

Analog error correcting codes for defect tolerant
matrix multiplication in crossbars

Can Li1,2, Ron M. Roth1,3, Cat Graves1, Xia Sheng1, John Paul Strachan1

1Hewlett Packard Labs, HPE, Palo Alto, CA, USA; 2Department of EEE, The University of Hong Kong, Hong Kong SAR,
China; 3Computer Science Department, Technion, Haifa, Israel. Email: canl@hku.hk, john-paul.strachan@hpe.com

Abstract—Despite great promises shown in the laboratory
environment, memristor crossbar, or non-volatile resistive
analog memory, based matrix multiplication accelerators
suffer from unexpected computing errors, limiting
opportunities to replace main-stream digital systems. While
many previously demonstrated applications, such as neural
networks, are tolerant of small errors, they are challenged by
any significant outliers, which must be detected and corrected.
Herein, we experimentally demonstrate an analog Error
Correcting Code (ECC) scheme that considerably reduces the
chance of substantial errors, by detecting and correcting errors
with minimum hardware overhead. Different from well-known
digital ECC in communication and memory, this analog
version can tolerate small errors while detecting and correcting
those over a predefined threshold. With this scheme, we can
recover the MNIST handwritten digit classification accuracy
experimentally from 90.31% to 96.21% in the event an array
builds up shorted devices and from 73.12% to 97.36% when
current noise is injected. For applications where high reliability
and compute precision are demanded, such as in high-
performance and scientific computing, we expect the schemes
shown here to make analog computing more feasible.

I. INTRODUCTION
Memristors, or non-volatile resistive analog memories,

have demonstrated great potential in accelerating modern
computing workloads, because of their ability to process
information directly in its memory, and compute with physical
laws. Such hardware, however, is prone to the emerging device
imperfection and noises of various kind, and therefore yields
inaccuracies in the computing result. While many algorithms
make full use of the analog nature of memristor crossbar can
tolerate those inaccuracies to some extent, significant error
outliers are fatal and must be detected and corrected.

ECC has been widely used in scenarios where noise and
errors are frequent, such as data communication over a noisy
channel, or where data fidelity can degrade over time, such as
in ECC for memories. The idea is that the sender encodes a
message with additional redundancy, which allows the receiver
to detect if an error has occurred in the message, and possibly
correct the error without re-transmission (Fig. 1). Prior work
has tried to apply this method to memristor-crossbar based
computing [1–4], but most address the memristor crossbar
memory itself, rather than the analog computing output which
is the actual target for error-reduction. A novel theoretical
scheme was recently proposed in [5] to address this problem,
with mathematical support. However, no experimental

demonstration of any ECC in crossbars, to the best of our
knowledge, has been reported before. It is noted that the
proposed scheme not only benefits memristor in-memory
analog computing, but also those based on other analog, or even
binary, non-volatile technologies (e.g., Phase change,
Ferroelectric, STT-MRAM, and floating-gate memory devices).

II. ANALOG ERROR CORRECTING CODE
 The idea of the proposed analog ECC (a-ECC) is described

in Fig. 2 – Fig. 6. Distinct from digital ECC for data
communication, where redundant bits are encoded based on the
data to transmit, the proposed a-ECC involves expanding the
in-memory computing area, by adding an encoder matrix, the
contents of which are based on the original in-memory area for
multiplication (Fig. 2). In this way, the redundancy output 𝑟 is
computed at the same time as the actual multiplication (for 𝑦)
takes place. Thus, the calculation of the redundancy output does
not impose additional overhead in latency. In most scenarios,
the matrix is not frequently updated; thus, the computing of the
encoder matrix is low overhead. Another difference is the
ability to tolerate small computing errors in normal operations
due to the nature of analog computing, but to detect and correct
significant outliers (Fig. 3), that may result from short/open
junctions, memristor conductance state drift, external injected
transient noise, environmentally induced corruption, etc.

Fig. 4 illustrates the a-ECC algorithm, and an example
encoder matrix and a decoder matrix are shown in Fig. 5 to
demonstrate how the scheme works. In this particular example,
there are seven columns in the original matrix and four columns
in the encoder matrix for redundancy outputs. The encoder
matrix needs to be configured only once for a given matrix.
Since the output vectors (𝑦 and 𝑟) are weighted sums of each
input row vector to the matrix, due to linearity, they shall
preserve a specific relationship designed in the choice of the
encoder matrix. In the event of a significant error outlier, which
could result in the predefined constraint is not met anymore,
and thus an error is detected. This can be checked with decoder
matrix, involving another matrix multiplication in a crossbar.

The decoder matrix is used to check if the output meets the
predefined constraints, i.e., whether an error has occurred. As
is shown in Fig. 6a, 6b, if all inaccuracies are within a defined
tolerance (𝛿 =0.5), the decoder output will be close to zero
within a threshold. In the case of a significant outlier, the
corresponding column pattern in the decoder matrix will be
added to the result, leading to considerable deviation from zero
output (Fig. 6c–6f). The design of the decoder matrix
guarantees that the pattern for any substantial deviations is

unique so that the location of the error can be located by looking
up this unique pattern in the decoder matrix. The error can be
corrected accordingly (correction in this setting means locating
the affected column and computing an estimate for the correct
value at that column) based on the output magnitude that
exceeds the threshold [5]. The proposed hardware
implementation for this algorithm is shown in Fig. 7. It should
be noted that all the signals remain in the analog domain, and
one only needs to convert the multiplication result to the digital
domain when desired.

III. INTEGRATED NANOSCALE MEMRISTOR ARRAYS
The idea is experimentally demonstrated in our integrated

memristor crossbar system. Fig. 8 shows the experiment setup,
including an integrated memristor crossbar arrays in a chip
operated in a PCB board that communicates externally through
a micro-controller [6]. The circuits peripheral to the crossbar
array include signal routing, amplifiers, analog-digital
conversion, sampling, etc., and were taped-out in TSMC’s 180
nm technology node. The Ta/TaOx/Pt memristor devices in the
arrays were monolithically integrated with a back-end-of-line
process fabricating devices of lateral dimension 50 nm×50 nm
(Fig. 9). With the platform, we programmed conductance
patterns for a convolutional neural network (CNN) that
classifies MNIST handwritten digits, with readout conductance
map after programming shown in Fig. 10.

The accuracy and precision of analog multiplications
performed in the integrated crossbar platform are shown in Fig.
11. The outputs are normalized from the output current based
on the conductance-weight-value ratio. The results show
accurate results around zero error, but notable imprecision
within ±0.5, which indicates nearly 5-bit output precision as the
range of the output is 0-26, consistent with previous results with
off-chip peripherals [7,8]. On the other hand, there remain large
but less frequent errors that are outside a tolerable range and
need detection and correction.

IV. ANALOG ERROR CORRECTION EXPERIMENTS
We first consider a case where devices are programmed

between 0-100 µS for MNIST classification with a CNN, and a
device in the crossbar is disturbed to a very high conductance
(200 µS) state. Prior reports, including ours [9], suggest the
network can be reasonably tolerant of device defects, but the
result in Fig. 12 shows device disturbance at some locations can
precipitously drop MNIST classification accuracy from 98.20%
to as low as 44.03%, and therefore must be detected and
corrected. The effectiveness of our a-ECC is validated by
intentionally setting a device located on the upper left corner to
200 µS (Fig. 13) and analyzing the output accuracy before and
after the error correction (Fig. 14). The cumulative probability
is shown in Fig. 15, from which one sees that the a-ECC
successfully and sharply eliminates significant outliers. With
this a-ECC and single shorted devices, the experimental
classification accuracy on the entire MNIST handwritten digit
test set improves from 90.31% to 96.21% (software baseline is
98.20%) (Fig. 16). It should be noted that the particular scheme
and level of redundancy implemented here detects and corrects
one defective device at a time (at any location), allowing the

corresponding array to be scheduled for re-programmed to
avoid more defective devices.

Some other significant errors may be transient, due to noise
induced from the environment, device state fluctuations, etc.,
and re-programming is not required for such errors. To
experimentally emulate such effects, we activated extra rows in
the array and programmed some of those devices to a high
conductance state (Fig. 17) to artificially inject additional
current noise to columns (Fig. 18). Fig. 19 shows that the a-
ECC succeeds in correcting most of the injected error, and Fig.
20 indicates that the MNIST accuracy rose from 73.12% to
97.36% after the a-ECC corrects the injected noise current.
Since this type of error is transient, they can also be fixed by
performing the multiplication operation again after a significant
inaccuracy is detected without additional programming steps.
An interesting phenomenon is that, after analog error correction,
the accuracy can be higher than even without injected noise
(96.92%), because the a-ECC can also correct intrinsic outlier
errors caused by device-wire resistance interactions, IV
nonlinearity, etc.

V. DISCUSSION
Although the encoding step of the a-ECC does not impose

additional overhead in latency, it requires an additional chip
area and thus energy consumption due to extra cells and
periphery for encoder and decoder. Analog ECC imposes an
inherent trade-off between more encoder column overhead, and
the acceptable level of error outliers. This overhead is reduced
if only error detection is needed, rather than full correction,
enabling a tunable knob for varying applications (Fig. 21). In
detecting the permanent errors such as device state disturbance,
the decoder matrix can be shared among the duplicated
convolutional kernels, and only enabled to identify which array
needs to be re-programmed, based on the statistical error rate.

In conclusion, we have experimentally demonstrated, for
the first time, an a-ECC scheme that detects and corrects
computational errors of various kinds for in-memory analog
computing. Applying the method to a CNN for MNIST
classification, we achieved 97.36% accuracy with significant
injected errors that would otherwise lead to 73.12% accuracy,
close to the software baseline of 98.20%. Such analog ECC is a
critical enabler for future deployment of analog computing
using emerging memory devices in applications that demand
high reliability.

ACKNOWLEDGMENT

This research was based upon work supported by the Office of
the Director of National Intelligence (ODNI), Intelligence
Advanced Research Projects Activity (IARPA), via contract
number 2017-17013000002.

REFERENCES
[1] Niu, D., et al., Y. ASP-DAC (2012); [2] Liu, M., et al., Proc. Int. Test
Conf. (2019); [3] Wang, M., et al., NVMTS (2015); [4] Liu, M., et al., ACM
Trans. Des. Autom. Electron. Syst. 25, (2020); [5] Roth, R., IEEE ISIT (2019)
[6] Li, C., et al., IWM, (2020). [7] Li, C., et al., Nat. Electron., 1, 52-59 (2018).
[8] Hu, M., et al., Advanced Materials, 30, 1705914 (2018). [9] Li, C., et al,
Nat. Commun., 9, 2385 (2018).

1110010101010000
1. Original message:

3. Received corrupted message
due to transmission error: 1110010101011000

2. Encode withthe redundancy
bits from the original message: 1110010101010000 1110

Transmit

1110

4. Decode the message with
the redundancy bits::

1110010101010000

Fig. 1: Conventional digital Error Correcting
Codes (ECC) corrects the corrupted data during a
noisy transmission.

Matrix for multiplication

u1

u2

uM

yN

... ...

y1 y2
... ...

Encoder
Matrix

...r1 rL

Fig. 2: The proposed analog ECC
(a-ECC) that computes the output y and
the encodes the redundancy r in parallel.

A1 A2

Analog memory crossbar array

0

‘Normal error’

Outlier

Must be corrected

Must be detected

δ-δ Δ-Δ
e = y - c

Fig. 3: Schematic of analog computing error, i.e., the
difference between expected output and the hardware
output, that needs to be detected and corrected.

...

...

...

...

V1

V2

VM

+ - + - + - + - + - + -

Actual matrix for
multiplication A1

Encoder
matrix A2

...

...

+
-

+
-

+
-

...

...

EN

Decoder matrix H

Multiplication result

EN_DECODER

Fig. 7: The proposed hardware implementation of the a-ECC
scheme with memristor crossbars for matrix multiplication.

u1

u2

uM

yNy1 y2

s1

r1 rL

Fig. 5: An example encoder matrix and decoder
matrix for analog ECC demonstration. For each
input vector, the matrix multiplicatoin generated 11
real numbers with seven intended outputs and four
redundancy outputs for error correction.

1

0

-1

1
0

-1

Actual matrix for
multiplication A1

Encoder
matrix A2

D
ec

od
er

 o
ut

pu
t (

 s
)

Error +

u

ye r
+

Decoder matrix H 0 1 2 3

D
ec

od
er

 o
ut

pu
t (

 s
)

1.0

0.5

0.0

-0.5

-1.0

Threshold exceeded!

E
rr

or
 (

e
)

1.0

0.0

0.2

0.4

0.6

0.8

0 108642
Column #

Outlier!

Fig. 6: Examples show how the analog ECC works. (a,b) An example of errors within the tolerable
limit. (c,d) One significant outlier in the 4th column (col #3) leads to the 2nd and 4th decoder output
exceeding the upper and lower threshold. The location of the error can be identified by searching the
pattern [+1, 0, 0, -1] in the decoder matrix (4th column). (e,f) Another example with outlier error in
the 5th column, which is located by looking up the pattern [+1, 0, 0, +1] in the decoder matrix.

E
rr

or
 (

e
)

0.1

0.0

-0.1
0 108642

Column #

0 1 2 3

D
ec

od
er

 o
ut

pu
t (

 s
)

-0.4

-0.2

0.0

0.2

0.4

Outlier!

E
rr

or
 (

e
)

Column #
Exceed threshold!

D
ec

od
er

 o
ut

pu
t (

 s
)

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 9: An integrated chip with nanoscale
Ta/TaOx/Pt memristors and peripheral circuit,
e.g. signal routing, amplifiers, sampling,
ADC, etc., for a-ECC demonstration.

20 µm

10 nm

Pt

Pt

Ta
TaOx

Fig. 8: The a-ECC experimental setup
with an integrated memristor crossbar
arrays in a packaged chip, the PCB
boards tthat controlls the memristor chip
and communicates externally.

Power supply

Wired-bonded
memristor chip in
a package

A1 matrix for
computing.

Calculate the encoder
matrix A2, the decoder
matrix H, and the
syndrome threshold
w, based on the
choice of δ and Δ.

For ant input vector u,
calculate the output y
and the redundancy r
with the crossbar in
parallel.

Calculate the syndrome
vector s with the
decoder matrix

1. Start
2. Prepare matrices and
program crossbars

3. Actual multiplication and
encoding in parallel 4. Decoding 5.1 Error detection

If any element in s
exceeds the
threshold w, an error
(>δ) is detected.

5.2 Error correction

The error is located by
looking up the threshold
exceeding pattern in decoder
matrix H, and corrected by
the exceeded magnitude.

Fig. 4: Diagram for the proposed analog ECC algorithm. Step 2 calculates the encoder and decoder matrices shown in Fig. 5, which is a one-time overhead.
Step 3 and Step 4 are performed in the crossbar, which are indicated by the arrows in Fig. 5. The error detection and correction step is illustrated in Fig. 6.

100%

90%

80%

70%

60%

50%

40%

Fig. 11: The statistics of the output error of the
analog matrix multiplications in the integrated
memristor crossbar array.

Fig. 10: The readout conductances after
experimentally programming a convolutional
layer and a fully connected layer for MNIST
handwritten digit classification.

100

80

60

40

20

0

Conductance (µS)

200

175

150

125

100

75

50

25

Conductance (µS)Stuck ON device!

Fig. 12: The simulated MNIST classification
accuracy map after one corresponding device is
stuck ON.

Fig. 13: The readout conductance map after
intentionally set one device to a very high conduct-
ance state.

Fig. 14: (a) The distribution of the experimental output
error introduced by one stuck-ON device. (b) After
a-ECC, most signficant outliers were corrected.

RAW output pre a-ECC

Corrected output
post a-ECC

0.0

100

10-1

10-2

0.5
Absolute Error

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

1.0 1.5

Fig. 15: The cumulative probability plot
shows the effectiveness of the analog ECC.

Fig. 16: The a-ECC corrects the misclassifica-
tions resulted from the shorted device, and
recovers the MNIST accuracy from 90.31% to
96.21% with δ=0.18.

Fig. 17: The readout conductance map after
programing several devices to LRS for artificial
noise injection.

Error

C
ou

nt

-δ +δ
 M

N
IS

T
C

la
ss

ifi
ca

tio
n

A
cc

ur
ac

y
(%

)

δ (w/ Δ=8δ)

Ideal software

w/o a-ECC

w/ a-ECC

Extra device for noise injection

δ (w/ Δ=8δ)

M
N

IS
T

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
)

Noise-free

wo/ ECC

Fig. 20: The MNIST classification accuracy with
artificially injected noise is about 73.12%, which
was recovered to 97.36% by a-ECC with δ=0.50.

E
xp

er
im

en
ta

l R
aw

 O
ut

pu
t

Fig. 18: The experiment output after current
noise injection. The dashed line indicates the
location where the experiment agrees with the
expected output.

Before a-ECC

C
or

re
ct

ed
 O

ut
pu

t

After a-ECC

Fig. 29: Most inaccuracies caused by the
injected noise are corrected by the a-ECC.

R
at

io
 b

et
w

ee
n

th
e

re
du

nd
an

cy

an
d

no
rm

al
 c

ol
um

ns
 n

um
be

rs

1

0.1

0.01

0

600

Output Error

500

400

300

200

100

0 3.02.01.0

C
ou

nt

800

600

400

200

0

Output Error
-1.0 3.01.0 2.00.0

Before a-ECC After a-ECC(a) (b)

Error detection only

Error detection and correction

Fig. 21: The trade-off between the acceptable
level of error outliers and the number of redundan-
cy columns, with the the number of normal
columns for computing set to 512 for this plot.

