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Abstract— We present a general method for obtaining lower
bounds on the capacities of two-dimensional (2-D) constraints.
We apply our method to the 2-D (d=2,∞) run-length limited
(RLL) constraint and obtain the best known lower bound,
.4423, on the capacity of this constraint. Our lower bounds are
shown to be achievable by a fixed-rate, polynomial-complexity
encoding–decoding algorithm based on enumerative coding with
approximate counts.

I. INTRODUCTION

Consider a finite alphabet Σ and two one-dimensional
constraints with memory 1 on sequences over this alphabet
determined by the |Σ| × |Σ| transition matrices H and V .
The rows and columns of H and V are indexed by Σ and
H(x, y) (resp. V (x, y)) denotes the entry in H (resp. V ) that
is indexed by x, y ∈ Σ. In the sequel, the notation H and
V is used to also mean the constraints themselves (not just
the matrices). Let Hn and Vn, respectively, denote the set of
sequences of length n satisfying the constraints represented by
H and V . Thus a sequence x1x2 . . . xn is in Hn if and only if
H(xi, xi+1) = 1 for all i = 1, 2, . . . , n−1. We are interested
in the generic 2-D constraint on arrays over Σ in which rows
and columns are constrained by H and V , respectively. Let
Am,n be the set of m × n arrays whose rows and columns,
respectively, belong to Hn and Vm. The capacity CH,V of this
constraint is given by

CH,V = lim
m,n→∞

1
mn

log2 |Am,n|. (1)

The limit in (1) is well known to exist and to be independent
of how m and n are taken to infinity.

In Section II, we obtain a generic lower bound on CH,V

in terms of νH,V , an asymptotic lower bound on a sequence
of conditional probabilities arising in a certain distribution on
arrays over Σ. The approach is similar to that used in [8]
to bound from above the redundancy of 2-D balanced binary
arrays. While νH,V may be difficult to compute in general,
we show in Section III how to compute it when H and V
present the constraints on adjacent r× s sub-blocks of arrays
that satisfy the 2-D (d,∞)-RLL constraint, for certain values
of d, r, and s. For d = 2, the resulting lower bound improves
on the previously best published lower bounds [3], [4]. In
Section IV, an efficient fixed-rate encoding scheme, based on
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approximate enumerative coding, is shown to achieve the rate
bounds of the preceding sections. Enumerative coding is due
to [2]. Approximate enumerative coding is relatively recent:
an approximate enumerative encoding technique, very similar
to that of Section IV, is applied in [8] to 2-D balanced arrays.
A different approximate enumerative coding technique is used
in [5] to reduce the complexity of exact enumerative coding
of one-dimensional constraints. The technique of [5] serves as
a building block in the 2-D constrained encoder of [10].

The following notation is used in the sequel. For any array
x, let x(i, j) denote the entry in the ith row and jth column
and let x(i1:i2, j1:j2) denote the sub-array (x(i, j)) i2

i=i1
j2
j=j1

.
An extension of this notation, x(:, j1:j2) (resp. x(i1:i2, :)),
refers to the sub-array encompassing all rows and columns
j1 through j2 (resp. all columns and rows i1 through i2) of
x. A sequence of ` symbols x1x2 . . . x` may also be denoted
as x`. For a positive integer ` and a symbol y ∈ Σ, we define
the subset H`(y) ⊆ H` by

H`(y) = {z` ∈ H` : yz` ∈ H`+1}.

The subset V`(y) ⊆ V` is defined in a similar manner. Vector
transposition will be denoted by a superscript t. All logarithms
are to the base 2.

II. GENERIC LOWER BOUND

For x, y ∈ Σ, let pX|Y (x|y) denote the limiting fraction of
sequences in Hn(y) that start with the symbol x. Formally,

pX|Y (x|y) = lim
n→∞

|{zn ∈ Hn(y) : z1 = x}|
|Hn(y)|

. (2)

It is well known from Perron-Frobenius theory that

pX|Y (x|y) =
H(y, x)v(x)
µ · v(y)

, (3)

where v = (v(y))y∈Σ is the right Perron eigenvector of H and
µ is the corresponding Perron eigenvalue [6, Chapter 3].

Define νH,V as

νH,V = lim sup
m→∞

1
m

min
ym∈Vm

log
∑

xm∈Vm

m∏
j=1

pX|Y (xj |yj). (4)

Let CH denote the capacity of the one-dimensional constraint
defined by H . The following theorem gives a lower bound on
CH,V , in terms of CH and νH,V .



Theorem 2.1: The capacity CH,V of the 2-D constraint with
rows and columns constrained, respectively, by H and V
satisfies

CH,V ≥ CH + νH,V . (5)

Proof: Let Xm,n be uniformly distributed on the set of ar-
rays whose rows belong to Hn. This is equivalent to choosing
the rows of Xm,n independently and uniformly over Hn. We
then have

|Am,n| = |Hn|mP (Xm,n ∈ Am,n)

and we proceed by bounding P (Xm,n ∈ Am,n). Clearly,

P (Xm,n ∈ Am,n) = P (Xm,n(:, 1) ∈ Vm)

·
n∏

i=2

P (Xm,n(:, i) ∈ Vm|Xm,n(:, 1:i−1) ∈ Am,i−1),

where each conditional probability is given by

P (Xm,n(:, i) ∈ Vm|Xm,n(:, 1:i−1) ∈ Am,i−1)

=
( ∑

xm,i−1

P (Xm,n(:, 1:i−1) = xm,i−1)
)−1

·
( ∑

xm,i−1

P (Xm,n(:, i) ∈ Vm|Xm,n(:, 1:i−1) = xm,i−1)

· P (Xm,n(:, 1:i−1) = xm,i−1)
)
,

with xm,i−1 ranging in each summation over all elements of
Am,i−1. This implies

P (Xm,n(:, i) ∈ Vm|Xm,n(:, 1:i−1) ∈ Am,i−1)
≥ min

xm,i−1
P (Xm,n(:, i) ∈ Vm|Xm,n(:, 1:i−1) = xm,i−1)

= min
ym∈Vm

∑
xm∈Vm

m∏
j=1

|{zn−i+1 ∈ Hn−i+1(yj) : z1 = xj}|
|Hn−i+1(yj)|

.

Letting

p
(`)
X|Y (x|y)

4
=
|{z`−1 ∈ H`−1(y) : z1 = x}|

|H`−1(y)|
(6)

and
p

(`)
X (x)

4
=
|H`−1(x)|
|H`|

,

we conclude that
1
n

logP (Xm,n ∈ Am,n)

≥ 1
n

log
∑

xm∈Vm

m∏
j=1

p
(n)
X (xj)

+
1
n

n∑
`=2

min
ym∈Vm

log
∑

xm∈Vm

m∏
j=1

p
(`)
X|Y (xj |yj)

and, by continuity and (2), that

lim
n→∞

1
n

logP (Xm,n ∈ Am,n)

≥ min
ym∈Vm

log
∑

xm∈Vm

m∏
j=1

pX|Y (xj |yj).

Thus,

CH,V = lim sup
m→∞

1
m

lim
n→∞

1
n

log |Am,n|

= lim sup
m→∞

1
m

lim
n→∞

(m log |Hn|
n

+
1
n

logP (Xm,n ∈ Am,n)
)

≥ CH + lim sup
m→∞

1
m

min
ym∈Vm

log
∑

xm∈Vm

m∏
j=1

pX|Y (xj |yj)

= CH + νH,V .

III. 2-D (d,∞)-RLL CONSTRAINTS

The application of Theorem 2.1 to any given H and V
requires the computation of νH,V , which may be difficult
in general. In this section, we consider 2-D (d,∞)-RLL
constraints and apply Theorem 2.1 to the corresponding con-
straints induced on adjacent non-overlapping r× s sub-blocks
of binary symbols. Though the method applies more generally,
for concreteness, we focus on the case of d ∈ {1, 2} and show
how to compute νH,V for moderate values of r and s. We
remark that the capacity lower bounds reported at the end of
this section are per binary symbol of the 2-D RLL constraint
and are obtained by dividing the corresponding per sub-block
lower bounds of the right-hand side of (5) (whose evaluation
is detailed below) by r · s.

Let Ar,s(d) denote the set of r × s binary arrays whose
rows and columns all satisfy the one-dimensional (d,∞)-RLL
constraint. We assume that r, s ≥ d. The alphabet Σ of the
previous section will be taken to be the set Ar,s(d). The
(i, j)th entry of the matrix H (resp. V ) indicates if the r × s
arrays i and j can be adjacent horizontally (resp. vertically)
according to the 2-D (d,∞)-RLL constraint. For each y in Σ,
define also D(y) to be the |Σ| × |Σ| diagonal matrix whose
xth diagonal entry is pX|Y (x|y) as defined in (3). Also let
e1 denote the column vector which is 1 in the component
corresponding to the all-zero array element of Σ and zero in all
other components. We can then express the sum-of-products
in the definition of νH,V (4) as∑

xm∈Vm

m∏
j=1

pX|Y (xj |yj) = et
1

( m∏
j=1

(V D(yj))
)
1,

where 1 denotes the column vector of all 1’s, so that

νH,V = lim sup
m→∞

1
m

min
ym∈Vm

log et
1

( m∏
j=1

(V D(yj))
)
1.

For the case of (d=2,∞) (as well as other values of d) and
certain values of r and s, we are able to determine periodic
sequences (y∗j )∞j=1 that provably achieve νH,V , i.e., for which

νH,V = lim sup
m→∞

1
m

log et
1

( m∏
j=1

(V D(y∗j ))
)
1.

Our approach is based on the following propositions.



Proposition 3.1: Let q be a probability (column) vector of
dimension |Σ|. Then for any r, s ≥ d and ym ∈ Vm the
corresponding V and D(y) satisfy

qt
( m∏

j=1

(V D(yj))
)
1 ≤ et

1

( m∏
j=1

(V D(yj))
)
1

and

νH,V = lim sup
m→∞

1
m

min
ym∈Vm

log et
1

( m∏
j=1

(V D(yj))
)
1

= lim sup
m→∞

1
m

min
ym∈Vm

log qt
( m∏

j=1

(V D(yj))
)
1.

Proposition 3.2: Given any y′ ∈ Σ and any positive integer
N , let WN = WN (y′) ⊆ VN (y′) be a set of sequences of
length N such that for any yN ∈ VN (y′) there exists wN ∈
WN satisfying

V (yN , :) ≤ V (wN , :) (7)

and

qt
( N∏

j=1

(V D(wj))
)
≤ qt

( N∏
j=1

(V D(yj))
)
, (8)

where the inequalities are componentwise. Then, for every
m > N ,

min
ym∈Vm(y′)

qt
( m∏

j=1

(V D(yj))
)
1

= min
ym∈Vm:yN∈WN

qt
( m∏

j=1

(V D(yj))
)
1.

The condition (7), in words, requires that any sequence
that can be preceded by yN in the constraint V , can also
be preceded by wN . The proofs of these two propositions are
straightforward and we omit them here.

Let y∗1y
∗
2 . . . y

∗
J be a sequence in VJ such that y∗J can be

followed by any symbol in Σ. Assume that
∏J

j=1(V D(y∗j )) is
irreducible and aperiodic. This is readily seen to be the case for
the (d,∞)-RLL constraints. Let p1 be the left Perron eigen-
vector of

∏J
j=1(V D(y∗j )) normalized to a probability vector,

and for i = 2, 3, . . . , J , let pt
i = N (pt

1

∏i−1
j=1(V D(y∗j ))),

where N (v) = v/(1tv) denotes normalization. Let λ be
the Perron eigenvalue associated with p1. We then have the
following lemma.

Lemma 3.3: Suppose for each i = 1, 2, . . . , J there exists
a positive integer N(i) and a subset Y(i) ⊆ VN(i) in which
each sequence starts with y∗i , such that the conditions of
Proposition 3.2 are satisfied for q = pi, N = N(i), y′ = y∗i−1

(where we set y∗0 = y∗J ), and WN =WN (y∗i−1) = Y(i). Then

νH,V =
1
J

log λ.

Proof: From the second part of Proposition 3.1 we know
that

νH,V = lim sup
m→∞

1
m

min
ym∈Vm

log pt
1

( m∏
j=1

(V D(yj))
)
1. (9)

Proposition 3.2 and the above assumption on y∗J implies that
for all sufficiently large m,

min
ym∈Vm

log pt
1

( m∏
j=1

(V D(yj))
)
1

= min
ym∈Vm(y∗J )

log pt
1

( m∏
j=1

(V D(yj))
)
1

= min
ym−1∈Vm−1(y∗1 )

log pt
1V D(y∗1)

(m−1∏
j=1

(V D(yj))
)
1.

Since the last minimization is unaffected by normalizing
pt

1V D(y∗1) and since N (pt
1V D(y∗1)) = pt

2, we can continue
this for i = 2 and conclude that

min
ym∈Vm

log pt
1

( m∏
j=1

(V D(yj))
)
1

= min
ym−2∈Vm−2(y∗2 )

log pt
1V D(y∗1)V D(y∗2)

(m−2∏
j=1

(V D(yj))
)
1.

Indeed, this process can be repeated m − maxiN(i) times,
cycling back to i = 1 after i = `J . This establishes that
for all sufficiently large m, the minimum in (9) is achieved
by repeating y∗1y

∗
2 . . . y

∗
J , with the exception of a bounded

suffix. The boundedness of this suffix and the aperiodicity and
irreducibility of

∏J
j=1(V D(y∗j )) then implies the conclusion

of the lemma.

Thus, the basic method for determining νH,V for the
2-D (d,∞)-RLL constraint involves guessing a sequence
y∗1y
∗
2 . . . y

∗
J satisfying the assumptions of Lemma 3.3, which

then gives the value for νH,V . The computations involved
in establishing these assumptions, and then in evaluating
νH,V , for non-trivial block dimensions r and s, are greatly
simplified through state merging. For example, when checking
conditions (7)–(8), the sequence yN (as well as the sequences
in WN (y′)) can be assumed to be over the alphabet Ar,d(d)
(rather thanAr,s(d)). Also, the matrix V D(yj) can be replaced
by a smaller matrix whose rows and columns are indexed
by the elements of Ad,s(d) (rather than Ar,s(d)) and whose
(x, x′)th entry specifies the probability, under the conditional
max-entropic distribution given yN , of the set of r× s arrays
that can occur below the d × s array x and whose bottom d
rows coincide with the d× s array x′. Each such entry of this
matrix can, in turn, be computed efficiently using a sequence
of (smaller) matrix multiplications. Additional details of the
use of state merging will be provided in the full paper.

Another key simplification in establishing the assumptions
of Lemma 3.3 for a given guess y∗1y

∗
2 . . . y

∗
J involves a recur-

sive procedure based on repeatedly applying Proposition 3.2.
The idea is to find, for each i and N , the smallest dominating



set WN (y∗i−1) satisfying the assumptions of Proposition 3.2
and noting that the prefixes of length N of the members
of the smallest WN+1(y∗i−1) must belong to the smallest
WN (y∗i−1), so that the search for the smallest WN+1(y∗i−1)
can be restricted to subsets of the set obtained by appending
Σ to each member of the smallest WN (y∗i−1). The process
is stopped when all members of the smallest WN (y∗i−1) start
with y∗i .

We have successfully applied Lemma 3.3 to the 2-D (d,∞)-
RLL constraints with d ∈ {1, 2} and various sub-block dimen-
sions (r, s). Fortunately, N(i) and |Y(i)| remain tractable for
parameter values (r, s) that lead to reasonable bounds.

For d = 1, the best lower bound we obtain is for (r, s) =
(2, 15). In this case, J = 1 and y∗1 = [00]t (after state merging)
and the lower bound on capacity is .5865. The best known
lower and upper bounds on the capacity of this constraint
are obtained using the method of Calkin and Wilf and are
0.5878911617 and 0.5878911619, respectively [1], [7], [11].
No efficient encoding is known, however, that achieves the
Calkin–Wilf lower bound. In contrast, the present lower bound
will be seen, in the next section, to be achievable by an
efficient approximate enumerative coding scheme. For r = 3
and all values of s we could check we still have J = 1 but
y∗1 = [010]t in this case. The resulting bounds are weaker,
however, than for r = 2 and comparable s. As far as we can
tell, no gains will be achieved for larger values of r as well.

For d = 2, the best lower bound we obtain is for (r, s) =
(4, 9). In this case, we find that J = 3 with

y∗1 =


0 0
1 0
0 0
0 0

 , y∗2 =


0 0
0 0
1 0
0 0

 , and y∗3 =


0 0
0 0
0 0
0 0

 ,
and the lower bound on capacity is .4423. As in the case of
d = 1, the bounds appear to deteriorate for larger values of r
and comparable s. In the case of d = 2, our bound improves
on the lower bound of .4415 obtained recently in [3] using
a constraint-satisfying bit-stuffing process which, in turn, was
an improvement over .4267 obtained as a lower bound on
the entropy rate of a different constraint-satisfying bit-stuffing
process in [4]. We note that simulations of the bit-stuffing
process of [4] suggest that its entropy rate is considerably
higher, on the order of .4455. Unfortunately, no rigorous proof
of this is known.

We remark that, strictly speaking, the assumptions for
Lemma 3.3 in general, and for the specific parameters men-
tioned above, involve irrational quantities, and hence cannot be
verified directly with finite precision computations. Analytical
verification seems hopelessly complex for the time being.
Nevertheless, it is possible to justify the validity of the above
lower bounds to the numerical precision given, even when
based on finite precision verifications of the assumptions of
Lemma 3.3. A detailed analysis of such numerical issues is
deferred to the full paper.

IV. FIXED-RATE ENUMERATIVE ENCODER WITH
APPROXIMATE COUNTS

In this section, we describe a fixed-rate encoding of mes-
sages into 2-D (d,∞)-RLL constraints that asymptotically
achieves the capacity lower bounds of the previous section.
We begin with the description of an encoding framework for
the general constraint of Section II and then specialize the
framework to the 2-D RLL setting, leveraging the results of
Section III.

For ease of exposition, we assume that there is at least
one symbol in Σ which can be followed by any symbol, as
constrained by H and V . For each `,m, let q`,m satisfy

q`,m ≤ min
ym∈Vm

∑
xm∈Vm

m∏
j=1

p
(`)
X|Y (xj |yj), (10)

where p(`)
X|Y (xj |yj) is given by (6). For any ym ∈ Vm define

Am,`(ym) = {x ∈ Am,` : ymx ∈ Am,`+1}.

An argument similar to that used in the proof of Theorem 2.1
shows that for any ym,

|Am,`(ym)| ≥
( m∏

j=1

|H`(yj)|
)
·
(∏̀

i=1

qi,m

)
. (11)

It follows from (10) that

q`,m ≤
∑

xm∈Am,1(ym)

∏m
j=1 |H`−1(xj)|∏m

j=1 |H`(yj)|

which, in turn, implies, for any ym,

( m∏
j=1

|H`(yj)|
)
·
(∏̀

i=1

qi,m

)
≤

∑
xm∈Am,1(ym)

( m∏
j=1

|H`−1(xj)|
)
·
(`−1∏

i=1

qi,m

)
. (12)

This consistency condition makes it possible to use the lower
bound (11) on the number of constraint-satisfying extensions
of any partial array to carry out approximate enumerative
encoding.

The full encoding and decoding algorithms are detailed in
Figures 1 and 2 (where it is assumed that x(0, :) and x(:, 0)
are set to the aforementioned symbol which can be adjacent
anything in Σ). For a particular i and j, the function L(w) in
the decoder coincides with (13) in the encoder. The correctness
of the encoding hinges on the consistency condition (12) and
is established in a manner similar to that in [8].

The summation over an exponential number of products
appearing in the expression (13) for L(w) in the encoder can
be computed efficiently using matrix multiplication. For each
y ∈ Σ define the |Σ| × |Σ| diagonal matrix ∆`(y) whose xth



Input: Integer-valued message M ∈ [0, |Hn|m ·
Qn

i=1 qi,m).
Output: Array x ∈ Am,n.

M ′ ←M
for j ← 1 to n

for i← 1 to m
for each w ∈ Σ, let

L(w)←

&“n−jY
`=1

q`,m

”“i−1Y
v=1

|Hn−j(x(v, j))|
”

· V (x(i−1, j), w)H(x(i, j−1), w) · |Hn−j(w)|

·
X

ym−i∈
Am,1(x(i+1:m,j−1))

V (w, y1)

m−iY
v=1

|Hn−j(yv)|

’
(13)

x(i, j)← max{y′ :
P

w<y′ L(w) ≤M ′ <
P

w≤y′ L(w)}
M ′ ←M ′ −

P
w<x(i,j) L(w)

end
end

end

Fig. 1. Encoder.

Input: Array x ∈ Am,n.
Output: Integer-valued message M .

M ← 0
for j ← 1 to n

for i← 1 to m
M ←M +

P
w<xi,j

L(w)

end
end

Fig. 2. Decoder.

diagonal component is H(y, x) · |H`(x)|. Then∑
ym−i∈

Am,1(x(i+1:m,j−1))

V (w, y1)
m−i∏
v=1

|Hn−j(yv)|

= 1t
w

m∏
v=i+1

(V∆n−j(x(v, j−1)))1,

where 1w is the indicator column vector for w.
The encoding–decoding framework is specialized to the

2-D (d,∞)-RLL setting for d ∈ {1, 2} by again taking
Σ = Ar,s(d) in the above generic description and leveraging
the results of Section III. Let y∗1y

∗
2 . . . y

∗
J and pt

1 be as in
Lemma 3.3, and let D`(y) = α(`, y)D(y) where α(`, y) is
set to minx(p(`)

X|Y (x|y)/pX|Y (x|y)), with p
(`)
X|Y (x|y) defined

in (6). We can then set q`,m to be

q`,m = min
wN(ı̃)∈Y(ı̃)

pt
1

(m−N(ı̃)∏
j=1

(V D`(y∗j ))
N(ı̃)∏
`=1

(V D`(w`))
)
1,

(14)
with y∗j = y∗j−J and ı̃ ∈ {1, 2, . . . , J} uniquely satisfies
m = hJ+ı̃−1+N (̃ı) for some integer h (with N(·) and Y(·)

defined in Lemma 3.3). As noted above, N(i) and |Y(i)| are
not too large for the (d, r, s)-tuples leading to the bounds
of Section III, implying that the minimization in (14) is
computationally feasible. Rational parameters of appropriately
growing precision to achieve polynomial complexity can be
selected by “rounding down” in the above expressions so that
the resulting q`,m continues to satisfy (10).

As long as the rounding precision grows suitably, Theo-
rem 2.1 and Lemma 3.3 imply that the resulting asymptotic
encoding rate for a given set of parameters d, r, s coincides
with the corresponding capacity lower bound of Section III.
In particular, for (d, r, s) = (1, 2, 15), the asymptotic encoding
rate of the above fixed-rate encoder is .5865, which improves
on the asymptotic rate of .581074 of the efficient fixed-rate
encoder of [9]. A variable-rate bit-stuffing procedure is also
presented in [9] which achieves an asymptotic average rate
of .587277. For (d, r, s) = (2, 4, 9), the above encoding
procedure achieves a rate of .4423, which is the best provable
rate of any known encoding procedure, variable rate or fixed.
The bit-stuffing processes of [3] and [4] can be converted to
variable-rate bit-stuffing encoders achieving the corresponding
process entropies. The only known fixed-rate encoders for this
constraint are based on stripes separated by a sufficient amount
of all-zero buffer space [11]. Such encoders, however, have
significantly smaller rates for tractable stripe widths.

As in the determination of the minimizing periodic (y∗j )j ,
state merging can be used to gain additional computational
savings in encoding and decoding. In particular, state merging
can be used to determine the columns of each element x(i, j)
sequentially via an additional enumerative coding step. More
details will be included in the full version of this work.
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