
Approximate Enumerative Coding for 2-D
Constraints through Ratios of Matrix Products

Erik Ordentlich
Hewlett–Packard Laboratories

Palo Alto, CA 94304
erik.ordentlich@hp.com

Ron M. Roth∗
Computer Science Department

Technion, Haifa, Israel
ronny@cs.technion.ac.il

Abstract—We show how to improve on the technique of
approximate enumerative coding for two-dimensional constraints
by encoding according to lower bounds based on the worst-case
behavior of certain ratios of matrix products. For the case of the
two-dimensional (d=2,∞) run-length limited (RLL) constraint,
the improved approach yields a lower bound of0.4453 on the
capacity of the constraint.

I. I NTRODUCTION

Enumerative coding [1] is a well-known technique for
mapping arbitrary binary sequences (messages) of fixed length
into a sequence of symbols that are required to satisfy certain
constraints, such as there being at least one0 between any
two 1’s or the same number of1’s as 0’s. Enumerative
coding requires the computation or storage of the number of
constraint-satisfying sequences starting with any prefix. This is
not a problem for most one-dimensional (1-D) constraints and
sequences of reasonable length. However, we are interested
in two-dimensional (2-D) constraints for which conventional
enumerative coding is not practical.

A 2-D constrained code maps arbitrary fixed-length binary
messages into 2-D arrays satisfying a 2-D constraint. Ex-
amples of such constraints are requiring that every row and
column obey a 1-D constraint (such as the above examples),
or requiring that no1 be surrounded by all0’s and no 0
surrounded by all1’s. Codes for certain 2-D constraints may
find applications in denser conventional magnetic and optical
data storage technologies, holographic data storage, nano-
crossbar storage technologies, and 2-D bar codes.

The application of enumerative coding to 2-D constraints
would require computing the number of constraint-satisfying
arrays starting with any partially filled-in array, which, for all
2-D constraints of conceivable practical interest, is feasible
only for arrays of very small extent along at least one dimen-
sion (narrow stripes). In [6] (for 2-D balanced arrays) and [7]
(for 2-D finite-state row–column constraints), we introduced
an alternativeapproximateenumerative coding technique for
2-D constraints (approximate enumerative coding was applied
in a different way to 1-D coding in [4]). In this approach,
only lower boundson the number of constraint-satisfying
arrays with any fixed initial portion are needed. The idea
is to use lower bounds that are easily computed (unlike

∗ Work done while visiting Hewlett–Packard Laboratories, Palo Alto, CA.

the exact cardinalities). For the encoding and decoding to
work correctly, the lower bounds are required to satisfy a
consistency condition, and the coding rate achieved (measured
as the number of arbitrary bits encoded divided by the size
of the array into which they are encoded) depends on the
tightness of the lower bounds. It was noted in [7] that for
certain finite-state row–column constraints (in which every row
and column must satisfy a 1-D finite-state constraint) tighter
lower bounds can be obtained by grouping array symbols
into sub-blocks, treating these sub-blocks as super symbols
which must satisfy a “new” constraint induced by the original
constraint, and applying the approach of [6] to this “new”
constraint. The resulting codes were found to achieve higher
rates than previously proposed fixed-rate codings for certain
constraints.

We shall confine our discussion to row–column constraints,
with the understanding that the results in [7] and herein
are more generally applicable. The formulation of such 2-D
constraints is presented in Section II. In Section III, we review
our result in [7] in some more detail. Then, in Sections IV–
V, we present an improved lower bound, as compared to [7],
on the number of partially filled constrained arrays, and use
it to obtain new lower bounds on capacity. The improvement
is obtained through bounds on the worst-case behavior of a
ratio of matrix products, where the sequences of matrices
comprising the products must satisfy certain constraints in-
duced by the 2-D constraint at hand. Finally, in Section VI,
we demonstrate how our improved method can be used to
tune the parameters of a fixed-rate approximate enumerative
encoder thereby achieving coding rates which are higher than
those obtained via the technique in [7].

II. CONSTRAINTS AND NOTATION

Consider an ordered, finite alphabetΣ and two 1-D con-
straints with memory1 on sequences over this alphabet
determined by the|Σ|× |Σ| transition matricesH andV . The
rows and columns ofH andV are indexed byΣ, andH(x, y)
(respectively,V (x, y)) denotes the entry inH (respectively,V)
that is indexed byx, y ∈ Σ. In the sequel, the notationH and
V is used to also mean the constraints themselves (not just
the matrices). LetHn andVn, respectively, denote the set of
sequences of lengthn satisfying the constraints represented by

H andV . Thus a sequencex1x2 . . . xn is in Hn if and only
if H(xi, xi+1) = 1 for all i = 1, 2, . . . , n−1.

We are interested in the generic 2-D constraint on arrays
over Σ in which rows and columns are constrained byH and
V , respectively. For the sake of simplicity of the exposition,
we will further assume that there is a “wild card” symbol
0 ∈ Σ that can precede and follow any symbol inΣ,
both horizontally and vertically, i.e.,H(0, x) = H(x, 0) =
V (0, x) = V (x, 0) = 1 for everyx ∈ Σ. Let Am,n be the set
of m×n arrays whose rows and columns, respectively, belong
to Hn andVm. The capacityCH,V of this constraint is given
by

CH,V = lim
m,n→∞

1
mn

log |Am,n|,
where hereafter all logarithms are to the base2.

The following notation is used in the sequel. For any array
x, letx(i, j) denote the entry in theith row andjth column and
let x(i1:i2, j1:j2) denote the sub-array(x(i, j)) i2

i=i1
j2
j=j1

. The
notationx(i, :) andx(:, j) will stand for theith row andjth
column ofx, respectively. A sequence of` symbolsx1x2 . . . x`

may also be denoted asx`. For a positive integer̀ and a
symboly ∈ Σ, we define the subsetH`(y) ⊆ H` by

H`(y) = {z` ∈ H` : yz` ∈ H`+1}.
The subsetV`(y) ⊆ V` is defined in a similar manner.

Finally, for anyym ∈ Vm, define

Am,`(ym) = {x ∈ Am,` : ymx ∈ Am,`+1}.
III. PREVIOUS RESULTS

In this section, we recall our approach from [7] (which, in
turn, follows closely our even earlier approach from [6]) to
approximate enumerative coding for constraints of the type
presented in Section II.

For eachm and `, let qm,` be non-negative real numbers
that satisfy

qm,` ≤ min
ym∈Vm

∑
xm∈Am,1(ym)

∏m
j=1 |H`−1(xj)|∏m

j=1 |H`(yj)| . (1)

An argument similar to that used in the proof of Theorem 1
in [7] shows that for anyym ∈ Vm,

|Am,`(ym)| ≥ Lm,`(ym), (2)

where

Lm,`(ym)
4
=

(m∏

j=1

|H`(yj)|
)
·
(∏̀

i=1

qm,i

)
; (3)

namely,Lm,`(ym) bounds from below the number ofm × `
constraint-satisfying extensions of any partial array. The lower
bound (2), when computed for valuesqm,` that satisfy (1) with
equality, was used in [7] to compute a lower bound onCH,V .

Now, it follows from (1) that for anyym,
(m∏

j=1

|H`(yj)|
)
·
(∏̀

i=1

qm,i

)

≤
∑

xm∈Am,1(ym)

(m∏

j=1

|H`−1(xj)|
)
·
(`−1∏

i=1

qm,i

)
,

which is equivalent to

Lm,`(ym) ≤
∑

xm∈Am,1(ym)

Lm,`−1(xm). (4)

This consistency condition makes it possible to use the lower
bound (2) not just for computing lower bounds on capacity,
but also for approximate enumerative coding.

The full encoding and decoding algorithms are detailed in
Figures 1 and 2, where it is assumed for simplicity thatx(0, :)
and x(:, 0) are set to the wild-card symbol0 (the encoding–
decoding can be easily modified when this is not the case). For
a particulari andj, the functionL(w) in the decoder coincides
with (5) in the encoder. The correctness of the encoding hinges
on the consistency condition (4) and is established in a manner
similar to that in [6].

Input: Integer-valued messageM ∈ �0, dLm,n(0m)e�.
Output: Array x ∈ Am,n.
M ′ ← M
for j ← 1 to n do

for i ← 1 to m do
for eachw ∈ Σ, let

L(w) ←
X

ym∈Am,1(x(:,j−1)):

yi−1=x(1:i−1,j:j),yi=w

dLm,n−j(y
m)e (5)

end
x(i, j) ← max{y′ :

P
w<y′ L(w) ≤ M ′ <

P
w≤y′ L(w)}

M ′ ← M ′ −Pw<x(i,j) L(w)

end
end

Fig. 1. Encoder.

Input: Array x ∈ Am,n.
Output: Integer-valued messageM .
M ← 0
for j ← 1 to n do

for i ← 1 to m do
M ← M +

P
w<xi,j

L(w)

end
end

Fig. 2. Decoder.

The summation over an exponential number of terms ap-
pearing in the expression (5) forL(w) can be computed
efficiently (in linear time) using matrix multiplication; see [7,
§IV] for details.

As mentioned in Section I, higher coding rates can be
achieved by grouping symbols into sub-blocks and considering
the 2-D constraint induced on arrays comprised of these sub-
blocks. The improvement in coding rate obtained this way
comes at the cost of increased computational complexity due
to the larger super-alphabet size.

IV. N EW LOWER BOUNDS

Our new approach for boundingCH,V will be based on
the inequality (2), but with a different, tighter choice for the
values (3). Using the tighter values, we will also improve on
the coding rate achieved by the encoding and decoding steps
of Figures 1 and 2. The method presented herein has a memory
parameterk that controls the trade-off between the values of
the computed lower bounds and the complexity of computing
those bounds.

For anyym ∈ Vm andm× k arrayxm×k, define

p
(`)

Xm×k|Y m(xm×k|ym) =
m∏

j=1

|{x̃` ∈ H`(yj) : x̃k = x(j, :)}|
|H`(yj)| .

(6)
We will regard p

(`)

Xm×k|Y m(·|·) as a probability measure in
the following manner. Assume a uniform distribution over all
m× ` extensions ofym (into anm× (`+1) array) with rows
satisfying the constraintH; thenp

(`)

Xm×k|Y m(xm×k|ym) equals
the probability that the first (leftmost)k columns in such an
extension equalxm×k.

In the limit when` →∞, we get that

pXm×k|Y m(xm×k|ym)
4
= p

(∞)

Xm×k|Y m(xm×k|ym)

=
m∏

j=1

pX1×k|Y (x(j, :)|yj),

wherepX1×k|Y (w|y) is the probability, according to a max-
entropic Markov chain onH, that we seew ∈ Hk following
y ∈ Σ, conditioned ony [5, §3.2.3].

Fix a memory parameterk > 0, and for eachm, `, and
ym ∈ Vm, defineQ

[k]
m,` to be the probability that the firstk

columns of an extension of a columnym by anm × ` array
forms with ym an m× (`+1) constrained array; that is,

Q
[k]
m,`(y

m) =
∑

xm×k∈Am,k(ym)

p
(`)

Xm×k|Y m(xm×k|ym).

Let V [k] denote the|Hk|×|Hk| adjacency matrix of the 1-D
constraint whose elements are all thek-width vertical stripes
(seen over the alphabetHk) that satisfy the 2-D constraint. For
eachy in Σ, defineD

[k]
` (y) to be the|Hk| × |Hk| diagonal

matrix whose rows and columns are indexed by the elements
of Hk, and thexth diagonal entry equalsp(`)

X1×k|Y (x1×k|y) (as
obtained by substitutingm = 1 in (6)). Also, lete denote the
real row vector which is1 in the component corresponding to
the all-0 (i.e., all-wild-card) array element ofHk and zero in
all other components. We can expressQ

[k]
m,`(y

m) as

Q
[k]
m,`(y

m) = e
(m∏

j=1

(V [k]D
[k]
` (yj))

)
1, (7)

where1 denotes the real column vector of all1’s. In the limit
when` →∞, Equation (7) becomes

lim
`→∞

Q
[k]
m,`(y

m) = e
(m∏

j=1

(V [k]D[k](yj))
)
1, (8)

where D[k] is a diagonal matrix whose rows and columns
are indexed byHk, and the xth diagonal entry equals
pX1×k|Y (x|y).

When Q
[k–1]
m,` (ym) 6= 0, the ratio Q

[k]
m,`(y

m)/Q
[k–1]
m,` (ym)

equals the probability that the firstk columns of an extension
of a columnym by anm×` array forms withym a constrained
array, conditioned on the firstk−1 columns of the extension
already forming withym an m× k constrained array.

In what follows, we fix for everym and ` a non-negative
constantq[k]

m,` that satisfies

q
[k]
m,` ≤ min

ym∈Vm

Q
[k]
m,`(y

m)

Q
[k–1]
m,` (ym)

(9)

(for k = 1, we take the denominatorQ[0]
m,`(y

m) to be 1, and
throughout we adopt the convention that0/0 is ∞).

We have the following lemma.
Lemma 4.1:Given k, m, and`, for everyym ∈ Vm,

|Am,`(ym)| ≥ L
[k]
m,`(y

m), (10)

where

L
[k]
m,`(y

m)
4
=

(m∏

j=1

|H`(yj)|
)
Q

[k–1]
m,` (ym)

(∏̀

i=k

q
[k]
m,i

)
(11)

(the rightmost product is defined to be1 if ` < k).
Proof: The proof is similar to an argument used in the proof

of Theorem 1 of [7].

Note that fork = 1, Equations (9)–(11) coincide with (1)–
(3). For k > 1, we will get an improvement over [7] in
that the right-hand side of (11) is partially comprised of an
exact conditional probability, namely, the factorQ

[k–1]
m,` (ym), in

addition to the lower boundsq[k]
m,`. These latter lower bounds

also differ from their counterpartsqm,` in [7], in terms of
what they bound from below. In particular, the right-hand
side of (9) can be shown to be never smaller than the right-
hand side of (1), its counterpart in [7], thus allowing for the
potential to improve in the tightness of the valuesL

[k]
m,`(y

m)
as lower bounds. In fact, for̀ < k, these lower bounds are
tight (equality holds in (10) for̀ < k).

The next theorem generalizes Theorem 2.1 in [7] and applies
to any 2-D row–column constraint with a wild-card symbol0.

Theorem 4.2:Let CH denote the capacity of the 1-D con-
straint defined byH. The capacityCH,V of the 2-D constraint
with rows and columns constrained, respectively, byH andV
satisfies

CH,V ≥ CH + ν
[k]
H,V ,

whereν
[k]
H,V stands for the expression

lim sup
m→∞

1
m

min
ym∈Vm

{
log

e
(∏m

j=1(V
[k]D[k](yj))

)
1

e
(∏m

j=1(V [k–1]D[k–1](yj))
)
1

}
.

(12)

Sketch of proof:We assume equality in (9), then apply
Lemma 4.1, and finally we use (8) when taking` to infinity.

The next corollary (which follows from Perron–Frobenius
Theorem [5,§3.1]) applies to the special case where (the)
minimizing sequencesym in (12) are all periodic extensions
of the same sequence. For a square non-negative real matrix
U , let λ(U) be the largest real eigenvalue ofU .

Corollary 4.3: Under the conditions of Theorem 4.2, sup-
pose that there exists a sequencey∗ = y∗1y∗2 . . . y∗J such that
for all sufficiently largem, the minimum in (12) is attained
by a periodic sequence of periodJ obtained by repeating the
sequencey∗. Then,

ν
[k]
H,V =

1
J

log
λ(

∏J
j=1 V [k]D[k](y∗j))

λ(
∏J

j=1 V [k–1]D[k–1](y∗j))
. (13)

V. V ERIFYING THE PERIODICITY CONDITION

Based on Corollary 4.3, we can now proceed by minimizing
the expression in the right-hand side of (13) over a range of
(small) J and (short) sequencesy1y2 . . . yJ satisfying y1 ∈
V1(yJ), and, for each minimizing sequence, checking whether
the periodicity assumption in Corollary 4.3 holds (up to some
controlled discrepancy). We describe this approach in more
detail below.

Let y∗1y∗2 . . . y∗J be a sequence that minimizes the right-
hand side of (13), for someJ . Next, based ony∗1y∗2 . . . y∗J ,
for any penalty (discrepancy) factorα ∈ (0, 1] and for each
i ∈ {1, 2, . . . , J}, we shall define a partial order “¹α,i” on
sequences of equal length inV . To this end, we introduce
the following additional notation. Fors ∈ {k−1, k} define

U [s](·) 4= V [s]D[s](·), and, for eachi ∈ {1, 2, . . . , J}, let p[s]
i

be a non-negative left eigenvector associated with the largest
real eigenvalue of the matrix

∏J
j=i U [s](y∗j)

∏i−1
j=1 U [s](y∗j).

For s and i as above and a sequenceym ∈ Vm, define
vs,i(ym) = p[s]

i

(∏m
j=1 U [s](yj)V [s]

)
. And for real row vec-

tors a = (aj)j andb = (bj)j , define the tensor division:

a® b = ((a1/b1) (a1/b2) . . . (a2/b1) (a2/b2) . . .).

Next, for α ∈ (0, 1], i ∈ {1, 2, . . . , J}, andym ∈ Vm, define

rα,i(ym) =
{

αvk,i(ym)® vk−1,i(ym) if y1 = y∗i
vk,i(ym)® vk−1,i(ym) if y1 6= y∗i

.

Finally, for any two sequencesx = x1x2 . . . xm and y =
y1y2 . . . ym in Vm, define the partial order

x ¹α,i y ⇐⇒ (V1(ym) ⊆ V1(xm) andrα,i(x) ≤ rα,i(y)
)
,

(14)
where the vector inequality is component-wise.

The next step is to find a (largest) penalty factorα ≤ 1
for which the pruning algorithm of Figure 3 converges in
reasonable time for eachi = 1, 2, . . . , J and the partial
order (14). As can be seen from Figure 3, reducingα has
the effect of favoring sequences inWi that start withy∗i ,
thereby speeding the running time of the algorithm. On the
other hand, as the following lemma shows, reducingα also
carries a penalty in the lower bound that we get onν

[k]
H,V .

Wi ← V1(y
∗
i−1)

while ∃w ∈ Wi : w1 6= y∗i , do
Wi ← {all minimal elements inWi with respect to “¹α,i”}
Wi ← {wx : w ∈ Wi, x ∈ V1(w)}

end

Fig. 3. Pruning algorithm. The partial ordering “¹α,i” is defined in (14).

Lemma 5.1:If the algorithm in Figure 3 terminates forα,
y∗1y∗2 . . . , y∗J , and all1 ≤ i ≤ J , then

ν
[k]
H,V ≥ log α +

1
J

log
λ(

∏J
j=1 V [k]D[k](y∗j))

λ(
∏J

j=1 V [k–1]D[k–1](y∗j))
. (15)

The proof of Lemma 5.1 relies on the following two
propositions, the proofs of which we omit.

Proposition 5.2:There is a constantc > 0 (independent of
m) such that for allm,

min
ym∈Vm

e
∏m

j=1 V [k]D[k](yj)1

e
∏m

j=1 V [k–1]D[k–1](yj)1

≥ c · min
ym∈Vm:
y1=y∗1

p[k]
1

∏m
j=1 V [k]D[k](yj)1

p[k–1]
1

∏m
j=1 V [k–1]D[k–1](yj)1

.

Proposition 5.3:Given non-negative row vectorsa1,a2 ∈
Rn and b1,b2 ∈ Rq, the following two conditions are
equivalent:
(i) a1 ® b1 ≤ a2 ® b2 (where the vector inequality holds

component-wise).
(ii) For any pair of non-negative column vectorsc ∈ Rn and

d ∈ Rq, a1 · c
b1 · d ≤ a2 · c

b2 · d .

Sketch of proof of Lemma 5.1:Proposition 5.2 implies that
ν

[k]
H,V is bounded from below by

lim sup
m→∞

1
m

min
y2y3...ym∈
Vm−1(y

∗
1)

{
log

p[k]
1 U [k](y∗1)

(m∏
j=2

U [k](yj)
)
1

p[k–1]
1 U [k–1](y∗1)

(m∏
j=2

U [k–1](yj)
)
1

}
.

(16)
Note that p[s]

1 U [s](y∗1) = cs · p[s]
2 for s ∈ {k−1, k} and

constantscs. Thus, by invoking Proposition 5.3, it is straight-
forward to show (though we omit the details) that if the
algorithm depicted in Figure 3 terminates fori = 2 then,
for sufficiently largem, the minimum in (16) is achieved to
within a factor of1/α by y2 = y∗2 ; more formally:

min
y2y3...ym∈
Vm−1(y

∗
1)

p[k]
1 U [k](y∗1)

(m∏
j=2

U [k](yj)
)
1

p[k–1]
1 U [k–1](y∗1)

(m∏
j=2

U [k–1](yj)
)
1

(17)

≥ α · min
y3y4...ym∈
Vm−2(y

∗
2)

(
p[k]

1

2∏
j=1

U [k](y∗j)
)(m∏

j=3

U [k](yj)
)
1

(
p[k–1]

1

2∏
j=1

U [k–1](y∗j)
)(m∏

j=3

U [k–1](yj)
)
1

.

Again, noting thatp[s]
1

∏2
j=1 U [s](y∗j) = c′sp

[s]
3 , invoking the

termination of Figure 3 fori = 3, along with Proposition 5.3
for m sufficiently large, this process can be repeated to fix
y3 = y∗3 and incur another factor ofα. In fact, this process
can be continued until all but a bounded suffix of the mini-
mizing sequenceym in (17) has been replaced byy∗1y∗2 . . . y∗J ,
repeated, with each additional replaced entry incurring an
additional factor ofα. The boundedness of this suffix implies
the lemma.

We have applied the above framework to the 2-D(2,∞)-
RLL constraint (where every row and column must have at
least two0’s between any two1’s), after grouping bits into
non-overlapping2 × 1 super-symbols. For this grouping and
a memory parameter value ofk = 6, a choice ofα and
y∗1y∗2 . . . y∗J satisfying the assumptions of Lemma 5.1 has been
found. (While the memory parameterk is measured with
respect to2× 1 super-symbols, the minimizing sequenceym

in (12)—and hence also the sequencey∗1y∗2 . . . y∗J which was
found—are actually over an alphabet of2× 2 super-symbols,
so as to match the memory of the horizontal constraint.) The
corresponding lower bound onν[k]

H,V , when combined with
Theorem 4.2, yields a new lower bound of.4453 on the
capacity of the 2-D(2,∞)-RLL constraint. For comparison,
the best knownupperbound on the capacity of this constraint
is .4459 (this bound is obtained using the technique of [2], as
reported in [3]).

VI. ENCODER AND DECODER

An improved encoding–decoding algorithm can be obtained
by using the valuesL[k]

m,`(y
m) in (11) in place ofLm,`(ym) to

carry out the approximate enumerative encoding and decoding
of Figures 1–2; specifically, we use the new values in the range
of messagesM ∈ [

0, dL[k]
m,n(0m)e) and in the computation

of L(w) in (5). In this case as well,L(w) can be computed
efficiently using matrix multiplication, as described in [7,§IV].

Like in [7], the correctness of the resulting algorithms
hinges on the new valuesL[k]

m,`(y
m) satisfying the following

consistency condition.
Lemma 6.1:For everyy ∈ Vm,

L
[k]
m,`(y

m) ≤
∑

xm∈Am,1(ym)

L
[k]
m,`−1(x

m).

Proof: We have

L
[k]
m,`(y

m)
(11)
=

(m∏

j=1

|H`(yj)|
)
Q

[k–1]
m,` (ym)

(∏̀

i=k

q
[k]
m,i

)

(9)

≤
(m∏

j=1

|H`(yj)|
)
Q

[k–1]
m,` (ym)

× Q
[k]
m,`(y

m)

Q
[k–1]
m,` (ym)

(`−1∏

i=k

q
[k]
m,i

)

=
(m∏

j=1

|H`(yj)|
)
Q

[k]
m,`(y

m)
(`−1∏

i=k

q
[k]
m,i

)
. (18)

Now,

Q
[k]
m,`(y

m) =
∑

xm∈Am,1(ym)

p
(`)
Xm|Y m(xm|ym)Q[k–1]

m,`−1(x
m).

(19)
Also, from (6) we get that for anyxm ∈ Am,1(ym),

p
(`)
Xm|Y m(xm|ym) =

∏m
j=1 |H`−1(xj)|∏m

j=1 |H`(yj)| . (20)

Hence, by plugging (19) into (18) we obtain

L
[k]
m,`(y

m) ≤
∑

xm∈Am,1(ym)

p
(`)
Xm|Y m(xm|ym)

(m∏

j=1

|H`(yj)|
)

×Q
[k–1]
m,`−1(x

m)
(`−1∏

i=k

q
[k]
m,i

)

(20)
=

∑

xm∈Am,1(ym)

(m∏

j=1

|H`−1(xj)|
)

×Q
[k–1]
m,`−1(x

m)
(`−1∏

i=k

q
[k]
m,i

)

(11)
=

∑

xm∈Am,1(ym)

L
[k]
m,`−1(x

m),

thereby completing the proof.

The value ofα and the sequencey∗1y∗2 . . . y∗J satisfying the
assumptions of Lemma 5.1, along with the terminating sets
W1,W2, . . . ,WJ of the algorithm of Figure 3 (and some
additional penalty factors to account for the non-asymptotic
regime), can be leveraged to also obtain suitable valuesq

[k]
m,`

satisfying

1
m

log q
[k]
m,` −→ log α +

1
J

log
λ(

∏J
j=1 V [k]D[k](yj))

λ(
∏J

j=1 V [k–1]D[k–1](yj))

for increasingm and ` (we omit the details). Such values
q
[k]
m,`, together with Figures 1 and 2, specify an encoder and

decoder achieving a rate which approaches the sum ofCH

and the right-hand side of (15).

REFERENCES

[1] T.M. COVER, Enumerative source encoding,IEEE Trans. Inform. The-
ory, 19 (1973), 73–77.

[2] S. FORCHHAMMER, J. JUSTESEN, Bounds on the capacity of con-
strained two-dimensional codes,IEEE Trans. Inform. Theory, 46 (2000),
2659–2666.

[3] S. FORCHHAMMER, T.V. LAURSEN, Entropy of bit-stuffing-induced
measures for two-dimensional checkerboard constraints,IEEE Trans.
Inform. Theory, 53 (2007), 1537–1546.

[4] K.A.S. IMMINK , A practical method for approaching the channel ca-
pacity of constrained channels,IEEE Trans. Inform. Theory,43 (1997),
1389–1399.

[5] B.H. MARCUS, R.M. ROTH, P.H. SIEGEL, Constrained systems and
coding for recording channels,in Handbook of Coding Theory, Vol.
II, V.S. Pless, W.C. Huffman (Eds.), North-Holland, Amsterdam, 1998,
pp. 1635–1764.

[6] E. ORDENTLICH, R.M. ROTH, Two-dimensional weight-constrained
codes through enumeration bounds,IEEE Trans. Inform. Theory,46
(2000), 1292–1301.

[7] E. ORDENTLICH, R.M. ROTH, Capacity lower bounds and approximate
enumerative coding for 2-D constraints,in Proc. IEEE Int’l Symp. on
Inform. Theory,Nice, France (2007), 1681–1685.

