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Abstract—Despite great promises shown in the laboratory 
environment, memristor crossbar, or non-volatile resistive 
analog memory, based matrix multiplication accelerators 
suffer from unexpected computing errors, limiting 
opportunities to replace main-stream digital systems. While 
many previously demonstrated applications, such as neural 
networks, are tolerant of small errors, they are challenged by 
any significant outliers, which must be detected and corrected. 
Herein, we experimentally demonstrate an analog Error 
Correcting Code (ECC) scheme that considerably reduces the 
chance of substantial errors, by detecting and correcting errors 
with minimum hardware overhead. Different from well-known 
digital ECC in communication and memory, this analog 
version can tolerate small errors while detecting and correcting 
those over a predefined threshold. With this scheme, we can 
recover the MNIST handwritten digit classification accuracy 
experimentally from 90.31% to 96.21% in the event an array 
builds up shorted devices and from 73.12% to 97.36% when 
current noise is injected. For applications where high reliability 
and compute precision are demanded, such as in high-
performance and scientific computing, we expect the schemes 
shown here to make analog computing more feasible.  

I. INTRODUCTION 
Memristors, or non-volatile resistive analog memories, 

have demonstrated great potential in accelerating modern 
computing workloads, because of their ability to process 
information directly in its memory, and compute with physical 
laws. Such hardware, however, is prone to the emerging device 
imperfection and noises of various kind, and therefore yields 
inaccuracies in the computing result. While many algorithms 
make full use of the analog nature of memristor crossbar can 
tolerate those inaccuracies to some extent, significant error 
outliers are fatal and must be detected and corrected. 

ECC has been widely used in scenarios where noise and 
errors are frequent, such as data communication over a noisy 
channel, or where data fidelity can degrade over time, such as 
in ECC for memories. The idea is that the sender encodes a 
message with additional redundancy, which allows the receiver 
to detect if an error has occurred in the message, and possibly 
correct the error without re-transmission (Fig. 1). Prior work 
has tried to apply this method to memristor-crossbar based 
computing [1–4], but most address the memristor crossbar 
memory itself, rather than the analog computing output which 
is the actual target for error-reduction. A novel theoretical 
scheme was recently proposed in [5] to address this problem, 
with mathematical support. However, no experimental 

demonstration of any ECC in crossbars, to the best of our 
knowledge, has been reported before. It is noted that the 
proposed scheme not only benefits memristor in-memory 
analog computing, but also those based on other analog, or even 
binary, non-volatile technologies (e.g., Phase change, 
Ferroelectric, STT-MRAM, and floating-gate memory devices). 

II. ANALOG ERROR CORRECTING CODE 
 The idea of the proposed analog ECC (a-ECC) is described 

in Fig. 2 – Fig. 6. Distinct from digital ECC for data 
communication, where redundant bits are encoded based on the 
data to transmit, the proposed a-ECC involves expanding the 
in-memory computing area, by adding an encoder matrix, the 
contents of which are based on the original in-memory area for 
multiplication (Fig. 2). In this way, the redundancy output 𝑟 is 
computed at the same time as the actual multiplication (for 𝑦) 
takes place. Thus, the calculation of the redundancy output does 
not impose additional overhead in latency. In most scenarios, 
the matrix is not frequently updated; thus, the computing of the 
encoder matrix is low overhead. Another difference is the 
ability to tolerate small computing errors in normal operations 
due to the nature of analog computing, but to detect and correct 
significant outliers (Fig. 3), that may result from short/open 
junctions, memristor conductance state drift, external injected 
transient noise, environmentally induced corruption, etc.  

Fig. 4 illustrates the a-ECC algorithm, and an example 
encoder matrix and a decoder matrix are shown in Fig. 5 to 
demonstrate how the scheme works. In this particular example, 
there are seven columns in the original matrix and four columns 
in the encoder matrix for redundancy outputs. The encoder 
matrix needs to be configured only once for a given matrix. 
Since the output vectors (𝑦 and 𝑟) are weighted sums of each 
input row vector to the matrix, due to linearity, they shall 
preserve a specific relationship designed in the choice of the 
encoder matrix. In the event of a significant error outlier, which 
could result in the predefined constraint is not met anymore, 
and thus an error is detected. This can be checked with decoder 
matrix, involving another matrix multiplication in a crossbar. 

The decoder matrix is used to check if the output meets the 
predefined constraints, i.e., whether an error has occurred. As 
is shown in Fig. 6a, 6b, if all inaccuracies are within a defined 
tolerance (𝛿 =0.5), the decoder output will be close to zero 
within a threshold. In the case of a significant outlier, the 
corresponding column pattern in the decoder matrix will be 
added to the result, leading to considerable deviation from zero 
output (Fig. 6c–6f). The design of the decoder matrix 
guarantees that the pattern for any substantial deviations is 



 

 

unique so that the location of the error can be located by looking 
up this unique pattern in the decoder matrix. The error can be 
corrected accordingly (correction in this setting means locating 
the affected column and computing an estimate for the correct 
value at that column) based on the output magnitude that 
exceeds the threshold [5]. The proposed hardware 
implementation for this algorithm is shown in Fig. 7. It should 
be noted that all the signals remain in the analog domain, and 
one only needs to convert the multiplication result to the digital 
domain when desired. 

III. INTEGRATED NANOSCALE MEMRISTOR ARRAYS  
The idea is experimentally demonstrated in our integrated 

memristor crossbar system. Fig. 8 shows the experiment setup, 
including an integrated memristor crossbar arrays in a chip 
operated in a PCB board that communicates externally through 
a micro-controller [6]. The circuits peripheral to the crossbar 
array include signal routing, amplifiers, analog-digital 
conversion, sampling, etc., and were taped-out in TSMC’s 180 
nm technology node. The Ta/TaOx/Pt memristor devices in the 
arrays were monolithically integrated with a back-end-of-line 
process fabricating devices of lateral dimension 50 nm×50 nm 
(Fig. 9). With the platform, we programmed conductance 
patterns for a convolutional neural network (CNN) that 
classifies MNIST handwritten digits, with readout conductance 
map after programming shown in Fig. 10.  

The accuracy and precision of analog multiplications 
performed in the integrated crossbar platform are shown in Fig. 
11. The outputs are normalized from the output current based 
on the conductance-weight-value ratio. The results show 
accurate results around zero error, but notable imprecision 
within ±0.5, which indicates nearly 5-bit output precision as the 
range of the output is 0-26, consistent with previous results with 
off-chip peripherals [7,8]. On the other hand, there remain large 
but less frequent errors that are outside a tolerable range and 
need detection and correction.  

IV. ANALOG ERROR CORRECTION EXPERIMENTS 
We first consider a case where devices are programmed 

between 0-100 µS for MNIST classification with a CNN, and a 
device in the crossbar is disturbed to a very high conductance 
(200 µS) state. Prior reports, including ours [9], suggest the 
network can be reasonably tolerant of device defects, but the 
result in Fig. 12 shows device disturbance at some locations can 
precipitously drop MNIST classification accuracy from 98.20% 
to as low as 44.03%, and therefore must be detected and 
corrected. The effectiveness of our a-ECC is validated by 
intentionally setting a device located on the upper left corner to 
200 µS (Fig. 13) and analyzing the output accuracy before and 
after the error correction (Fig. 14). The cumulative probability 
is shown in Fig. 15, from which one sees that the a-ECC 
successfully and sharply eliminates significant outliers. With 
this a-ECC and single shorted devices, the experimental 
classification accuracy on the entire MNIST handwritten digit 
test set improves from 90.31% to 96.21% (software baseline is 
98.20%) (Fig. 16). It should be noted that the particular scheme 
and level of redundancy implemented here detects and corrects 
one defective device at a time (at any location), allowing the 

corresponding array to be scheduled for re-programmed to 
avoid more defective devices.  

Some other significant errors may be transient, due to noise 
induced from the environment, device state fluctuations, etc., 
and re-programming is not required for such errors. To 
experimentally emulate such effects, we activated extra rows in 
the array and programmed some of those devices to a high 
conductance state (Fig. 17) to artificially inject additional 
current noise to columns (Fig. 18). Fig. 19 shows that the a-
ECC succeeds in correcting most of the injected error, and Fig. 
20 indicates that the MNIST accuracy rose from 73.12% to 
97.36% after the a-ECC corrects the injected noise current. 
Since this type of error is transient, they can also be fixed by 
performing the multiplication operation again after a significant 
inaccuracy is detected without additional programming steps. 
An interesting phenomenon is that, after analog error correction, 
the accuracy can be higher than even without injected noise 
(96.92%), because the a-ECC can also correct intrinsic outlier 
errors caused by device-wire resistance interactions, IV 
nonlinearity, etc. 

V. DISCUSSION 
Although the encoding step of the a-ECC does not impose 

additional overhead in latency, it requires an additional chip 
area and thus energy consumption due to extra cells and 
periphery for encoder and decoder. Analog ECC imposes an 
inherent trade-off between more encoder column overhead, and 
the acceptable level of error outliers. This overhead is reduced 
if only error detection is needed, rather than full correction, 
enabling a tunable knob for varying applications (Fig. 21).  In 
detecting the permanent errors such as device state disturbance, 
the decoder matrix can be shared among the duplicated 
convolutional kernels, and only enabled to identify which array 
needs to be re-programmed, based on the statistical error rate.  

In conclusion, we have experimentally demonstrated, for 
the first time, an a-ECC scheme that detects and corrects 
computational errors of various kinds for in-memory analog 
computing. Applying the method to a CNN for MNIST 
classification, we achieved 97.36% accuracy with significant 
injected errors that would otherwise lead to 73.12% accuracy, 
close to the software baseline of 98.20%. Such analog ECC is a 
critical enabler for future deployment of analog computing 
using emerging memory devices in applications that demand 
high reliability.  
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1. Original message:

3. Received corrupted message 
due to transmission error: 1110010101011000

2. Encode withthe redundancy 
bits from the original message: 1110010101010000 1110
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4. Decode the message with 
the redundancy bits::
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Fig. 1: Conventional digital Error Correcting 
Codes (ECC) corrects the corrupted data during a 
noisy transmission.
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Fig. 2: The proposed analog ECC 
(a-ECC) that computes the output y and 
the encodes the redundancy r in parallel.
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Fig. 3: Schematic of analog computing error, i.e., the 
difference between expected output and the hardware 
output, that needs to be detected and corrected.
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Fig. 7: The proposed hardware implementation of the a-ECC 
scheme with memristor crossbars for matrix multiplication. 
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Fig. 5: An example encoder matrix and decoder 
matrix for analog ECC demonstration. For each 
input vector, the matrix multiplicatoin generated 11 
real numbers with seven intended outputs and four 
redundancy outputs for error correction.
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Fig. 6: Examples show how the analog ECC works. (a,b) An example of errors within the tolerable 
limit. (c,d) One significant outlier in the 4th column (col #3) leads to the 2nd and 4th decoder output 
exceeding the upper and lower threshold. The location of the error can be identified by searching the 
pattern [+1, 0, 0, -1] in the decoder matrix (4th column). (e,f) Another example with outlier error in 
the 5th column, which is located by looking up the pattern [+1, 0, 0, +1] in the decoder matrix. 
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Fig. 9: An integrated chip with nanoscale 
Ta/TaOx/Pt memristors and peripheral circuit, 
e.g. signal routing, amplifiers, sampling, 
ADC, etc., for a-ECC demonstration. 
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Fig. 8: The a-ECC experimental setup 
with an integrated memristor crossbar 
arrays in a packaged chip, the PCB 
boards tthat controlls the memristor chip 
and communicates externally.
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Fig. 4: Diagram for the proposed analog ECC algorithm. Step 2 calculates the encoder and decoder matrices shown in Fig. 5, which is a one-time overhead. 
Step 3 and Step 4 are performed in the crossbar, which are indicated by the arrows in Fig. 5. The error detection and correction step is illustrated in Fig. 6.
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Fig. 11: The statistics of the output error of the 
analog matrix multiplications in the integrated 
memristor crossbar array.

Fig. 10: The readout conductances after 
experimentally programming a convolutional 
layer and a fully connected layer for MNIST 
handwritten digit classification.
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Fig. 12: The simulated MNIST classification 
accuracy map after one corresponding device is 
stuck ON.

Fig. 13: The readout conductance map after 
intentionally set one device to a very high conduct-
ance state.

Fig. 14: (a) The distribution of the experimental output 
error introduced by one stuck-ON device. (b) After 
a-ECC, most signficant outliers were corrected. 
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Fig. 15: The cumulative probability plot 
shows the effectiveness of the analog ECC.

Fig. 16: The a-ECC corrects the misclassifica-
tions resulted from the shorted device, and 
recovers the MNIST accuracy from 90.31% to 
96.21% with δ=0.18. 

Fig. 17: The readout conductance map after 
programing several devices to LRS for artificial 
noise injection.
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Fig. 20: The MNIST classification accuracy with 
artificially injected noise is about 73.12%, which 
was recovered to 97.36% by a-ECC with δ=0.50.  
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noise injection. The dashed line indicates the 
location where the experiment agrees with the 
expected output.
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Fig. 29: Most inaccuracies caused by the 
injected noise are corrected by the a-ECC.
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