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Abstract—We show how to improve on the technique of the exact cardinalities). For the encoding and decoding to
approximate enumerative coding for two-dimensional constraints work correctly, the lower bounds are required to satisfy a
by encoding according to lower bounds based on the worst-case .qgistency condition, and the coding rate achieved (measured
behavior of certain ratios of matrix products. For the case of the . . . .
two-dimensional (d=2, co) run-length limited (RLL) constraint, as the numbt_ar of arb'trary bits encoded divided by the size
the improved approach yields a lower bound 0f0.4453 on the Of the array into which they are encoded) depends on the
capacity of the constraint. tightness of the lower bounds. It was noted in [7] that for

certain finite-state row—column constraints (in which every row
. INTRODUCTION and column must satisfy a 1-D finite-state constraint) tighter
Enumerative coding [1] is a well-known technique fotower bounds can be obtained by grouping array symbols
mapping arbitrary binary sequences (messages) of fixed lentjt® sub-blocks, treating these sub-blocks as super symbols
into a sequence of symbols that are required to satisfy certdfRich must satisfy a “new” constraint induced by the original
constraints, such as there being at least orfsetween any constraint, and applying the approach of [6] to this “new”
two 1's or the same number of’'s as 0’s. Enumerative constraint. The resulting codes were found to achieve higher
coding requires the computation or storage of the number '@fes than previously proposed fixed-rate codings for certain
constraint-satisfying sequences starting with any prefix. ThisGgnstraints.
not a problem for most one-dimensional (1-D) constraints andWe shall confine our discussion to row—column constraints,
sequences of reasonable length. However, we are interesudith the understanding that the results in [7] and herein
in two-dimensional (2-D) constraints for which conventionaire more generally applicable. The formulation of such 2-D
enumerative coding is not practical. constraints is presented in Section Il. In Section Ill, we review
A 2-D constrained code maps arbitrary fixed-length binagur result in [7] in some more detail. Then, in Sections V-
messages into 2-D arrays satisfying a 2-D constraint. EX, we present an improved lower bound, as compared to [7],
amples of such constraints are requiring that every row agdl the number of partially filled constrained arrays, and use
column obey a 1-D constraint (such as the above exampld}o obtain new lower bounds on capacity. The improvement
or requiring that nol be surrounded by al)’s and no(0 is obtained through bounds on the worst-case behavior of a
surrounded by all’s. Codes for certain 2-D constraints mayatio of matrix products, where the sequences of matrices
find applications in denser conventional magnetic and optic2@mprising the products must satisfy certain constraints in-
data storage technologies, holographic data storage, na@éced by the 2-D constraint at hand. Finally, in Section VI,
crossbar storage technologies, and 2-D bar codes. we demonstrate how our improved method can be used to
The application of enumerative coding to 2-D constraintsne the parameters of a fixed-rate approximate enumerative
would require computing the number of constraint-satisfyirgncoder thereby achieving coding rates which are higher than
arrays starting with any partially filled-in array, which, for althose obtained via the technique in [7].
2-D constraints of conceivable practical interest, is feasible
only for arrays of very small extent along at least one dimen- [I. CONSTRAINTS AND NOTATION
sion (narrow stripes). In [6] (for 2-D balanced arrays) and [7]
(for 2-D finite-state row—column constraints), we introduced Consider an ordered, finite alphabetand two 1-D con-
an alternativeapproximateenumerative coding technique forStraints with memoryl on sequences over this alphabet
2-D constraints (approximate enumerative coding was appliégtermined by th¢X| x |X] transition matrices? andV'. The
in a different way to 1-D coding in [4]). In this approachfows and columns off andV are indexed by:, andH (x,y)
only lower boundson the number of constraint-satisfying(respectivelyV (z, y)) denotes the entry ifif (respectively}’)
arrays with any fixed initial portion are needed. The ideat is indexed by:, y € X. In the sequel, the notatioH and

is to use lower bounds that are easily computed (unliké iS used to also mean the constraints themselves (not just
the matrices). Let#{,, andV/,, respectively, denote the set of

* Work done while visiting Hewlett—Packard Laboratories, Palo Alto, CA. Sequences of length satisfying the constraints represented by




H andV. Thus a sequence,zs ...z, is in H, if and only which is equivalent to
if H(l’i,ifzurl) =1foralli= 1,2,...,n—1.

We are interested in the generic 2-D constraint on arrays Ly o(y™) < Z L e—1(x™). (4)
over 3 in which rows and columns are constrained Byand TMEA, 1(y™)
V', respectively. For the sake of simplicity of the exposition
we will further assume that there is a “wild card” symbog X X X
0 € ¥ that can precede and follow any symbol B, ound (2) not just for computing Ipwer bgunds on capacity,
both horizontally and vertically, i.e H(0,z) = H(z,0) = but also for apprgxmate enumgratlve chlng. o
V(0,2) = V(x,0) = 1 for everyz € . Let A,, ., be the set 'The full encoding anq Qecodlng algorlthms are detailed in
of m x n arrays whose rows and columns, respectively, belofigdures 1 and 2, where it is assumed for simplicity thét, :)
to H,, andV,,. The capacityCy; - of this constraint is given andz(:,0) are set to the wild-card symb@l (the encoding—

his consistency condition makes it possible to use the lower

by decoding can be easily modified when this is not the case). For
Coo = i 1 loe | A a particular; andy, the functionZ(w) in the decoder coincides

HY = e mn 28 [Am.nl, with (5) in the encoder. The correctness of the encoding hinges

where hereafter all logarithms are to the base on the consistency condition (4) and is established in a manner

The following notation is used in the sequel. For any arragimilar to that in [6].
z, letx(i, j) denote the entry in thigh row andjth column and
let a:(_z'lsig,jlsz) denote the sub-array(i, 7)) 2; 72, - The
notationx(s,:) and z(:, j) will stand for theith row andjth Input: Integer-valued messagel € 0, [Ly...(0™)] .
column ofz, respectively. A sequence 66ymbolsz z, ...z, Output Array x € A, .

may also be denoted ag’. For a positive intege¢ and a M’ — M

symboly € ¥, we define the subsét,(y) C H, by for j < 1ton do
for i — 1to m do
Ho(y) = {2° € He:yz' € Hopa ). for eachw € 3, let

The subseV,(y) C V, is defined in a similar manner. L(w) — L") (5)

Finally, for anyy™ € V,,, define y{é;“glﬁ%gii

.Amj(ym) = {x S Amj cy"x € Am’g_;,_l}. end - -
[1l. PREVIOUS RESULTS z(i,j) — maghy' : ., L(w) <M < L(w)}
. , o M — M — - L(w)

In this section, we recall our approach from [7] (which, in end w<e(i.g)
turn, follows closely our even earlier approach from [6]) t@nq
approximate enumerative coding for constraints of the type
presented in Section II. Fig. 1. Encoder.

For eachm and/, let ¢, , be non-negative real numbers
that satisfy

dme < min meeAmJ(ym)H;ﬂﬂ He—1(z;)]
m,l >

O }
Y™ EVm ’m; H ] npUt' A”'ay T e A"L,n-
! e . H]_l | K(yj)l Output: Integer-valued messag¥ .
An argument similar to that used in the proof of Theorem 1, _

in [7] shows that for any™ € V,,, for j — 1ton do
m m for 1 <1 to
|~Am,2(y )| Z Lm,l(y )» (2) Z]W - ]WTZ ﬂQ . vL(w)
where end o
A g 0 end
L™ = (TT Hewnl) - (TT ames); 3
,e(y ) ]];‘[1‘ Z(yj)| <Eq ’ ( ) Fig. 2. Decoder.

namely, L,, ((y™) bounds from below the number of x ¢

constraint-satisfying extensions of any partial array. The lower The summation over an exponential number of terms ap-
bound (2), when computed for valugs , that satisfy (1) with Pearing in the expression (5) fok(w) can be computed
equality, was used in [7] to compute a lower bound@q . efficiently (in linear time) using matrix multiplication; see [7,

Now, it follows from (1) that for anyy™, §IV] for details.
m ¢ As mentioned in Section |, higher coding rates can be
(H |H£(yj)|> . (H qmyi) achieved by grouping symbols into sub-blocks and considering
i=1 i=1 the 2-D constraint induced on arrays comprised of these sub-

m -1 blocks. The improvement in coding rate obtained this way
< Z ( |Hg_1(xj)|> . (H qm’i)7 comes at the cost of increased computational complexity due
=1 =1

2MEA 1 (y™) J to the larger super-alphabet size.



IV. NEW LOWER BOUNDS where DI*¥! is a diagonal matrix whose rows and columns
Our new approach for bounding v will be based on are indexed byH;, and the xzth diagonal entry equals

the inequality (2), but with a different, tighter choice for thé)X””Y(x'y) "

values (3). Using the tighter values, we will also improve on When Q ( ™) # 0, the ratio @, (y m)/Q ( ™)
the coding rate achieved by the encoding and decoding st@ﬂé‘als the probab|I|ty that the flrstcolumns of an extenS|on
of Figures 1 and 2. The method presented herein has a menfr§ columny™ by anm x £ array forms withy™ a constrained
parametett: that controls the trade-off between the values @@y, conditioned on the firgt—1 columns of the extension
the computed lower bounds and the complexity of computir'éady forming withy™ anm x k constrained array.

those bounds In what follows, we fix for everym and ¢ a non-negative
: k . L
For anyy™ € V,,, andm x k array =<, define constant, , that satisfies
(k] (,m
(£) Lmxk |{£L’ GHK ) " 7x(]7')}| (k] Qmé(y )
Pxmxk|ym | . A, < min ————— (9)
XA H [He(y)] o Fen QR wm)
We will regard pgﬁ)mxklym( |-} as a probability measure in(for k =1, we take the denominatq@,g ((y™) to bel, and

the following manner. Assume a uniform distribution over afiroughout we adopt the convention thg is oc).
m x { extensions ofy™ (into anm x ({+1) array) with rows ~ We have the following lemma.

satisfying the constrairt/; thenpg?mxk‘ym (zm*k|ym) equals ~ Lemma 4.1:Givenk, m, and/, for everyy™ € Vp,,
the prqbablllty thn?il}he first (leftmos® columns in such an Ao (y™)] > LEZ];Z(ym), (10)
extension equat .
In the limit when/ — oo, we get that where
m m A e o] m m . m A i
Py (2K y™) 2 p;zmym (2" y™) L) = (TT et ) Q™ (Hqiﬁ]i) (11)
j=1
= HPX”HY (4 )lys), (the rightmost product is defined to heif ¢ < k).
Proof: The proof is similar to an argument used in the proof
where pyixx|y (wly) is the probab|I|ty, according to a max-of Theorem 1 of [7]. 0
entropic Marl_<ov chain orf/, that we seev € Hy, following Note that fork = 1, Equations (9)—(11) coincide with (1)—
y € %, conditioned ory [S, §3.2.3]. (3). Fork > 1, we will get an improvement over [7] in

Fix a memory parameteﬁe > 0, and for eachm, , and tnat the right-hand side of (11) is partially comprised of an
Y™ € Vo, define),’, to be the probability that the first  exact conditional probabilty, namely, the fac@f’, (y™), in

columns of an extension of a columy’ by anm x ( array addition to the lower bound@[k], These latter Iower bounds
forms with y™ anm x (¢4+1) constrained array; that is,
also differ from their counterpartg,, , in [7], in terms of
QM L) = Z pgﬁ)mxk‘ym (z™*F|y™). what they bound from below. In particular, the right-hand
emXkE A, 1 (y™) side of (9) can be shown to be never smaller than the right-
hand side of (1), its counterpart in [7], thus allowing for the

Let V¥l denote theH,| x |H}.| adjacency matrix of the 1-D potential to improve in the tightness of the valubg (y™)
constraint whose elements are all thevidth vertical stripes a5 |ower bounds. In fact, fof < k, these lower bounds are

(seen over the alphabgt;) that satisfy the 2-D constraint. Fortignt (equality holds in (10) fo¢ < k).

eachy in %, define D} (y) to be the|Hy| x [M,| diagonal  The next theorem generalizes Theorem 2.1 in [7] and applies
matrix whose rows and columns are indexed by the elemeﬁgsany 2-D row—column constraint with a wild-card symbol

of Hy., and therth diagonal entry equals)., , (z'**[y) (@ Theorem 4.2:Let Cy; denote the capacity of the 1-D con-
obtained by substituting: = 1 in (6)). Also, lete denote the straint defined byH. The capacityCy;,1- of the 2-D constraint

real row vector which id in the component corresponding towith rows and columns constrained, respectively,/byand V
the all0 (i.e., all-wild-card) array element df;, and zero in gatisfies

all other components. We can expr@%;]’g(ym) as Cuv >Ch+ V[Hk,]v7

-~ , (k] i
Q[:L]‘[(ym) _ e(n(v[k]Dy} (yj)))l, @) wherevy;,, stands for the expression
N eI, (VD ()1
imi msup — min og Py — —
aﬂz;egl denot;s th?‘ real7cotl)umn vector of ai. In the limit o T eV e(szl(V[’“ TDE1(y;))) 1
— o0, Equation (7) becomes (12)
Jim QE:]’e(ym) :e(H(V[’f]D[’“](yj)))l, ®) Sketch of proof:We assume equality in (9), then apply

=1 Lemma 4.1, and finally we use (8) when takifitp infinity.[]



The next corollary (which follows from Perron—Frobenius
Theorem [5,§3.1]) applies to the special case where (the): < Vi(yi 1)
minimizing sequences™ in (12) are all periodic extensionsWhile Jw € Wi: wi #y;, do

W; < {all minimal elements iV, with respect to <.;"}

of the same sequence. For a square non-negative real matrix,,, — {we:w e Wi,z € Vi (w)}
U, let A(U) be the largest real eigenvalue Gf end ’

Corollary 4.3: Under the conditions of Theorem 4.2, sup
pose that there exists a sequente= iy .y such that Fig- 3. Pruning algorithm. The partial orderinggs, ;" is defined in (14).

for all sufficiently largem, the minimum in (12) is attained
by a periodic sequence of periotlobtained by repeating the Lemma 5.1:If the algorithm in Figure 3 terminates far,
sequencey”. Then, yivs ..., y%, and alll <i < J, then

1 MTT? . VIE D ()
V[Hk}v = j log A(l_(ll;[]‘l/v[k_l]D[k_(lz]Jg )3)) (13) Vl['-llc,]\/ > 10g05 + %log (Hj 1 ‘Z _(y] )) ' (15)
j=1 Y; (Hj:]v UDE(yx))
The proof of Lemma 5.1 relies on the following two
V. VERIFYING THE PERIODICITY CONDITION propositions, the proofs of which we omit.

Proposition 5.2: There is a constant > 0 (independent of
Based on Corollary 4.3, we can now proceed by minimizing,y s.ch that for albn,

the expression in the right-hand side of (13) over a range o V[’“]D[’f]
(small) J and (short) sequencegys- ...y satisfyingy;, € el;[L ()1
Vi (ys), and, for each minimizing sequence, checking whether Y eV e[/, VI-IDE(y;)1

the periodicity assumption in Corollary 4.3 holds (up to some [k] H V[k]D[k]( )1
controlled discrepancy). We describe this approach in more > ¢ - min = 1] .
detail below. vV pl T, VDI (y;)1

Let yiys...y; be a sequence that minimizes the right- pronosition 5.3: Given non-negative row vectoes, a,
hand side of (13), for somd. Next, based oWy ...y, Rn and b, b, € R, the following two conditions are
for any penalty (discrepancy) facter € (0,1] and for each

i € {1,2,...,J}, we shall define a partial order<;, ;" on
sequences of equal length 1. To this end, we introduce
the following additional notation. Fos € {k—1,%} define

equivalent:
(i) a; @ by < ay; @ by (where the vector inequality holds
component-wise).
(i) Forany pair of non-negative column vectoese R™ and

Ull(-) 2 vIIDII(), and, for each € {1,2,...,J}, let pl*! deRY,
be a non-negative left eigenvector associated with the largest a-¢c _a-c
real eigenvalue of the matrik]!_, Ull(y:) TTi2; U (7). by -d = by-d

For s and i &S ak;)r?ve gnd a sequenge’ € Vi, define  guetch of proof of Lemma 5.Proposition 5.2 implies that
vei(y™) = P (Hj:l Ut (yj)V[s])- And for real row vec- I ‘i hounded from below by

torsa = (a;); andb = (b;);, define the tensor division: " m
_ P U[k( )(H ( ))
a@bf((al/bl) (al/bg) (ag/bl) (ag/bg) ) . 1 . j=2
limsup — min log — .
Next, fora € (0,1], i € {1,2,...,J}, andy™ € V,,,, define ~ m—oe M vo-bmEl plE=prie) ( Ulk=11(y;))1
. Jj=
roa(ym™) = 4 VR O Vi1 (™) i =y ’ (16)
o Vii(y™) @ vie1:(y™)  ifyi#y; T Note thatpl Ul (yr) = ¢, - p! for s € {k—1,k} and

constants:;. Thus, by invoking Proposition 5.3, it is straight-

forward to show (though we omit the details) that if the

algorithm depicted in Figure 3 terminates for= 2 then,

T Za,i Y <= Vi(ym) S Vi(am) andr, i(z) <ta,(y)), for sufficiently largem, the minimum in (16) is achieved to
(14) within a factor of1/« by y2 = yi; more formally:

Finally, for any two sequences = zizs...x, andy =
Y12 - - - Ym IN V,,, define the partial order

where the vector inequality is component-wise.

The next step is to find a (largest) penalty factor< 1 py UM (y )(H UFl(y;))1
for which the pruning algorithm of Figure 3 converges in min a7
reasonable time for each = 1,2,...,J and the partial . jly"fe p[lk_l]UVf (y )(H Ul (y;))1
order (14). As can be seen from Figure 3, reducindnas = 22
the effect of favoring sequences iv; that start withy?, (K] (k] T 770k]
thereby speeding the running time of the algorithm. On the (p jl;llU (v ))(]1;[3[] (v ))
other hand, as the following lemma shows, reducinglso z ywﬁml,}me 1] m
carries a penalty in the lower bound that we getig, . Vin2(u3) (P} H UE(y:) (TTUF(y;))1

j=1 j=3

<.



Again, noting thatp [, UE(y) = ¢.pk’, invoking the Now,

termination of Figure 3 for = 3, along with Proposition 5.3 (K] 7 my _ 0) mi, m\Ak-1 [ m

- m m — x .
for m sufficiently large, this process can be repeated to fix Q’”"’(y ) wmeAZ( m‘?X v @"ly™) ™.t (@)
y3 = y3 and incur another factor of. In fact, this process e (19)

can be continued until all but a bounded suffix of the m'”'AIso from (6) we get that for any™ € A,, 1(y™),
mizing sequencg™ in (17) has been replaced byys ... y5,

repeated, with each additional replaced entry incurring an p()m (@™ ™) = Hjjnl IHf‘l(xj” (20)
additional factor ofa. The boundedness of this suffix implies Xy Hj:l He(y;)|
the lemma. L1 Hence, by plugging (19) into (18) we obtain

We have applied the above framework to the Z:Doo m
RLL constraint (where every row and column mﬁst hz;ve din (W™ < > Pnym ($m|ym)(H |H£(yj)\)
least two0’s between any twdl’s), after grouping bits into e € Am a1 (y™) 7=l
non-overlapping2 x 1 super-symbols. For this grouping and (k] a—
a memory parameter value é&f = 6, a choice ofa and X Qm,eq(xm)(H qm,i)
yiys ...y satisfying the assumptions of Lemma 5.1 has been =
found. (While the memory parametdr is measured with (20) Z (ﬁ Mo (x )
respect t2 x 1 super-symbols, the minimizing sequengé 1

in (12)—and hence also the sequenge; . ..y which was € Am 1 (y™) J=1

{—1
found—are actually over an alphabet2k 2 super-symbols, -1, m k]
so as to match the memory of the horizontal constraint.) The X Qo1 ( )<H q )
corresponding lower bound onLI]V, when combined with (11)
Theorem 4.2, yields a new lower bound of453 on the = Z Lgﬂg_l(x"‘),
capacity of the 2-D(2, c0)-RLL constraint. For comparison, T EAm 1 (y™)
the best knowrupperbound on the capacity of this constrainthereby completing the proof. 0

is .4459 (this bound is obtained using the technique of [2], as

The value ofa and the sequen 5. ..y% satisfying the
reported in [3]). o quencgy; - .-y fying

assumptions of Lemma 5.1, along with the terminating sets

Wi, Ws, ..., W, of the algorithm of Figure 3 (and some

additional penalty factors to account for the non-asymptotic
An improved encoding—decoding algorithm can be obtainedgime), can be leveraged to also obtain suitable vaﬁjjég,

by using the valuei[ ] ,(y™) in (11) in place ofL,, ((y™) to  satisfying

VI. ENCODER AND DECODER

carry out the approxmate enumerative encoding and decoding )\(H‘-]ﬂ VI DI (y,))
of Figures 1-2; specifically, we use the new values in the range— log q[ ]z — loga+ — 5 log = PRSTe—
of messages\/ € [0, [Li,(0™)]) and in the computation ™ A=, VDR ()

of L(w) in (5). In this case as welll,(w) can be computed for increasingm and ¢ (we omit the details). Such values

efficiently using matrix multiplication, as described in §V]. q[ ',» together with Figures 1 and 2, specify an encoder and
Like in [7], the correctness of the resulting algorithmslecoder achieving a rate which approaches the sur@ipf

hinges on the new vaIueB K] ( ™) satisfying the following and the right-hand side of (15).

consistency condition.
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