
Analog Error-Correcting Codes
Ron M. Roth, Fellow, IEEE

Abstract—Coding schemes are presented that provide the
ability to locate computational errors above a prescribed thresh-
old while using analog resistive devices for approximate real
vector–matrix multiplication. In such devices, the matrix is
programmed into the device by setting an array of resistors
to have conductances proportional to the respective entries in
the matrix. In the coding scheme that is considered in this
work, redundancy columns are appended so that each row in
the programmed matrix forms a codeword of a prescribed linear
code C over the real field; the result of the multiplication of any
input real row vector by the matrix is then also a codeword
of C. While error values within ±δ in the entries of the result
are tolerable (for some prescribed δ > 0), outlying errors, with
values outside the range ±∆ (for a prescribed ∆ ≥ δ) should
be located and corrected. As a design and analysis tool for such
a setting, a certain functional is defined for the code C, through
which a characterization is obtained for the number of outlying
errors that can be handled, as a function of the ratio ∆/δ. Several
code constructions are then presented, primarily for the case of
single outlying error handling. For this case, the coding problem
is shown to be related to certain extremal problems on convex
polygons.

Index Terms—Analog arithmetic circuits, Approximate com-
putation, Fault-tolerant computing, Linear codes over the real
field, Vector–matrix multiplication.

I. INTRODUCTION

Let ` and n be fixed positive integers and denote by [n〉
the integer set {j : 0 ≤ j < n}. We consider here a
computational circuit (referred to as a dot-product engine)
which accepts as input an ` × n matrix A = (ai,j)i∈[`〉,j∈[n〉
over the real field R and a row vector u = (ui)i∈[`〉 ∈ R`, and
computes the vector–matrix product c = uA, with addition
and multiplication carried out over R. In the applications of
interest, the matrix A is modified very infrequently and, so,
in effect, only u is seen as input.

A similar computational circuit was the focus of our recent
work [18], except that u and A therein were assumed to have
(nonnegative) integer entries in the range {0, 1, . . . , q−1}, for
a prescribed q. In current proposals for nanoscale implementa-
tions of such a circuit, the matrix A is realized as a crossbar ar-
ray consisting of ` row conductors, n column conductors, and
programmable nanoscale resistive components at the junctions,
with the conductance of the resistor at each junction (i, j)
being proportional to ai,j . Each entry ui of u is fed into a
digital-to-analog converter (DAC) to produce a voltage level
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that is proportional to ui. The product, uA, is then computed
by reading the currents at the (grounded) column conductors,
after being fed into analog-to-digital converters (ADCs); see
Figure 1 in [18]. In case A contains negative entries, we can
write A = A+−A−, where A+ and A− are both nonnegative,
and use two circuits to compute c+ = uA+ and c− = uA−;
the sought result is then the difference c = c+ − c−. For
implementations and applications of such devices, see, for
example, [5], [11], [13], [15], and [19].

The scenario considered in [18] was that of exact integer
vector–matrix multiplication. Accordingly, we presented a
framework for self-protecting the computation against certain
types of errors, primarily under the L1-metric or the Hamming
metric. Such a scenario is suitable for applications where the
multiplication circuit is employed as an accelerator in compu-
tations carried out by ordinary ALUs. To attain the targeted
precision, however (even with error-correction schemes), the
computation may need to be broken into small integer ranges,
e.g., arithmetic of 32-bit integers (corresponding to q = 232)
broken into eight 4-bit multiplications (q = 16) that are shifted
and added.

Here, on the other hand, we consider the approximate
computation model where the input row `-vector u and the
programmed ` × n matrix A are over R, and so are the
ideal computation c = uA and the actually read output row
n-vector y; namely, we remain in the analog domain.1 In
addition, entries of y will still be regarded as “correct” if
they are sufficiently close to the respective entries in c; on the
other hand, entries in y which significantly differ from those
in c must be located and corrected (or, alternatively, detected).
This model is suitable for applications that are insensitive to
controlled inaccuracies, e.g., computations that are based on a
model which only estimates a true behavior; this is likely to
occur in learning applications.

Specifically, we assume that the read vector y ∈ Rn may
differ from the ideal computation c = uA ∈ Rn due to the
effect of two events:

y = c + ε + e , (1)

where ε = (εj)j∈[n〉 and e = (ej)j∈[n〉 are error vectors in Rn.
The entries of ε are all within the interval [−δ, δ], for some
prescribed positive δ, and stand for small computational errors
(or circuit noise), which are tolerable, while the entries of e
represent outlying errors, which may be caused by factors such
as stuck cells or short cells in the array (note that according
to the model, a given ideal result c can change into a given

1Thus, we will not rely on the existence of peripheral ADCs and DACs that
may still be present as an interface with other hardware units. Also, while we
will generally need to allow A to have negative real values (which, in turn,
can be realized in the manner described earlier), our coding schemes will not
be limited by any further assumption that the entries of u are nonnegative.
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read vector y due to different error pairs (ε, e)). Our goal is
to design a coding scheme that allows to locate the outlying
errors—i.e., the nonzero entries of e—that are outside the
interval [−∆,∆], for the smallest possible ∆, and to compute
bounds on (or estimates of) the values of the outlying errors,
provided that the number of outlying errors does not exceed
a prescribed number. (Under a more general setting, we also
allow to just detect whether e is nonzero, without necessarily
locating its nonzero entries.) Clearly, we must have ∆ ≥ δ, yet
we will see that except for trivial cases, a stronger inequality
must hold, namely, ∆ ≥ 4δ.

We are unaware of prior literature on the error protec-
tion setting that we have described. Existing applications of
transmission and storage that allow δ-tolerance yet require
correction of outliers (and, as such, can be seen as a degenerate
case of our model where ` = 1 and the vector u is just
the constant 1) can be handled in the following manner: first
quantize the data into grid points that are 2δ apart, and then
use an error-correction scheme for the L1 metric over the
integers. While the quantization step introduces errors, they
are still within the tolerable range of ±δ. Upon decoding of the
received/read vector y, one first finds the closest grid point to
each entry of y, and then applies the error-correction decoder.

Such a strategy would have worked also in our setting had
the vector u been constrained to be a standard unit vector (i.e.,
be all-zero except for one entry which is 1). Yet, for general u
and general number ` of rows in A, the multiplication by the
entries of u would amplify the quantization error, and further
amplification would result due to the summation along each
column. On the other hand, if we used a finer quantization
with accumulated error (for a worst-case choice of u) of no
more than ±δ, we would end up with too-fine quantization
when u is a standard unit vector: the noise errors caused by
the circuit would then be much larger than the quantization
error, and we would end up with too many errors that need
correction.

For other (different) models of analog coding, see, for
example, [21] and the recent work [12].

As was the case in [18], the first k (< n) entries in c = uA
will carry the (ordinary) result of the computation of interest,
while the remaining n−k entries of c will contain redundancy
symbols, which can be used to detect or correct computational
errors. Specifically, the programmed `×n matrix A will have
the structure

A = (A′ | A′′) ,

where A′ is an ` × k matrix over R consisting of the
first k columns of A, and A′′ consists of the remaining
n− k columns; the computed output row vector for an input
vector u ∈ R` will then be c = (c′ | c′′), where the k-prefix
c′ = uA′ (∈ Rk) represents the target computation while the
(n−k)-suffix c′′ = uA′′ (∈ Rn−k) is the redundancy part.

Similarly to [18], we encode the matrix A such that each
row belongs to a linear [n, k] code C over R. This, in turn, will
guarantee that any linear combination c = uA belongs to C.
Thus, the code C completely characterizes the coding scheme.

Hereafter, for δ ∈ R+ and n ∈ Z+, we denote by Q(n, δ)
the set of tolerable error vectors, namely:

Q(n, δ) =
{

ε = (ε0 ε1 . . . εn−1) ∈ Rn : max
j
|εj | ≤ δ

}
.

For e = (ej)j ∈ Rn and ∆ ∈ R≥0, define

Supp∆(e) =
{
j ∈ [n〉 : |ej | > ∆

}
.

Note that Supp0(e) is the ordinary support of e. The Hamming
weight of e (which is the size of Supp0(e)) will be denoted
by w(e). The set of all vectors of Hamming weight at most w
in Rn will be denoted by B(n,w).

We next present the formal requirements from a decoder
for our coding model. Given a linear [n, k] code C over R (to
which the rows of A belong and, therefore, so does every linear
combination thereof), a decoder for C is a function D : Rn →
2[n〉 ∪ {“e”} that returns a set of locations of outlying errors
or an indication “e” that errors have been detected.2 Given
δ,∆ ∈ R+ and prescribed nonnegative integers τ and σ, we
say that D corrects τ errors and detects σ additional errors
(with respect to the threshold pair (δ,∆)) if the following
conditions hold for every y as in (1), where c ∈ C, ε ∈
Q(n, δ), and e ∈ B(n, τ+σ).

(D1) If e ∈ B(n, τ) then D(y) 6= “e”.
(D2) If D(y) 6= “e” then

Supp∆(e) ⊆ D(y) ⊆ Supp0(e) . (2)

Condition (D1) means that the decoder must return a
(possibly empty) set of outlying error locations, whenever the
number of outlying errors does not exceed τ . Condition (D2)
deals with the case where the decoder returns a set of outlying
error locations (whether due to condition (D1) or otherwise).
The first containment in (2) means that no misses are allowed:
the returned set must include the locations of all outlying errors
whose values are outside the interval [−∆,∆]. The second
containment in (2) states that false alarms are not allowed: a
location should not be included if it did not contain an outlying
error. Thus, when the number of outlying errors is above τ yet
no more than τ + σ, the decoder is allowed to merely detect
the errors (by returning “e”); however, if it does return a set,
then this set must satisfy the two containments in (2).

Note that there exists a “gray area” of outlying values which
is not covered by the conditions: we allow the decoder to miss
an outlier if its value is within the interval [−∆,∆]. Hence
the significance of selecting ∆ to be as small as possible.

While some of the results in this work concern the above
general setting, other will focus on the case of a single
outlier. We start by introducing in Section II the notion of
a height profile of a linear code C. We then use the height
profile to formulate a necessary and sufficient condition for
the existence of a decoder for C that satisfies conditions (D1)–
(D2). That condition will imply, in particular, that such a
decoder generally exists only when ∆/δ ≥ 4.

2For simplicity, we exclude from our basic definition of a decoder the
computation of the bounds on the values of the outlying errors; thus, in this
work, error correction will generally mean finding the locations of the errors.
In the sequel, we will comment about how one can compute such bounds (see
the discussions at the end of Section II and following Proposition 6).
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In Section III, we consider several special cases, starting
with coding schemes where ∆/δ equals the floor value 4:
we show that the dimension of C in this case must satisfy
a certain upper bound, and then we completely characterize
the codes that attain that bound. In the remaining part of
Section III, we present simple constructions for single error
detecting codes (corresponding to (τ, σ) = (0, 1)) and single
error correcting codes (i.e., (τ, σ) = (1, 0)). In both cases,
the smallest attainable ratio ∆/δ is proportional to the ratio
between the length n and the redundancy r of C, except that
in the error correction case, r is constrained to be greater than√
n; a variant of the construction does allow one to reach

redundancy which is logarithmic in n, yet then the ratio ∆/δ
grows linearly with n.

In Section IV, we present a characterization of any single
detecting/correcting code through its parity-check matrix. This
characterization, in turn, relates our coding problem to certain
extremal problems on convex polygons. In Section V, we use
this characterization to analyze a particular single error cor-
recting construction which is MDS (namely, it has the smallest
possible redundancy of 2), and show that the attainable ratio
∆/δ grows quadratically with the code length n. The same
characterization is then used also in Section VI to obtain an
asymptotic construction of a single error correcting code that
attains a ratio ∆/δ that is sub-linear in n with a redundancy
that is logarithmic in n.

While most of our work focuses on single error handling, it
appears that even this simple case poses interesting challenging
problems which are still open. In particular, determining fully
the (tight) trade-off between the length a code, its redundancy,
and the smallest attainable ratio ∆/δ, is yet to be found. Some
more specific open problems will be stated in Sections III–V.

II. CORRECTION CAPABILITIES VIA THE HEIGHT PROFILE

In this section, we present a necessary and sufficient con-
dition for the existence of a decoder for C that satisfies
conditions (D1)–(D2), for given τ , σ, δ, and ∆. The condition
is expressed in terms of a particular functional that we define
for C. In a way, this functional can be seen as a generalization
of the notion of the minimum Hamming distance of C.

Let x = (x0 x1 . . . xn−1) be a nonzero vector in Rn and
let π : [n〉 → [n〉 be a permutation on the coordinates of x
that sorts the entries according to descending absolute values:

|xπ(0)| ≥ |xπ(1)| ≥ . . . ≥ |xπ(n−1)| .

Given an integer m ∈ [n〉, the m-height of x, denoted hm(x),
is defined by

hm(x) =
∣∣∣∣ xπ(0)

xπ(m)

∣∣∣∣ ,
and for convenience we formally define hm(x) = ∞ when
m ≥ n (which amounts to padding x with arbitrarily many
zeroes). Thus,

1 = h0(x) ≤ h1(x) ≤ . . . ≤ hn−1(x) ≤ hn(x) =∞ ,

and w(x) is the smallest m ∈ [n〉 for which hm(x) = ∞.
E.g., for x = (−3 6 1 0 3) we have: h0(x) = 1, h1(x) =
h2(x) = 2, h3(x) = 6, and h4(x) = h5(x) =∞.

For the all-zero vector, we formally define hm(0) = 0 for
every m ≥ 0.

The m-height of a linear [n, k] code C over R is defined by

hm(C) = max
c∈C

hm(c) .

Note that the maximum—possibly ∞—indeed exists: since
hm(c) = hm(a · c) for every nonzero real scalar a, the
maximum can be assumed to be taken over all codewords
c ∈ C in the compact space {x ∈ Rn : ‖x‖∞ = 1} (say).
When k > 0, the minimum distance d(C) of C is related to its
height values by

d(C) = min
{
m ∈ [n〉 : hm(C) =∞

}
.

We mention in passing that one can also define a kind of
an inverse functional of a height of a vector (and then extend
the definition to codes), as follows. Given a real η > 1, the η-
width of x ∈ Rn equals the smallest m for which hm(x) ≥ η.
In particular, the ∞-width of x equals its Hamming weight.
Note, however, that for finite η, the width does not generally
satisfy the triangle inequality; e.g., the η-width of each of the
two n-vectors

(η 1 1 . . . 1) and (1−η 0 0 . . . 0)

equals 1, while that of their sum equals n.
The next theorem is the main result of this section.

Theorem 1. Let C be a linear [n, k] code over R. Given δ,∆ ∈
R+ and nonnegative integers τ and σ at least one of which
is nonzero, there exists a decoder for C that corrects τ errors
and detects additional σ errors (with respect to the threshold
pair (δ,∆)), if and only if

∆ ≥ 2(h2τ+σ(C) + 1)δ .

In particular, such a decoder exists only if 2τ + σ < d(C).

For the proof of sufficiency we will make use of the
following notation and lemma. Given a linear [n, k>0] code C
over R, δ ∈ R+, and nonnegative integers τ and σ, we define
for every y ∈ Rn the set:

E(y) = EC(y, δ) =
{

e ∈ B(n, τ+σ) :

e = y − c− ε for some c ∈ C and ε ∈ Q(n, δ)
}
,

namely, E(y) consists of all the candidates in B(n, τ+σ) of
an outlying error vector e, given that y is the received vector.

Lemma 2. Given a linear [n, k] code C over R and nonneg-
ative integers τ and σ, let δ,∆ ∈ R+ be such that

∆ ≥ 2(h2τ+σ(C) + 1)δ .

Suppose that y ∈ Rn is such that E(y) ∩ B(n, τ) 6= ∅. Then
for every two vectors e, e′ ∈ E(y),

Supp∆(e′) ⊆ Supp0(e) .

Proof of Lemma 2. Let e, e′, e∗ ∈ E(y) be such that e∗ ∈
B(n, τ). Then

y = c + ε + e

= c′ + ε′ + e′

= c∗ + ε∗ + e∗ ,
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where c, c′, c∗ ∈ C and ε, ε′, ε∗ ∈ Q(n, δ). It follows that

c− c∗ = ε∗ + e∗ − ε− e (3)
c∗ − c′ = ε′ + e′ − ε∗ − e∗ , (4)

i.e., the right-hand sides of (3)–(4) are codewords of C and, as
such, their m-heights cannot exceed hm(C), for every m ≥ 0.

Suppose to the contrary that Supp∆(e′) 6⊆ Supp0(e). Then
ej = 0 yet |e′j | > ∆ for some position j ∈ [n〉; without loss
of generality we assume hereafter that e′j > ∆. Writing w =
2τ + σ, we have w(e) + w(e∗) ≤ w and w(e′) + w(e∗) ≤ w,
and, so, from (3)–(4) we get the following two inequalities:

ε∗j + e∗j − εj − ej ≤ hw(C) · δ
ε′j + e′j − ε∗j − e∗j ≤ hw(C) · δ .

Summing these inequalities yields:

e′j − ej ≤ 2 hw(C) · δ + εj − ε′j ≤ 2(hw(C) + 1)δ ≤ ∆ ,

thereby contradicting the assumption that e′j − ej = e′j >
∆.

Proof of Theorem 1. Let w denote again the value 2τ + σ.
We start by proving necessity and assume to the contrary that
a decoder exists for some nonnegative ∆ < 2(hw(C) + 1)δ.
We first consider the case where hw(C) < ∞, namely, w =
2τ + σ < d(C). Let c′ = (c′j)j∈[n〉 ∈ C be such that hw(c′) =
hw(C). Without loss of generality we assume that

c′0 = |c′0| ≥ |c′1| ≥ . . . ≥ |c′w| ≥ . . . ≥ |c′n−1|

and that

|c′w| =
{

2δ if C 6= {0}
0 otherwise .

In either case,

c′0 = hw(C) · |c′w| = 2 hw(C) · δ . (5)

Let
y = ε + e ,

where the entries of ε = (εj)j∈[n〉 are defined by

εj =
{
−δ if j ∈ [w〉
c′j/2 otherwise

and the entries of e = (ej)j∈[n〉 are defined by

ej =
{
c′j + 2δ if j ∈ [τ〉

0 otherwise
.

Note that ε ∈ Q(n, δ) and that e ∈ B(n, τ); moreover, when
τ > 0,

e0 = c′0 + 2δ = 2(hw(C) + 1)δ > ∆ .

Hence, upon receiving y = 0 + ε + e, the decoder must have
the following return value:
• (in case τ = 0) the empty set, or—
• (in case τ > 0) a set of locations that contains the index 0.
Yet y can also be written as

y = c′ + ε′ + e′ ,

where the entries of ε = (εj)j∈[n〉 are defined by

ε′j =
{

δ if j ∈ [w〉
−c′j/2 otherwise

and the entries of e′ = (e′j)j∈[n〉 are defined by

e′j =
{
−c′j − 2δ if j ∈ [w〉 \ [τ〉

0 otherwise
.

Note that ε′ ∈ Q(n, δ) and that e′0 is either3 −c′0 − 2δ =
−2(hw(C) + 1)δ < −∆ (if τ = 0) or 0 (if τ > 0). Hence,
upon receiving y = c′ + ε′ + e′, the decoder must have one
of the following return values:
• “e”,
• (in case τ = 0) a set of locations that contains the index 0,

or—
• (in case τ > 0) a set of locations that does not contain

the index 0.
Either way, we have exhibited conflicting requirements from
the decoder, thereby reaching a contradiction.

When hw(C) = ∞ (i.e, w ≥ d(C)) yet ∆ < ∞, our proof
is still valid if we take c′ to be of Hamming weight w(c′) =
d(C) and c′0 > ∆ (say); note that c′w = 0 (and so (5) is not
applicable).

We now turn to proving sufficiency: we assume that ∆ ≥
2(hw(C) + 1)δ and present a decoder D for C that corrects τ
errors and detects σ additional errors.

For y ∈ Rn, define the following intersection:

Λ(y) = ∩e∈E(y)Supp0(e) .

The return value of D for y is defined by

D(y) =
{

Λ(y) if E(y) ∩ B(n, τ) 6= ∅
“e” otherwise . (6)

Let y = c+ε+e now be a particular received vector, where
c ∈ C, ε ∈ Q(n, δ), and e ∈ B(n, τ+σ). Condition (D1) is
obviously satisfied by D: if e ∈ B(n, τ), then necessarily
E(y) ∩ B(n, τ) 6= ∅ and therefore D(y) 6= “e”.

Next, we prove that condition (D2) holds. Clearly, Λ(y) ⊆
Supp0(e), thereby establishing the second containment in (2).
As for the first containment, observe that D(y) 6= “e” implies
by our definition of D that E(y) ∩ B(n, τ) 6= ∅. Hence, by
Lemma 2, Supp∆(e) ⊆ Supp0(e′) for every e′ ∈ E(y) and,
so, Supp∆(e) ⊆ Λ(y).

Example 1. Let C be the [n, 1] repetition code over R, which is
generated by the all-one vector 1 ∈ Rn. We provide an explicit
description of the decoder in (6) for C, for τ ≤ (n−1)/2 and
σ = n− 1− 2τ .

Given a received vector y = (yj)∈[n〉 in Rn, we assume for
convenience of notation that its entries are permuted so that

y0 ≥ y1 ≥ . . . ≥ yn−1 . (7)

With each entry, we associate an interval Ij = [yj−δ, yj +δ].
Figure 1 shows an example of a vector y for n = 12, with
the respective intervals.

3Recall that w > 0 since τ and σ are not both zero.
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0 1 2 3 4 5 6 7 8 9 10 11
j
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c

δ

δ

s(e) t(e)

Fig. 1. Received vector y for Example 1.

A vector e ∈ Rn belongs to E(y) if and only if
|Supp0(e)| ≤ τ + σ and ⋂

j∈[n〉\Supp0(e)

Ij 6= ∅ . (8)

Indeed, each element c that belongs to the intersection (8)
corresponds to a codeword c = c · 1 such that y − c − e ∈
Q(n, δ). Denote by s(e) and t(e) the smallest and largest
indexes, respectively, in [n〉 \ Supp0(e); note that

t(e)− s(e) ≥ n− τ − σ − 1 = τ .

Due to the assumed ordering on the entries of y, it follows
that (8) is equivalent to

Is(e) ∩ It(e) 6= ∅

which, in turn, is equivalent to

ys(e) ≤ yt(e) + 2δ .

E.g., for the outlying error vector e in Figure 1 we have4

s(e) = 3 and t(e) = 10.
Conversely, any index j ∈ [n−τ〉 such that

yj ≤ yj+τ + 2δ (9)

defines a set {j, j+1, . . . , j+τ} which does not intersect the
support of a vector in E(y). For vectors in E(y)∩B(n, τ), the
condition (9) is replaced by

yj ≤ yj+n−1−τ + 2δ

(where now j ∈ [τ+1〉). E.g., according to Figure 1, there
exists an outlying error vector in B(n=12, τ=4).

These observations lead to the decoding algorithm shown
in Figure 2. The “if” clause checks whether E(y)∩B(n, τ) is
empty. E.g., for the vector y in Figure 1, the return value will
be “e” if and only if τ < 4. The “else” clause then computes
the set Λ(y). Notice that from the “if” clause it already follows
that ys ≤ ys+n−τ−1 + 2δ for some s ∈ [τ+1〉 which, in turn,
implies that yj ≤ yj+τ + 2δ for j = s, s+1, . . . , n+s−2τ−1.

For the vector y in Figure 1 and for τ = 4, the returned
set will be {0, 1, 11}, since yj > yj+4 + 2δ for j = 0, 1

4According to the figure, the indexes 0, 1, 2, and 11 must belong to
Supp0(e) (i.e., w(e) ≥ 4). Yet, Supp0(e) may also include indexes
between 3 and 10. In particular, s(e) could be larger than 3 and t(e) could
be smaller than 10.

Input: y = (yj)j∈[n〉 ∈ Rn such that (7) holds.
Output: D(y), which is either a subset of [n〉, or “e”.
If yj > yj+n−1−τ + 2δ for all j ∈ [τ+1〉 then

Return “e”;
Else {

Let s ∈ [τ+1〉 be such that ys ≤ ys+n−1−τ + 2δ;
i← min{j ∈ [s+1〉 : yj ≤ yj+τ + 2δ};
i′ ← max{j ∈ [n〉 \ [n+s−τ−1〉 : yj−τ ≤ yj + 2δ};
Return [i〉 ∪ ([n〉 \ [i′+1〉).

}

Fig. 2. Decoder y 7→ D(y) for the repetition code.

yet yj ≤ yj+4 + 2δ for j = 2, 3, and y7 > y11 + 2δ yet
y6 ≤ y10 + 2δ. In this example s = s(e) = 3 and, so, from
the “if” clause we already get that yj ≤ yj+4 + 2δ when
j = 3, 4, 5, 6.

Remark 1. In the proof of Theorem 1, we can obtain an
alternative proof of sufficiency by replacing Λ(y) in the
definition of D in (6) with the union

V(y) = ∪e∈E(y)Supp∆(e) .

Doing so, the first containment in (2) is immediate, while
the second containment follows from Lemma 2. Note that
Lemma 2 implies that V(y) ⊆ Λ(y), provided that E(y) ∩
B(n, τ) 6= ∅. Moreover, it follows from the lemma that Λ(y)
and V(y) are the largest and smallest sets, respectively,
that any decoder can return for any y ∈ Rn for which
E(y) ∩ B(n, τ) 6= ∅.
Remark 2. The case τ = σ = 0 is excluded from Theorem 1,
since a decoder that always returns the empty set satisfies
conditions (D1)–(D2) for any ∆ ≥ 0.

Remark 3. The proof of Theorem 1 covers also the trivial
code C = {0}, in which case the condition in the theorem
becomes ∆ ≥ 2δ. For nontrivial codes we must have ∆ ≥ 4δ.
In Section III-A, we prove an upper bound of n/(2τ+σ+1) on
the dimension of codes that attain the floor value of 4δ and
show that this upper bound is attained only by a Cartesian
power of the repetition code.

Remark 4. When a coordinate is added to a linear [n, k]
code to form a linear [n+1, k] code, the minimum distance of
the code cannot decrease. On the other hand, the m-heights
may increase, thereby adversely affecting the error correction
capabilities of the code.

Not too surprisingly, we see from Theorem 1 that it is the
ratio ∆/δ (rather than the individual values of δ and ∆) which
determines whether there exists a decoder satisfying (D1)–
(D2) exists. Therefore, unless otherwise stated, we will assume
throughout that δ = 1. Accordingly, we introduce the notation

Γw(C) = 2 hw(C) + 2 ,
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so that Γ2τ+σ(C) is the smallest ∆ for which there exists a
decoder for C that corrects τ errors and detects σ additional
errors, with respect to the threshold pair (1,∆).

Once outlying error locations have been found, one can, in
principle, compute lower and upper bounds on the error values,
using linear programming. Specifically, let C be a linear [n, k]
code over R with a generator matrix G. Given τ , σ, and y
(and assuming that δ = 1), suppose that the return value of
the decoder is a set D(y) = J of size5 |J | ≤ τ . For every
superset J ∗ ⊇ J of size τ and every index t ∈ J , one can
solve the following two linear programming problems in the
real variables x = (xi)i∈[k〉 ∈ Rk, ε = (ε)j∈[n〉 ∈ Rn, and
(ej)j∈J ∗ ∈ Rτ , where ej ≡ 0 for j 6∈ J ∗:

Minimize (respectively, maximize) et, subject to:

y = xG+ e + ε
ε ≤ 1
ε ≥ −1

 (10)

with the inequalities holding componentwise. The largest (re-
spectively, smallest) value of et obtained by enumerating over
all supersets J ∗ ⊇ J of size τ yields an upper (respectively,
lower) bound on et. In general, this procedure is only a
conceptual method for calculating bounds on the error values,
as the enumeration over J ∗ may result in an exponential
algorithm. Evaluating codes not just by the number of errors
that they can locate, but also by the proximity between the
lower and upper bounds that their decoders can provide on the
error values (as well as by the complexity of such decoders),
is left for future work.

III. SEVERAL SPECIAL CASES

In this section, we discuss constructions for several special
cases. First, in Section III-A, we characterize the codes for
which the value Γw(·) is minimized. Then, in Section III-B,
we describe a construction for single error detection, followed
in Section III-C by a construction for single error correction.

A. The floor case Γw(C) = 4
As pointed out in Remark 3, when C 6= {0} and w =

2τ + σ > 0, we must have Γw(C) ≥ 4, with equality holding
if and only if hw(C) = 1. The next theorem provides an upper
bound on the dimension of such codes.

Theorem 3. Let C be a linear [n, k] code over R and let
w ∈ [n〉 be such that hw(C) = 1. Then

k ≤ n

w + 1
, (11)

and equality is attained if and only if w + 1 divides n and
C is the (n/(w+1))-fold Cartesian power of the [w+1, 1]
repetition code.

Proof. By possibly increasing w (thereby obtaining a tighter
inequality in (11)), we can assume that w is the largest in [n〉
for which hw(C) = 1. Our proof is by induction on k, for
every n ≥ k and w ∈ [n〉. If k = 1 then (11) is immediate,

5If a decoder satisfying conditions (D1)–(D2) returns a set larger than τ , we
can always modify it to return “e” instead, without violating those conditions.

and equality holds if and only if w = n−1, in which case
d(C) = n and therefore C is the [w+1, 1] repetition code.

Turning to the induction step, we assume that k > 1 (which
implies that w < n−1). Let c = (cj)j∈[n〉 be a codeword
in C such that hw(c) = 1 and hw+1(c) > 1; without loss of
generality we can assume that the (w+1)-prefix of c is the all-
one vector 1 ∈ Rw+1 and that the remaining entries in c are
all in the open interval (−1, 1). We now claim that the (w+1)-
prefix of any c′ ∈ C must be a multiple of 1. Otherwise, for
sufficiently small positive a, the codeword c′′ = c+a·c′ would
satisfy the following three conditions for some ε ∈ [0, 1):
• the (w+1)-prefix of c′′ would not be a multiple of 1, i.e.,

it would contain at least two distinct entries,
• the entries of that prefix would all be at least 1−ε, and—
• the remaining entries of c′′ would all be in the interval

[−1+ε, 1−ε].
Yet these three conditions would imply that hw(c′′) > 1 =
hw(C), which is impossible.

It follows that C has a k × n generator matrix of the form

G =


1 1 . . . 1 cw+1 cw+2 . . . cn−1

0 G∗

 , (12)

for some (k−1) × (n−w−1) matrix G∗. Denote by C∗ the
linear [n−w−1, k−1] code that is generated by G∗. Clearly,
hw(C∗) ≤ hw(C) = 1, and since k − 1 > 0 we in fact have
hw(C∗) = 1. Applying the induction hypothesis to C∗ yields

k − 1 ≤ n− w − 1
w + 1

=
n

w + 1
− 1 , (13)

which proves (11). Now, equality in (11) implies equality
in (13); so, by the induction hypothesis, C∗ is then the (k−1)-
fold Cartesian power of the [w+1, 1] repetition code. This
means that for i = 1, 2, . . . , k−1, the following vectors are
codewords of C:

c∗i = (0 0 . . . 0︸ ︷︷ ︸
i times

1 0 0 . . . 0︸ ︷︷ ︸
k−1−i times

)

where 0,1 ∈ Rw+1. As such, these codewords can be taken
as the last k−1 rows in the matrix G in (12). Moreover, each
of these codewords can play the role of c in our induction
proof. Indeed, taking c∗i instead of c and selecting c′ to be c,
we conclude that for each i ∈ [k〉, the (w+1)-subvector

(ci(w+1) ci(w+1)+1 . . . ci(w+1) ci(w+1)+w)

of c must be a multiple of 1. Therefore, G generates the k-fold
Cartesian power of the [w+1, 1] repetition code.

B. Single error detection

In this section, we present a simple construction for de-
tecting a single error (i.e., τ = 0 and σ = 1 and, therefore,
w = 2τ + σ = 1).

Given positive integers r and n such that r ≤ n, let H
be a real r × n matrix over {0, 1} that satisfies the following
properties:
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(P1) each column in H is a standard unit vector, i.e., it
contains exactly one 1, and—

(P2) the number of 1s in each row is either bn/rc
or dn/re.

Proposition 4. Let C be a linear [n, k=n−r] code over R
with an r× n parity-check matrix H that satisfies (P1)–(P2).
Then

Γ1(C) ≤ 2 · dn/re . (14)

For the case where r divides n, the code in the proposition
is—up to permutation of coordinates—the dual code of the r-
fold Cartesian power of the [n/r, 1] repetition code discussed
in Section III-A.

Proof of Proposition 4. Write θ = dn/re and consider a
decoder D that, for a received vector y ∈ Rn, computes the
syndrome s = Hy> and returns an empty set if s ∈ Q(r, θ);
otherwise D returns “e”.

Assuming that y = c + ε + e where ε ∈ Q(n, 1) and
e = (ej)j∈[n〉 ∈ B(n, 1), the following observations are easily
obtained from s = Hy> = Hε> +He>.
• If e = 0 then s = Hε> ∈ Q(r, θ).
• If |et| > 2θ for some t ∈ [n〉, then there must be (exactly)

one entry in s outside [−θ, θ].
These observations imply that the decoder D satisfies (D1)–

(D2) for (τ, σ) = (0, 1) with respect to the threshold pair
(1,∆=2θ).

Noting that n/r = n/(n − k) + 1 = k/(n − k) + 1, by
Theorem 1 we can rewrite (14) as

h1(C) ≤
⌈

k

n− k

⌉
.

It is still an open problem whether the simple construction of
Proposition 4 attains, in general, the smallest possible value of
h1(·), among all linear codes of the same length and dimension
over R. We can state the problem as follows.

Problem 1. Identify the values of k and n for which every
linear [n, k] code C over R satisfies:

h1(C) ≥
⌈

k

n− k

⌉
.

The inequality obviously holds when k ≤ n/2, and the next
proposition states it for k = n− 1.

Proposition 5. Let C be a linear [n, n−1] code over R. Then

h1(C) ≥ n− 1 .

Proof. Let H = (h0 h1 . . . hn−1) be a 1 × n parity-check
matrix of C. If H contains a zero entry then d(C) = 1, in
which case h1(C) = ∞. Otherwise, suppose without loss of
generality that

1 = h0 ≤ |h1| ≤ |h2| ≤ . . . ≤ |hn−1|

and define the vector c = (cj)j∈[n〉 by

cj =
{

n− 1 if j = 0
−1/hj otherwise .

Then c ∈ C since Hc> = 0 and, so,

h1(C) ≥ h1(c) = |c0|/|cn−1| = (n− 1) · |hn−1| ≥ n− 1 .

We are unaware of any study of Problem 1 even for the
case k = n − 2 and, in particular, whether the answer to the
following question is known.

Problem 2. Must every (n−2)-dimensional subspace of Rn,
n even, contain a nonzero vector in which the ratio between
the largest and second largest absolute values of its entries is
at least (n/2)− 1?

C. Single error correction

In this section, we present a construction for w = 2τ +σ =
2. This scheme can therefore correct a single error (i.e., τ = 1
and σ = 0); alternatively, it can detect two errors (i.e., τ = 0
and σ = 2).

Given positive integers r and n such that r ≤ n ≤ r(r−1),
let H be a real r× n matrix over {−1, 0, 1} that satisfies the
following properties:

(H1) all columns of H are distinct,
(H2) each column in H contains exactly two nonzero

entries, the first of which being a 1, and—
(H3) the number of nonzero entries in each row is ei-

ther b2n/rc or d2n/re.
Clearly, the condition n ≤ r(r−1) is necessary for having

such a matrix. Conversely, when r is even, such an H can
be constructed for every n ≤ r(r−1): see [14] and references
therein. E.g., for r = 4 and n = 12:

H =


1 1 1 1 0 0 0 0 1 1 0 0
0 0 0 0 1 1 1 1 1 −1 0 0
1 −1 0 0 1 −1 0 0 0 0 1 1
0 0 1 −1 0 0 1 −1 0 0 1 −1

 .

We assume hereafter that r is even.
For easy encoding, we would prefer H to be systematic, yet

requirement (H2) disallows it (unless rank(H) < r). Instead,
we can construct H so that its last r columns are as in the
above example, namely, they form the r × r matrix

T = Ir/2 ⊗
(

1 1
1 −1

)
,

where ⊗ stands for Kronecker product and Ir/2 is the identity
matrix of order r/2. It is easy to see that T 2 = 2 Ir (and, in
particular, rank(H) = r in this case). Hence, (1/2)T ·H is
a systematic matrix, and for every even m ∈ [r〉, its mth and
(m+1)st rows are obtained by summing and subtracting the
respective rows in (1/2)H .

Proposition 6. Let C be a linear [n, k≥n−r] code over R
with an r×n parity-check matrix H that satisfies (H1)–(H3).
Then

Γ2(C) ≤ 2 · d2n/re .

Proof. Write θ = d2n/re and H = (hj)j∈[n〉, where hj =
(hm,j)m∈[r〉 denotes column j in H , and consider a decoder
D that, for a received vector y ∈ Rn, computes the syndrome
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s = (sm)m∈[r〉 = Hy> and returns a set containing one
index t if the following three conditions hold:

(U1) sm 6∈ [−θ, θ] for exactly two values of m, say m0

and m1 > m0,
(U2) hm0,t = 1, and—
(U3) hm1,t = sgn(sm0 · sm1).

Otherwise D returns the empty set.
Assuming that ε ∈ Q(n, 1) and that e = (ej)j∈[n〉 ∈
B(n, 1), the following observations are easily verified.
• If e = 0 then s = Hε> ∈ Q(r, θ).
• The syndrome s can have at most two nonzero entries

outside [−θ, θ].
• If (exactly) two entries in s are outside [−θ, θ], then their

positions, say m0 and m1 (> m0), uniquely determine
by (U2)–(U3) an index t for which et 6= 0.

• If |et| > 2θ for some t ∈ [n〉, then there must be two
entries in s outside [−θ, θ].

These observations imply that the decoder D satisfies (D1)–
(D2) for (τ, σ) = (1, 0) with respect to the threshold pair
(1,∆=2θ).

Once an index t is found according to (U1)–(U3), we
can compute lower and upper bounds on the outlying error
value e = et by solving the two linear programming problems
in (10), with J ∗ therein taken as J = {t}. Alternatively, we
can solve the following two linear programming problems in
the real variables e and ε = (εj)j∈[n〉:

Minimize (respectively, maximize) e, subject to:

e · ht +Hε> = s
ε ≤ 1
ε ≥ −1

 (15)

where we are assuming that y (and therefore the respective
syndrome s = Hy>) is normalized so that δ = 1. Since the
solution of the linear programming problem yields feasible
values for both ε and e, one can actually decode the read
vector y into a (candidate) codeword ĉ = y− ε− e of C that
is consistent with y and the error model.

Using the notation in the proof of Proposition 6, simpler
(yet generally cruder) bounds are given by:

max
i∈[2〉

{
smi
· hmi,t − ‖Hmi

‖2
}

≤ e ≤ min
i∈[2〉

{
smi · hmi,t + ‖Hmi‖

2
}
,

where Hm denotes row m in H and ‖·‖ stands for the L2-
norm (and we assume that δ = 1). In particular, the correct
value of e is determined up to a precision of ±θ.

Note that if there is only one entry in s outside the
interval [−θ, θ] we can tell that e 6= 0, yet generally there
is insufficient information to locate it.

While Proposition 6 yields an upper bound, ∆ = 2 ·d2n/re,
on Γ2(C) in terms of n and r, it may be more practical to
express the redundancy r as a function of k (namely, the
prescribed dimension of the code) and ∆. We do this in the
next proposition.

Proposition 7. Given a positive integer k and a real value
∆ ≥ 6, let r be the smallest even integer not smaller than

max
{

2k
b∆/2c − 2

,
√
k+1 + 1

}
.

Let C be as in Proposition 6, where n = r + k. There is a
decoder for C that satisfies (D1)–(D2) for (τ, σ) = (1, 0) with
respect to the threshold pair (1,∆).

Proof. First, since r ≥
√
k+1 + 1 we have

(r − 1)2 ≥ k + 1 =⇒ r(r − 1) ≥ k + r

=⇒ r(r − 1) ≥ n ,

namely, the code C indeed exists.
Secondly, since r ≥ 2k/(b∆/2c − 2) > 0, we have⌊

∆
2

⌋
− 2 ≥ 2k

r
=⇒

⌊
∆
2

⌋
≥ 2n

r

=⇒
⌊

∆
2

⌋
≥
⌈

2n
r

⌉
=⇒ ∆ ≥ 2 ·

⌈
2n
r

⌉
.

The result follows from Proposition 6.

Remark 5. For ∆ = 6 and k > 1, the value of r in
Proposition 7 is 2k, corresponding to a linear [n=3k, k] code.
This code has therefore the same length and dimension as the
k-fold Cartesian power of the [3, 1] repetition code. However,
by Theorem 3 it follows that for the latter code we have
Γ2(·) = 4. Moreover, for k = 1, the repetition code yields a
redundancy of 2, while Proposition 7 requires that r be greater
than 2 for this dimension. Hence, there is a parameter range
for which the construction of this section is not optimal.

Comparing the construction in this section with the one in
Section III-B, we see that for given n and r, we can handle
there ratios ∆/δ that are twice as small, at the price of only
detecting an outlying error rather than locating it. In addition,
in the construction of Section III-B we can have an arbitrarily
large n for any given r, while in this section we have the
limitation n ≤ r(r − 1).

The above limitation can be relaxed, at the expense of
increasing the value Γ2(·), in two (not necessarily exclusive)
ways. We can allow the entries of H to be taken from
{0,±1, . . . ,±q}, for some positive integer q, or we can set the
weight of each column to some prescribed integer b ≥ 2. It
turns out that, in general, we will get better results if we adopt
only the latter strategy, namely, increasing b is advantageous
over increasing q. Doing so, we can get a linear [n,≥n−r]
code C with

n =
(
r

b

)
· 2b−1

and
Γ2(C) ≤ 2

⌈
b · n
r

⌉
.

The proof of the latter inequality follows from a straightfor-
ward generalization of the proof of Proposition 6, where the
value of θ is now taken to be db · n/re, and conditions (U1)–
(U3) are modified so that the syndrome s needs to have
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exactly b entries outside the range [−θ, θ] in order to locate
an outlying error.

For fixed b, this construction allows us to attain a redun-
dancy of r = O(n1/b) while still having Γ2(C) = O(n/r).
However, if we wish the redundancy to scale logarithmically
with n, then b needs to scale linearly with r, in which case
Γ2(C) = Ω(n) (see Section VI below).

IV. ALTERNATIVE FRAMEWORK FOR SINGLE ERROR
HANDLING

In this section, we generalize the discussion in Sec-
tions III-B and III-C to any linear code C and present a
characterization of Γ1(C) and Γ2(C) through the parity-check
matrix of C. We will handle Γ2(C) first, and Γ1(C) will
become a special (degenerate) case of our analysis. Hereafter,
the notation Uj(n) will stand for the set of nonzero vectors
in B(n, 1) whose nonzero entry is at position j.

Let C be a linear [n, k] code C over R and let H =
(h0 h1 . . . hn−1) be an (n−k)×n parity-check matrix of C
over R. Recall that the syndrome s (with respect to H) of any
read vector y = c + ε + e equals

(Hy> =) s = Hε> +He> . (16)

The decoding problem can be cast as locating the outlying
errors in e given s and the containment ε ∈ Q(n, δ).
Remark 6. This formulation of the decoding problem bears
similarity to the setting in compressed sensing with noise (see,
for example, [1], [7], [9], [10], [20]), yet the scenarios are still
different. First, in sparse recovery and compressed sensing, the
vector ε in (16) is not multiplied by H , namely, it is in Rn−k
rather than in Rn.6 Secondly, it is the L2-norm of ε, rather than
its L∞-norm, which is assumed to be bounded from above
by δ. Thirdly, the requirements from the estimate for e that is
returned by the decoder are not as strong as condition (D2):
generally, the returned vector is required only to be sufficiently
close to e under the L2-metric.7

Let
S = SH =

{
Hε> : ε ∈ Q(n, 1)

}
be the set of all syndrome vectors (with respect to H) that
can be obtained if there are no outlying errors (and assuming
that δ = 1). It can be readily verified that S is a closed
convex polytope in Rn−k. In the presence of an outlying error
vector e, the set of syndrome values that can be obtained is

He> + S ,

which is the translation of S by the vector He>. When e ∈
Ut(n) this translation can be written as

et · ht + S .

We also define the set 2S by

2S = S + S =
{
H(ε + ε′)> : ε, ε′ ∈ Q(n, 1)

}
.

6In [1], the vector ε can also be multiplied by H , yet the model in that
paper is probabilistic, where the entries of ε are uncorrelated, with a zero
mean and a given variance.

7One exception is [9], where the authors also identify a region where (a
counterpart of) the second containment in (2) holds.

It is easily seen that

2S =
{
Hε> : ε ∈ Q(n, 2)

}
.

Proposition 8. Given a linear [n, k, d≥3] code C over R, let
H = (hj)j∈[n〉 be any (n−k)×n parity-check matrix of C and
write S = SH . Then Γ2(C) equals the smallest ∆ ∈ R+ such
that for every distinct j, j′ ∈ [n〉 and every pair (e, e′) ∈ R2

such that |e| > ∆, the translations

e · hj + S and e′ · hj′ + S (17)

are disjoint; equivalently,

e′ · hj′ 6∈ e · hj + 2S . (18)

We first present a geometric interpretation of Proposition 8
and then proceed to its proof. For any j ∈ [n〉, the set

{e · hj + S : e ∈ R} (19)

forms an infinite hyper-prism in Rn−k, obtained by “sliding”
the polytope S along a line in Rn−k that passes through the
origin at the direction of the vector hj . The value ∆ should
be selected so that the subset

{e · hj + S : e 6∈ [−∆,∆]}

of the jth hyper-prism does not intersect any of the other
hyper-prisms, for any j ∈ [n〉. The decoder commits to an
index t = j if the syndrome s = Hy> belongs to that subset.

Figure 3(a) depicts the set S for a particular 2 × n parity-
check matrix of a linear [n, k=n−2, d=3] code C that will
be presented in Section V. In this example, the possible
syndrome vectors s = (s0 s1)> form the plane R2, and S
is a regular 2n-polygon in R2. The pairs of parallel lines—
one marked by solid lines and two by dashed lines—are
(the infinite hyper-prisms that in two dimensions become) the
infinite rectangles (19), for j ∈ {t−1, t, t+1}. A copy of S
that is translated by ∆ ·ht is drawn in between the two solid
parallel lines; when ∆ is the smallest for which (17) holds (for
every |e| > ∆ and e′ ∈ R), that copy of S touches (with a zero
intersection area) the two adjacent infinite rectangles delimited
by the two pairs of dashed parallel lines. Hence, if e ∈ Ut(n),
then the sets in (17) are disjoint for j = t, j′ = t±1, |e| > ∆,
and any e′ ∈ R.

Figure 3(b) shows an alternative geometric interpretation
of Proposition 8. A translated copy of 2S is centered in
Figure 3(b) at the point ∆ ·ht. The dashed lines in Figure 3(b)
represent lines through the origin at the directions of ht−1

and ht+1; when ∆ is the smallest for which (18) holds (for
every |e| > ∆ and e′ ∈ R), these lines only touch the set
∆ · ht + 2S.

Proof of Proposition 8. Denote by ∆∗ the smallest ∆ that
satisfies the conditions of the proposition (since S is a closed
region in Rn−k, the value ∆∗ is well defined). We show that
there exists a decoder for C that satisfies conditions (D1)–(D2)
(for (τ, σ) = (1, 0) with respect to the threshold pair (1,∆)),
if and only if ∆ ≥ ∆∗. The result will then follow from
Theorem 1.
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S

∆·ht + S

s0

s1

ht−1

ht+1

(a)

∆·ht + 2S

s0

s1

0

ht−1

ht+1

(b)

Fig. 3. Geometric interpretation of Proposition 8.

Suppose that ∆ ≥ ∆∗, and consider a decoder D which
computes the syndrome s = Hy> and returns a set containing
one index t ∈ [n〉 if there exists an e ∈ R \ [−∆,∆] such that

s ∈ e · ht + S (20)

(by the definition of ∆∗, there can be at most one index t for
which (20) holds for some e 6∈ [−∆,∆]); otherwise D returns
the empty set. We show that such a decoder satisfies (D1)–
(D2) (for (τ, σ) = (1, 0) with respect to the threshold pair
(1,∆)).

If e = 0 then s ∈ S and, so, s 6∈ e ·hj +S for any j ∈ [n〉
and |e| > ∆. Hence no index will be returned in this case.

Suppose now that e ∈ Ut(n) for some t ∈ [n〉. Clearly,
s ∈ et ·ht+S. If |et| > ∆, then condition (20) holds for j = t
and e = et and, therefore, D will return the (correct) index t.
Otherwise, it follows from the conditions of the proposition
that s 6∈ e · hj + S for any j 6= t and e 6∈ [−∆,∆]. Hence, if
an index j is returned by D, it must be t.

Next, we show that when ∆ < ∆∗, there is no decoder
that satisfies (D1)–(D2). By the definition of ∆∗ (and the fact
that S is closed in Rn−k) it follows that there exist distinct
t, t′ ∈ [n〉 and a pair (e, e′) ∈ R2 such that |e| = ∆∗ and

(e · ht + S) ∩ (e′ · ht′ + S) 6= ∅ .

This means that there exist e = (ej)j∈[n〉 ∈ Ut(n) and e′ =
(e′j)j∈[n〉 ∈ Ut′(n) ∪ {0} such that |et| = ∆∗ and

H(ε + e)> = H(ε′ + e′)>

for some ε, ε′ ∈ Q(n, 1); we can then write

y = ε + e = c′ + ε′ + e′ ,

for some c′ ∈ C. Now, if there were a decoder that satis-
fies (D1)–(D2) for ∆ < ∆∗ then, by the first containment
in (2), such a decoder should return the index t for the input y
(since et = ∆∗ > ∆), yet by the second containment in (2) it
should not.

Remark 7. The proof of Proposition 8 suggests a (conceptual
yet still concrete) decoder D for any given linear [n, k, d≥3]
code C over R for locating a single error with respect to
the threshold pair (1,Γ2(C)). Finding whether there exists an
e ∈ R \ [−∆,∆] such that (20) holds is in effect a linear
programming problem, for any examined t ∈ [n〉.

Once the position t of an outlying error has been deter-
mined, finding lower and upper bounds on e can be cast as
two linear programming problems as in (15).

Next, we turn to a characterization of Γ1(C) in terms of the
parity-check matrix of C.

Proposition 9. Given a linear [n, k, d≥2] code C over R, let
H = (hj)j∈[n〉 be any (n−k) × n parity-check matrix of C
and write S = SH . Then Γ1(C) equals the smallest ∆ ∈ R+

such that for every j ∈ [n〉 and every e ∈ R such that |e| > ∆,
the translations

e · hj + S and S (21)

are disjoint; equivalently,

e · ht 6∈ 2S .

Proof sketch. The proof is in effect a trimmed-down version
of the proof of Proposition 8. For the “if” part, we consider
a decoder D which computes the syndrome s and returns an
empty set if s ∈ S; otherwise D returns “e”. In the “only if”
part, take e′ to be the all-zero vector.

Figures 4(a)–(b) present geometric interpretations of Propo-
sition 9 (which are counterparts of Figures 3(a)–(b)). Specifi-
cally, Figure 4(a) shows two copies of S, where one copy is
translated by ∆ ·ht, for the smallest ∆ for which the sets (21)
are disjoint whenever |e| > ∆. Figure 4(b) shows an equivalent
characterization of this ∆: a translation of 2S by ∆·ht brings a
face (edge) of 2S to contain the origin (equivalently, the point
∆ · ht is on a face of 2S).

We end this section by presenting a geometric formulation
of (a somewhat weaker version of) Problem 2, in view of
Proposition 9.
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S

∆·ht + S

s0

s1

(a)

∆·ht + 2S

s0

s1

0

(b)

Fig. 4. Geometric interpretation of Proposition 9.

Let n be a positive even integer and let P be a 2n-polygon
in R2 with vertices vm, m ∈ [2n〉, and edges connecting vm
with vm+1 (where the index 2n is read as 0), such that:

(i) P is convex,
(ii) the length of each edge is two units, namely, P is

equilateral (but not necessarily regular), and—
(iii) P has a 180◦ rotational symmetry, namely, vm+n =

−vm, for all m ∈ [n〉.

For m ∈ [n〉, define hm = (vm+1−vm)/2 (namely, hm is
a vector of unit length that is parallel to the mth and (n+m)th
edges of P), and let em be the smallest nonnegative real such
that the point (1/2) em ·hm lies on some edge of P; in other
words, em is the diameter of P when measured along a line
that passes through the origin and is parallel to the mth edge.
For example, if P is the polygon S shown in Figure 4(a), then
the vector that connects the centers of S and its translation
∆ ·ht+S in that figure forms one of the vectors em ·hm (the
midpoint between those centers lies on an edge of P).

Let ∆(P) = maxm∈[n〉 em be the maximum among those
n directional diameters.

Problem 3. What is the smallest attainable value of ∆(P),
among all 2n-polygons P that satisfy properties (i)–(iii)? Is
this minimum attained by a rhombus (regarded as a degenerate
2n-polygon), namely, does that minimum equal n?

Relating now Problem 3 to Problem 2, the n vectors hm
are the columns of a parity-check matrix H of the (n−2)-
dimensional linear space in the latter problem—which, in
turn, is the code C in Problem 1—where we have added
the assumption that each column in H has unit length. The
(interior and boundary of the) polygon P forms then the set
SH and, so, by Proposition 9 it follows that ∆(P) = Γ1(C).
A rhombus corresponds to the construction in Proposition 4,
for the case r = 2.

There are quite a few isoperimetric extremal problems
related to polygons that have been studied in the literature
(and many of these problems are still open), yet none so far
seems to be equivalent to Problem 3; see, for example, [2],
[3], [6].

V. MDS CONSTRUCTION

Noting that Γ2(C) <∞ only if d(C) ≥ 3, by the Singleton
bound it follows that Γ2(C) <∞ only if the redundancy of C
is at least 2. In this section, we present a construction whose
redundancy is exactly 2 (namely, the code is MDS). For this
construction, Γ2(·) scales quadratically with n.

Given an integer n > 2, let α = π/n and let ω denote the
complex primitive 2n-th root of unity eıα, where ı =

√
−1.

Let C(n) be the linear [n, n−2] code over R defined by

C(n) =
{

(c0 c1 . . . cn−1) ∈ Rn :
∑
j∈[n〉 cjω

j = 0
}
.

Since ωn = −1, it follows that C(n) is a negacyclic code
over R satisfying the closure:

(c0 c1 . . . cn−2 cn−1) ∈ C(n)
=⇒ (−cn−1 c0 c1 . . . cn−2) ∈ C(n)

(see [4, §9.3]). The generator polynomial of C(n) is the
minimal polynomial of ω with respect to R:

g(x) = 1− 2 cos (α)x+ x2 .

For j ∈ [n〉, define

hj =
(
hj,0
hj,1

)
= 2 sin (α/2)

(
sin ((j+1/2)α)

− cos ((j+1/2)α)

)
=

(
cos (jα)− cos ((j+1)α)
sin (jα)− sin ((j+1)α)

)
. (22)

It is easy to see that

ωj · eıα/2 · 2 sin (α/2) = (ı −1) · hj
and, therefore, H = (hj)j∈[n〉 is a parity-check matrix
of C(n). Hereafter, we compute all syndromes with respect
to this parity-check matrix H .

Proposition 10. The set S = SH is a regular 2n-polygon in
R2 whose set of vertices is given by{

vm = 2 ·
(

cos (mα)
sin (mα)

)
: m ∈ [2n〉

}
. (23)

Figure 3(a) depicts the set S for n = 6. Notice (from (22))
that

vm+1 = vm − 2hm for m ∈ [n〉 (24)
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and that
vm+n = −vm for m ∈ [n〉 . (25)

Proof of Proposition 10. For m ∈ [n〉, let εm = (εm,j)j∈[n〉
be defined as follows:

εm,j =
{
−1 if j < m

1 if j ≥ m .

For ε = (εj)j∈[n〉 ∈ Q(n, 1), write(
s0(ε)
s1(ε)

)
= Hε> =

∑
j∈[n〉

εjhj .

For ε = ε0 we have

s0(ε0) =
∑
j∈[n〉

(cos (jα)− cos ((j+1)α))

= cos 0− cos π = 2

and

s1(ε0) =
∑
j∈[n〉

(sin (jα)− sin ((j+1)α))

= sin 0− sin π = 0 ,

i.e., Hε>0 = v0. From (24) we obtain

vm+1 − vm = −2hm = H(εm+1 − εm)> , m ∈ [n〉 ,

and, therefore, by induction on m,

vm = Hε>m , m ∈ [n〉 .

By (22) it follows that hj,0 > 0 for all j ∈ [n〉, which means
that s0(ε) is maximized when ε = ε0; at that point s1(ε0) =
0. For any other ε ∈ Q(n, 1) we get s0(ε) < s0(ε0) = 2.
As we allow s0(ε) to decrease, the largest value of s1(ε)
will be attained by decreasing ε0 at the position m ∈ [n〉
for which the slope hm,1/hm,0 = cot ((m+1)/2)α) is the
smallest. Since x 7→ cot (x) is decreasing for x ∈ (0, π/2),
this means selecting the smallest possible m, namely, m = 0.
As ε changes from ε0 to ε1, the syndrome Hε> moves along
the straight line segment that connects the points v0 = Hε>0
and v1 = Hε>1 .

We can now repeat our arguments with ε equaling ε1. As the
first entry in ε has hit the bottom value −1, the next position in
ε to be decreased in order to maximize s1(ε) is the index m for
which hm,1/hm,0 = cot ((m+1)/2)α) is the second smallest,
namely, m = 1. Thus, when ε ranges from ε1 to ε2, the
respective syndrome Hε> moves along the line segment that
connects v1 = Hε>1 and v2 = Hε>2 .

We can continue this process inductively until reaching m =
n, at which point ε = −ε0 and

Hε> = −v0
(25)
= vn .

The proof that vn+1,vn+2, . . . ,v2n−1 are the remaining
vertices of S follows from similar arguments, except that we
now seek to minimize (as opposed to maximize) s1(ε) for any
given s0(ε).

Proposition 11. For the code C(n),

Γ = Γ2(C(n)) =
1

sin2(π/(2n))
.

O

α/2

α/2

α

D

O′

B

C

E
F

A G

4

Fig. 5. Illustration for the proof of Proposition 11.

In particular, the ratio Γ/n2 approaches the constant 4/π2

as n→∞.

Proof. We refer to Figure 3(b), which depicts the set ∆ ·ht+
2S. The value ∆ is set to be (the smallest) so that the dashed
lines, at the directions of ht−1 and ht+1, touch—but do not
contain any interior points of—the set ∆·ht+2S. This value ∆
equals Γ (due to the 2n-fold rotational symmetry of 2S, the
index t can be arbitrary).

We now determine Γ geometrically using Figure 5. The
point O stands for the origin and O′ is the center of Γ ·ht+S;
the points A, B, C, E, and F are translations by Γ ·ht of the
vertices 2vt+2, 2vt+1, 2vt, 2vn+t (= −2vt), and 2vn+t−1,
respectively, of 2S. The points O, A, B, and D are colinear
(with D being an arbitrary point so that the line segment OB is
strictly contained in OD), and so are the points O, F, and E.
The line segment BC is parallel to OO′ and is, therefore,
at the direction of ht, and the segments OB and OE are
at the directions of ht+1 and ht−1, respectively. Finally, the
segment OG bisects the angle ∠BOO′.

We have∥∥OO′
∥∥ = Γ · ‖ht‖

(22)
= 2 Γ · sin (α/2) , (26)

where ‖·‖ stands for the (Euclidean) length of a line segment
or of a vector.

We also have

∠BOO′ = ∠DBC = π/n = α , (27)

since ∠BOO′ and ∠DBC are corresponding angles (formed
by the intersection of the transversal OD with the parallel lines
BC and OO′), with ∠DBC also being an exterior angle of a
regular 2n-polygon. Hence,

∠BOG = ∠GOO′ = α/2 . (28)

Since ∠OBO′ and ∠CBO′ are equal and their sum is π −
∠DBC, it also follows that ∠OBO′ = (π−α)/2. By (27) we
thus get that the third angle, ∠BO′O, in 4BOO′ equals (π−
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α)/2, which means that this triangle is an isosceles and, so,
∠OGO′ = π/2 and∥∥GO′

∥∥ =
1
2
·
∥∥BO′

∥∥ = ‖vt+1‖
(23)
= 2 .

Hence, ∥∥OO′
∥∥ (28)

=

∥∥GO′
∥∥

sin (α/2)
=

2
sin (α/2)

.

The result is now obtained by substituting the value of
∥∥OO′

∥∥
into (26).

The following problem is yet to be settled.

Problem 4. Does the construction C(n) have the smallest
possible value of h2(·), among all linear [n, n−2] codes
over R?

As we pointed out in Remark 7, the proof of Proposi-
tion 8 suggests a single error locating decoder for any linear
[n, k, d≥3] code. For the code C(n), such a decoder can be
described geometrically through Figure 3(a). Given a received
word y ∈ Rn, one first computes the syndrome s = Hy>.
Then, for each of the n pairs of parallel lines as (the instances)
shown in Figure 3(a), one checks if s lies in the infinite
rectangle formed by the pair. If it does so for more than one
pair then the decoder returns an empty set of error locations
(i.e., no outlying errors have been found). Otherwise, if s lies
in exactly one infinite rectangle, the decoder returns the index t
of the respective pair. Decoding failure is declared if s lies
outside the area formed by the n infinite rectangles.

VI. ASYMPTOTIC BOUNDS

The linear [n,≥n−r] code construction that we presented
in Section III-C allows us to achieve Γ2(·) = O(n/r), yet
requires (the upper bound on) the redundancy r to satisfy
r(r−1) ≥ n, namely, the redundancy scales like

√
n. The

construction in Section V, on the other hand, has a redundancy
of 2, yet Γ2(·) scales like n2. It is yet to be determined
how the smallest attainable Γ2(·) depends on the redundancy,
for any given code length. In this section, we show that
there exist arbitrarily long linear [n, n−r] codes C over R
with redundancy r that scales logarithmically with n, while
Γ2(C) = O (n/

√
r); namely, Γ2(C) is sub-linear in n.8

Such a code C will be defined through a linear [r, κ>2, d]
code B over GF(2) that satisfies the following two properties:

(B1) B contains the all-one codeword, and—
(B2) d(B⊥) > 2.

Let n = 2κ−1, and denote by B0 the set of all n codewords
of B0 whose first entry equals 0 (B0 consists of half of the
codewords of B). Let H = (hx)x∈B0 be an r × n matrix
over R whose columns are indexed by the codewords of B0,
and for each x = (xi)i∈[r〉 ∈ B0, the ith entry of hx

equals (−1)xi/
√
r; hence, the entries of H are either 1/

√
r or

−1/
√
r, and no column of H is a scalar multiple of the other.

The code C = C(B) is now defined as the linear [n, k≥n−r]
code over R with the parity-check matrix H .

8We note, however, that this result is mainly of a theoretical nature, since
it may require values of n that are much larger than those anticipated in
practical use.

Our analysis of C(B) will be based on Proposition 8, except
that we will over-estimate the set S = SH by its minimum
bounding ball in Rr. Since s ∈ S if and only if −s ∈ S , it
follows that the center of the minimum bounding ball of S is
at the origin. The radius of that ball is given by the following
lemma.

Lemma 12. The radius ρ of the minimum bounding ball of S
in Rr equals n/

√
r.

Proof. Since d(B⊥) > 2, the restrictions of the codewords
of B to any two distinct positions range over each pair in the
set {00, 01, 10, 11} exactly 2κ−2 times [16, p. 139]. Hence,
any two distinct rows in H agree on exactly 2k−2 = n/2
positions, which means that they are orthogonal:

H ·H> =
n

r
· I .

The entries of the syndrome s = Hε> of any ε ∈ Q(n, 1)
are the projections of ε onto the rows of H (up to scaling by
the L2-norm,

√
n/r, of each row). Regarding the rows of H

as a subset of an orthogonal basis of Rn, we obtain:

‖s‖ ≤
√
n

r
· ‖ε‖ ≤ n√

r
.

Equalities are attained when ε/
√
r is a row of H .

We also use the following known lemma (see [8, p. 27]).

Lemma 13. For any distinct x,x′ ∈ B0, the angle φx,x′ (∈
(0, π/2]) between hx and hx′ satisfies∣∣h>x · hx′

∣∣ = cosφx,x′ ≤ 1− 2d
r

and, so,

sinφx,x′ ≥ 2

√
d

r

(
1− d

r

)
.

Theorem 14. For the code C = C(B),

Γ2(C) ≤ n√
d(1− (d/r))

.

Proof. Given two distinct columns hx and hx′ of H and some
nonnegative real e, consider the projection of e ·hx +2S onto
the plane that is spanned by hx and hx′ . Figure 6 depicts such
a plane, where OO′ and OA are at the direction of hx and hx′ ,
respectively, and the projection of e · hx + 2S onto the plane
is depicted in the figure by the polygon and is contained in a
(concentric) circle of radius 2ρ. In that figure, the center O′ is
selected so that the line OA is tangent to the circle at A (and,
so, ∠OAO′ = π/2). Denoting ∆x,x′ = ‖OO′‖ and recalling
that ‖hx‖ = 1, we get that (18) holds for every |e| > ∆x,x′

and e′ ∈ R, where we take hj ≡ hx and hj′ ≡ hx′ . We see
from Figure 6 that

∆x,x′ = ‖OO′‖ =
2ρ

sinφx,x′
≤ n√

d(1− (d/r))
,

where the inequality follows from Lemmas 12 and 13. The
result is implied by:

Γ2(C) ≤ max
x,x′∈B0 :

x6=x′

∆x,x′ .
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hx

hx′

O

φx,x′

O′
A 2ρ

Fig. 6. Illustration for the proof of Theorem 14.

We now take B to be a member of a family of “good” linear
codes over GF(2) for which both κ/r and d/r are bounded
away from 0. Specifically, we take B to be a concatenated
code with an outer Reed–Solomon code that contains the all-
one codeword, and an inner code whose generator matrix is
constructed by randomly selecting the rows except that the
first row is taken to be the all-one codeword. Such a choice
guarantees that B satisfies condition (B1). Now, with high
probability, we will get an inner code that attains the Gilbert–
Varshamov bound (this follows by a slight modification of
the proof of Theorem 4.5 in [17]); moreover, with positive
probability (which can be high if the inner code is taken
to have rate less than 1/2), the columns of the randomly
selected generator matrix will be nonzero and distinct, thereby
satisfying condition (B2) (see Problem 12.3(2) in [17]). For
this construction, we get that Γ2(C) = O (n/

√
r) while

r = O(log n).
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