) bit operations. Note
that for the iterative case, the term gT

i A⟨n−k+1:n⟩,⟨n−k+1:n⟩gj

appearing in the decoding rule (2) can be efficiently deter-
mined for all i, j by saving and reusing the computation of,
say, gT

i A⟨n−k+1:n⟩,⟨n−k+1:n⟩. Note also that all inner products
involve vectors over F of dimension O(logn).

To get an idea of the potential advantages of the Reed–
Muller instantiation over known approaches, we can fix the
row–column weight constraint r to that induced by a Reed–
Muller code (where r ≤ (n−

√
n)/2) and compare the

redundancy and complexity of the known approaches for
such a constraint. We are aware of two other potentially
applicable approaches, respectively, from [4] and [5]. The
latter approach encodes into arrays with constant row and col-
umn weights and is based on a two-dimensional approximate
enumerative encoding–decoding scheme that is polynomial-
time computable, but nonetheless substantially more complex
than the Reed–Muller covering code approach. On the other
hand, the redundancy of this approach for the Reed–Muller
induced constraint can be shown to improve to n log2 n plus
lower order terms.

The approach of [4] involves first encoding input data
into weight constraint satisfying rows and then permuting

the rows using a recursive scheme to also obtain constraint
satisfying columns. One is free to use any scheme for the
row encoding, and, in particular, in one comparison it makes
sense to assume that the Reed–Muller covering code approach
is used for this step, on a row-by-row basis. The resulting
encoding and decoding complexity can then both be shown to
be O(n2 log2 n) bit operations. The O(n2 log2 n) complexity
for decoding arises from the inversion of the row permutations
carried out during encoding, with the subsequent decoding
of the rows requiring only an additional O(n2 log n) bit
operations. Thus, both the iterative and antipodal matching
Reed–Muller based approaches would have lower decoding
complexity, and roughly similar encoding complexity. The
redundancy of the approach of [4] would also be 2n log2 n
plus lower order terms, and thus comparable to the proposed
approach. We do note that the redundancies of the antipodal
matching version of the proposed approach and the approach
of [4] can both be improved by using, say an enumerative
coding scheme for Step 3 in Figure 2, at the expense of
comparable increases in complexity for both.

Other potential practical advantages of the proposed ap-
proach over the previously known approaches are that, in the
case of the iterative scheme, the decoding can be parallelized,
and to decode one (or a few) bit(s) does not require reading
in the entire array, as would be necessary for the schemes
of [4] and [5], but requires only the desired entry and
log2

2 n + 2 log2 n boundary entries. The antipodal matching
approach does require reading in the entire array, but in this
case, both the encoding and decoding operations applied to
different rows and columns can be done in parallel. In contrast,
the critical steps of the algorithms of [4] and [5] are highly
sequential and do not seem to be amenable to parallelization.

We end this section by stating the following result, the proof
of which we omit due to space limitations.

Proposition 4.1: For r = n/2 − O(
√
n) , the redundancy

of An,r grows (at most) linearly with n.
Yet, we do not know of an encoding–decoding algorithm

which is both efficient and has redundancy which is linear in
n.

REFERENCES

[1] E. Ordentlich and R.M. Roth, Low complexity two-dimensional weight-
constraint codes, IEEE Trans. Inf. Theory, 58 (2012), 3892–3899.

[2] E. Ordentlich, F. Parvaresh, and R.M. Roth, Asymptotic enumeration
of binary matrices with bounded row and column sums, SIAM J. Disc.
Math., 26 (2012), 1550–1575.

[3] D.B. Strukov and R.S. Williams, Four-dimensional address topology for
circuits with stacked multilayer crossbar arrays, Proc. Nat’l. Acad. Sci.,
106 (2009), 20155–20158.

[4] R. Talyansky, T. Etzion, and R.M. Roth, Efficient code construction for
certain two-dimensional constraints, IEEE Trans. Inf. Theory, 45 (1999),
794–799.

[5] E. Ordentlich and R.M. Roth, Two-dimensional weight-constrained
codes through enumeration bounds, IEEE Trans. Inf. Theory, 46 (2000),
1292–1301.

[6] G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein, Covering Codes,
North-Holland, Amsterdam, 1997.

[7] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting
Codes, North-Holland, Amsterdam, 1977.

