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Abstract—It is shown that when Arıkan’s n-level polarization
transformation is applied to the binary erasure channel, each of
the resulting individual 2

n subchannels has a sharp threshold,
for sufficiently large n.

Index Terms—Binary erasure channel, Channel polarization,
Polar codes, Sharp threshold.

I. I NTRODUCTION

For a wordw = w1w2 . . . wn ∈ {0, 1}n, we define the
polynomial functionx 7→ Bw(x) on the real interval[0, 1]
recursively as follows. Whenn = 1,

B0(x) = x2 , B1(x) = 1 − (1 − x)2 = 2x − x2 ,

and, forn > 1,

Bw1w2...wn
(x) = Bwn

(Bw1w2...wn−1
(x))

= Bwn
◦ Bwn−1

◦ . . . ◦ Bw1
(x) .

Since bothx 7→ B0(x) and x 7→ B1(x) are (strictly)
increasing on[0, 1], it follows that so isx 7→ Bw(x), for
every w ∈ {0, 1}n, with Bw(0) = 0 and Bw(1) = 1.
In particular, there is a unique “half-way” pointαw such
that Bw(αw) = 1/2. Figure 1 depicts the eight functions
x 7→ Bw(x), for n = 3. For notational simplicity in the sequel,
we formally defineBw(x) to be0 (respectively,1) whenx < 0
(respectively,x > 1).

For p ∈ [0, 1] the valuesBw(p) for w ∈ {0, 1}n are known
to be the error probabilities of the (binary erasure) subchannels
obtained when Arıkan’sn-level polarization transformation
is applied to a binary erasure channel, BEC(p), with raw
error probabilityp [1]. The channel polarization phenomenon
discovered in [1] results inBw(p) concentrating around0
or 1 for an increasing fraction of subchannels asn increases.
The “good” subchannelsw, namely those for whichBw(p)
concentrate around0, can be used to transmit a corresponding
number of bits reliably and computationally efficiently, as
described in detail in [1].

In general, the set of useful or “good” subchannels for
a target rateR (or for a target decoding error probability)
depends in a complicated manner on the raw channel erasure
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Fig. 1. Functionsx 7→ Bw (x) for w ∈ {0, 1}3.

probabilityp, and must be recomputed with any change in this
channel parameter. A somewhat more universal construction
would involve a sequence of channel-parameter-independent
rankings or orderings (one for eachn) of the subchannels
and would retain (as “good”) the⌊R · 2n⌋ highest ranking
subchannels. The existence of such rankings was first (implic-
itly) considered in [1,§X] where it was shown that ranking
subchannels by the Hamming weight of the corresponding row
of the end-to-end generator matrix and retaining the highest
ranked subchannels (corresponding to the Reed-Muller code
for rate R and block length2n) results in the inclusion of
some bad subchannels for the BEC.

To the best of our knowledge, it has been an open question,
even for the case of the BEC, as to whether there exists
a sequence of good channel-parameter-agnostic polarization
subchannel ranking functions, in the sense that the error prob-
ability under successive cancellation decoding of the retained
subchannels tends to0 as long asR < 1 − p. In this paper,
we show that after excludingw with sufficiently low and
sufficiently high Hamming weights (specified below), ranking
subchannels by increasingαw is a good channel-parameter-
agnostic subchannel ranking in the above sense.

We shall demonstrate this by establishing a sharp threshold
behavior of the BEC error probability functionsx 7→ Bw(x)
at x = αw, uniformly over w ∈ {0, 1}n, as n goes to
infinity. Namely, we find a mapping(δ, n) 7→ ǫ = ǫ(δ, n)
from Z

+×(0, 1] to (0, 1], whereǫ(δ, n) tends to0 (sufficiently
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fast) withn for every fixedδ, such that for everyw ∈ {0, 1}n,

Bw(αw − δ) ≤ ǫ and Bw(αw + δ) ≥ 1 − ǫ . (1)

The existence of such a mapping from(δ, n) to ǫ is equivalent
to the existence of infinite sequences(δn)∞n=1 and (ǫn)∞n=1

over (0, 1] such that (1) holds for every(ǫ, δ) = (ǫn, δn) (see
Example 1 below).

A more precise statement of this strong threshold result is
as follows.

Denoting byw the bitwise complement ofw, it is easy to
verify by induction onn that

Bw(x) = 1 − Bw(1 − x) (2)

and, so,αw = 1 − αw. Hence, to establish the threshold
behavior for everyw ∈ {0, 1}n, it suffices to show that, say,

Bw(αw + δ) ≥ 1 − ǫ (3)

for ǫ = ǫ(δ, n) tending to0 asn → ∞, since this implies that
Bw(αw − δ) ≤ ǫ.

In our main analysis, we will obtain relations betweenδ
and ǫ which will be parametric also in the Hamming weight
‖w‖ of w. Specifically, the following relations betweenδ and
ǫ = ǫ(δ, n, ‖w‖) will be a consequence of Proposition 2 in
Section II and Theorem 17 in Section III-C. (Hereafter, all
logarithms are taken to base2, except when we specifically
use the natural logarithm functionln (·); the notationexp z
stands for the natural exponential functionez.)

Theorem 1 (Sharp threshold ofx 7→ Bw(x)). Eq. (1) holds
for any w ∈ {0, 1}n, whereǫ is related toδ ∈ [0, 1] by

ǫ = β2τ·δω ·
√

min(‖w‖,‖w‖)

, (4)

for real constantsβ = 8
√

ln 2 (< 0.955), ω < 1.537, and
τ > 1.758 (where‖w‖ = n − ‖w‖).1

In the special case thatmin(‖w‖, ‖w‖) ≤ log n−log log n,
Eq. (1) holds with

ǫ = exp

{

−2n log n

n
· δn/ log n

}

. (5)

Note thatǫ in (4) tends to zero only whenmin{‖w‖, ‖w‖}
goes to infinity. The case where either‖w‖ or ‖w‖ is of the
order log n is covered by (5), which we will treat first, in
Section II.

It follows from Theorem 1 that (1) is satisfied with anǫ
vanishing (much) faster than2−n for any given δ, when-
ever min{‖w‖, ‖w‖} ≫ log2 n. Moreover,ǫ decays doubly-
exponentially withn for any w in the set

M(n) =
{

w ∈ {0, 1}n :
∣
∣
∣‖w‖ − n

2

∣
∣
∣ ≤ γn

}

,

where γ is some fixed real in(0, 1/2). Note that 1 −
(|M(n)|/2n) vanishes exponentially withn.

Next, we demonstrate how Theorem 1 implies a capacity-
achieving coding scheme for BEC(p), consisting of a pre-
processing ranking phase which is universal in the sense
that it depends only onn: in that phase, the wordsw in
{0, 1}n (or, more precisely, inM(n)) are ordered from the

1Our analysis will use loose bounds at some points, and therefore, by no
means is (4) meant to present the smallest possibleǫ for givenδ, n, and‖w‖.

smallest value ofαw (corresponding to the lowest rank) to
the largest. The dependence on the channel parameterp and
on the target rate (or on the target decoding error probability)
then amounts to just selecting the high-ranking subchannels
down to a prescribed cut-off point.

Specifically, forϑ ∈ [0, 1], define the set

C(ϑ, n) = {w ∈ {0, 1}n : αw ≥ ϑ} . (6)

Thus, if we envision a list consisting of all words in{0, 1}n

sorted in descending order ofαw, the setC(ϑ, n) consists
of all the high-ranking words down to the cut-off valueϑ.
Given the channel parameterp ∈ [0, 1], the coding scheme
is defined by taking all subchannelsw in the intersection
C(p+δ, n) ∩ M(n), for a fixed (with n) δ > 0 that is
determined by the target rate or the designed decay (withn) of
the decoding error probability. Namely, we show that asn goes
to infinity, the coding scheme has vanishing error probability
under successive cancellation decoding, as well as rateR
approaching (no less than)1 − p − 2δ.

Indeed, from Theorem 1 we get that the decoding error
probability, which is given by the sum

∑

w∈C(p+δ,n)∩M(n)

Bw(p) ,

is bounded from above by2n · ǫ, for ǫ = ǫ(δ, n) that decays
doubly-exponentially with

√
n to 0 (where the exponents

depend onδ). Hence, the decoding error probability decays
doubly-exponentially with

√
n as well.

To establish a lower bound on the rateR, we use the
following equality concerning the polynomialsBw(x) (see [1,
Proposition 7]):

1

2n

∑

w∈{0,1}n

Bw(x) = x . (7)

We then have:

p + 2δ
(7)
=

1

2n

∑

w∈{0,1}n

Bw(p+2δ)

≥ 1

2n

∑

w∈C(p+δ,n)∩M(n)

Bw(p+2δ) ,

whereC(ϑ, n) stands for the complement set{0, 1}n\C(ϑ, n).
Again, by Theorem 1 we get thatBw(p+2δ) ≥ 1−ǫ for every
w ∈ C(p+δ, n) ∩ M(n), whereǫ = ǫ(δ, n) decays doubly-
exponentially with

√
n to 0. Hence,

p + 2δ ≥ 1

2n

∣
∣C(p+δ, n) ∩M(n)

∣
∣ − ǫ

=
1

2n

∣
∣M(n)

∣
∣ − 1

2n

∣
∣C(p+δ, n) ∩M(n)

∣
∣ − ǫ

= 1 − 2−Ω(n) − R − ǫ ,

whereΩ(n) stands for an expression which grows (at least)
linearly with n, for sufficiently largen. We readily conclude
that

R ≥ 1 − p − 2δ − ǫ − 2−Ω(n) .

Although we believe that this is the first channel-parameter-
agnostic ranking of subchannels whose highest ranked sub-
channels yield vanishing error probability under successive
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cancellation decoding, it does suffer from several drawbacks.
One stems from the fact that the relation (4) is worse than the
best decoding error probability,exp

{
−2n/2−o(n)

}
, attainable

by polar codes [2] and, so, the above design approach,per
se, guarantees a sub-optimal—but still super-polynomial in
the code length2n—error decay (this sub-optimality is also
reflected in yielding a worse scaling exponent behavior [4],
[3], [7], [8], [5], [10]). One redeeming aspect here is that once
the subchannels have been selected, one can use (explicit)
enhancement techniques, as in [6], to push the decoding
error probability down to the best asymptotic decay. A more
challenging deficiency, however, is that as of yet, we lack a
concise description of the setC(ϑ, n) in (6), for any given
ϑ ∈ [0, 1]. More generally, we lack a simple way of describing
the list of wordsw ∈ {0, 1}n when ordered according to
increasingαw, e.g., through a function that is computable in
polynomial-time inn which maps an indexi ∈ {1, 2, . . . , 2n}
to theith ranking word on the list (or an inverse function that
mapsϑ ∈ [0, 1] to an index of the lowest-rankingw ∈ {0, 1}n

such thatαw ≥ ϑ). As of now, this problem is still open.

II. L OW-WEIGHT w

We first note that among allw ∈ {0, 1}n of the same
Hamming weightm, the value ofαw is minimized for

w
∗ = w

∗(n,m) = 1 1 . . . 1
︸ ︷︷ ︸

m times

0 0 . . . 0
︸ ︷︷ ︸

n−m times

,

in which case

Bw
∗(x) =

(

1 − (1 − x)2
m

)2n−m

(8)

(see [6]). This follows from the fact that for everyx ∈ (0, 1),

B01(x) = 1 − (1 − x2)2 = x2(2 − x2)

< x2(2 − x)2 = (2x − x2)2 = B10(x)

and, so, every transposition of01 into 10 in w strictly increases
Bw(x); thus, Bw

∗(x) strictly dominates any other function
Bw(x) with ‖w‖ = ‖w∗‖ (see also [11] and references
therein).

The next proposition deals with the threshold behavior of
functionsBw(x), where‖w‖ ≤ log n − log log n.

Proposition 2. For δ ∈ (0, 1] and n > 1, let

ǫ = ǫ∗(δ, n) = exp

{

−2n log n

n
· δn/ log n

}

. (9)

Then, for everyw ∈ {0, 1}n, n > 1, such that‖w‖ ≤ log n−
log log n,

Bw(αw − δ) ≤ ǫ and Bw(αw + δ) ≥ 1 − ǫ .

Proof. Writing m = ‖w‖ and noting thatz 7→ (1 − δz)1/z is
increasing inz > 0, we have:

Bw(1 − δ) ≤ Bw
∗(1 − δ)

(8)
=

(

1 − δ2m
)2n/2m

≤
(

1 − δn/ log n
)(2n log n)/n

≤ exp

{

−2n log n

n
· δn/ log n

}

= ǫ ,

i.e.,
1 − δ ≤ B−1

w
(ǫ) . (10)

Since the proposition obviously holds whenǫ ≥ 1/2, we
assume from now on in the proof thatǫ < 1/2, in which
case

1 − δ
(10)

≤ B−1
w

(ǫ) < B−1
w

(1/2) = αw < 1 .

So,
Bw(αw + δ

︸ ︷︷ ︸

>1

) = 1 > 1 − ǫ ,

and, by monotonicity,

Bw(αw − δ) < Bw(1 − δ) ≤ ǫ .

It is easy to see that for every fixedδ ∈ (0, 1], the mapping
(δ, n) 7→ ǫ∗(δ, n) in (9) goes to0 asn → ∞.

Example 1. Let the sequence(δn)∞n=2 be defined by

δn =
4(log2 n)/n

n

(

=
1 + o(1)

n

)

(whereo(1) stands for an expression that goes to0 asn → ∞).
Substitutingδ = δn in (9) yields

ǫ∗(δn, n)

= exp

{

−2n log n

n
·
(

2(2 log2 n)/n−log n
)n/ log n

}

= exp

{

−2n log n

n
· 22 log n−n

}

= n−n log e .

Defining (ǫn)∞n=2 by

ǫn = n−n log e ,

it follows from Proposition 2 that for everyw ∈ {0, 1}n,
n > 1, such that‖w‖ ≤ log n − log log n,

Bw(αw − δn) ≤ ǫn and Bw(αw + δn) ≥ 1 − ǫn .

By (2) it follows that Proposition 2 holds also when‖w‖ ≥
n − (log n − log log n). For suchw we have0 < αw < δ.

We note that the valuelog n − log log n for m is (almost)
the largest possible to haveαw

∗ = 1 − o(1). Indeed, it can
be readily verified that whenm = log n we already have
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αw
∗ = 1/2 − o(1). Furthermore, whenm ≥ log n + log lnn

we get, forx = 1/ log n:

Bw
∗

( 1

log n

)

=

(

1 −
(

1 − 1

log n

)2m)2n/2m

≥
(

1 −
(

1 − 1

log n

)n ln n
)2n/(n ln n)

≥
(
1 − 2−n

)2n/(n ln n)

= 1 − o(1) .

Namely,αw
∗ < 1/ log n.

III. T HE GENERAL CASE

Given w = w1w2 . . . wn ∈ {0, 1}n, let (x0, x1, x2, . . . , xn)
be the sequence over(0, 1) defined byx0 = αw and

xi = Bwi
(xi−1) , i = 1, 2, . . . , n ,

where xn = Bw(x0) = Bw(αw) = 1/2. Also, for some
y0 ∈ (x0, 1) let (y0, y1, . . . , yn) be a sequence over(0, 1) that
is defined similarly, i.e.,yi = Bwi

(yi−1), for i = 1, 2, . . . , n;
thus, yn = Bw(y0). Sincex 7→ B0(x) and x 7→ B1(x) are
both increasing functions on[0, 1], it follows by induction oni
that yi > xi for i = 1, 2, . . . , n.

For i = 0, 1, . . . , n, write yi = xpi

i , where pi ∈ (0, 1)
(namely,pi = (log yi)/(log xi)). Our analysis of the threshold
behavior ofx 7→ Bw(x) will be carried out through studying
the evolution ofpi, asi ranges from0 to n. This study, in turn,
will lead to a relationship betweenδ, n, and ǫ for which (1)
is satisfied while havingǫ → 0 whenn → ∞.

For an indexi > 0 such thatwi = 0, we have:

pi =
log yi

log xi
=

log y2
i−1

log x2
i−1

= pi−1 .

Otherwise, whenwi = 1:

pi =
log yi

log xi
=

log (2yi−1 − y2
i−1)

log (2xi−1 − x2
i−1)

=
log yi−1 + log (2 − yi−1)

log xi−1 + log (2 − xi−1)

=
pi−1 log xi−1 + log (2 − x

pi−1

i−1 )

log xi−1 + log (2 − xi−1)

= pi−1 ·
log xi−1 + (1/pi−1) log (2 − x

pi−1

i−1 )

log xi−1 + log (2 − xi−1)
.

That is,

pi =

{
pi−1 if wi = 0
pi−1 · f(xi−1, pi−1) if wi = 1

, (11)

wheref : (0, 1) × (0, 1) → R is defined by

f(x, p) =
log x + (1/p) log (2 − xp)

log x + log (2 − x)
. (12)

The rest of this section is organized as follows. In Sec-
tion III-A, we present several properties of the functionf(·, ·)
in (12). Then, in Section III-B, we utilize those propertiesto
show that if p0 is (close to, yet) sufficiently bounded away
from 1 (from below), the sequence ofpi’s evolve by (11) to a
valuepn that is close to0. The resulting convergence to0 is

quite slow, yet the main purpose of the analysis is to show that
at some point in the sequence,pi gets below a certain value,
which, in turn, guarantees a much faster convergence to0
from that point onward. That convergence will be analyzed in
Section III-C.

A. Analysis of the function(x, p) 7→ f(x, p)

We extend the functionf to the domain([0, 1] × [0, 1]) \
{(0, 0)} as follows. Forx = 0 andp ∈ (0, 1],

f(0, p) = lim
x→0+

f(x, p) = 1 ,

and forx = 1 andp ∈ [0, 1] we have, by L’Ĥopital’s rule:

f(1, p) = lim
x→1

f(x, p)

= lim
x→1

(1/x) − (1/p) · p · xp−1/(2 − xp)

(1/x) − 1/(2 − x)

= lim
x→1

(2 − x)(1 − xp)

(2 − xp)(1 − x)

= lim
x→1

1 − xp

1 − x
= lim

x→1
p · xp−1 = p .

For p = 0 andx ∈ (0, 1],

f(x, 0) = lim
p→0+

f(x, p)

= lim
p→0+

log x − (xp log x)/(2 − xp)

log x + log (2 − x)
= 0 ,

and forp = 1 andx ∈ [0, 1],

f(x, 1) =
log x + (1/p) log (2 − xp)

log x + log (2 − x)

∣
∣
∣
p=1

= 1 .

Figure 2 shows the curvesp 7→ f(x, p) for various values ofx.

p

f(x, p)

0 1

1
x = 0

10−8

10−4

10−2

0.1

0.5

x = 1

Fig. 2. Functionp 7→ f(x, p) for various values ofx ∈ [0, 1].

The proofs of the next three lemmas can be found in
Appendix A.

Lemma 3. For everyx ∈ (0, 1], the functionp 7→ f(x, p) is
increasing and concave at everyp ∈ [0, 1].
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Since f(x, 0) = 0 and f(x, 1) = 1, it follows by mono-
tonicity that the functionp 7→ f(x, p) is onto [0, 1], for every
x ∈ (0, 1].

Lemma 4. For everyx ∈ (0, 1],

∂

∂p
f(x, p)

∣
∣
∣
p=1

≥ 1

1 − log x
.

Lemma 5. For everyp ∈ (0, 1), the functionx 7→ f(x, p) is
decreasing at everyx ∈ [0, 1].

Our analysis of the evolution ofpi, asi ranges from0 to n,
will use the properties of the function(x, p) 7→ f(x, p) (in
conjunction with (11)), and will lead to a mapping(δ,m) 7→
ǫ+(δ,m) such thatlimm→∞ ǫ+(δ,m) = 0 and

Bw(αw + δ) ≥ 1 − ǫ+(δ, ‖w‖) ,

for every w ∈ {0, 1}n; that is, ǫ+ is a function of the
Hamming weight ofw (rather than ofn), and the superscript
“+” indicates that we require only the inequality (3) (i.e., the
right inequality in (1)) to hold. Once we have such a mapping,
both inequalities in (1) will be satisfied forǫ = ǫ(δ, n) given
by

ǫ(δ, n) = max

{

ǫ∗(δ, n), max
m∈S(n)

ǫ+(δ,m)

}

,

whereǫ∗(δ, n) is defined in (9) and

S(n) =
{

m ∈ Z
+ : min{m,n−m} > log n − log log n

}

.

Since bothǫ∗(δ, n) andǫ+(δ,m) tend to0 asn (or m) → ∞,
then so isǫ(δ, n).

Given w ∈ {0, 1}n, we next identify for anyp0 =
(log y0)/(log x0) (and for the respectivepn obtained fromp0

by (11)) a pair (δ, ǫ) for which (3) holds. Consider the
difference

y0 − x0 = xp0

0 − x0 .

For a given p0, the right-hand side is maximized when
xp0−1

0 = 1/p0, i.e., x0 = p
1/(1−p0)
0 . So,

y0 − αw = y0 − x0 = x0

(

xp0−1
0 − 1

)

≤ p
1/(1−p0)
0 ·

( 1

p0
− 1

)

<
1 − p0

e · p0
.

Hence, a givenp0 > 1/e corresponds to taking, say,

δ = 1 − p0 . (13)

As for the respectivepn,

yn = xpn
n =

(1

2

)pn

≥ 1 − (ln 2) · pn .

Thus, ifp0 evolves intopn andδ is selected according to (13),
then (3) holds for any

ǫ ≥ (ln 2) · pn . (14)

B. Crude analysis of the evolution

Given w ∈ {0, 1}n, write m = ‖w‖, and let i1 < i2 <
. . . < im be the indexesi for which wi = 1. Sincepi < pi−1

only whenwi = 1 (and pi = pi−1 otherwise), we will find
it notationally convenient to define the following subsequence
(qj)

m
j=0 of (pi)

n
i=0:

q0 = p0 , and qj = pij
, j = 1, 2, . . . ,m .

From (11):

qj = qj−1 · f(xij−1, qj−1) , j = 1, 2, . . . ,m . (15)

Let (ξ0, ξ1, . . . , ξm) be defined by a (backward) recursion
as follows:ξm = 1/2, and

ξj−1 = B−1
1 (ξj) = 1 −

√

1 − ξj , j = m,m−1, . . . , 1 .

Thus,ξj = B1(ξj−1) = 2ξj−1 − ξ2
j−1, for j = 1, 2, . . . ,m.

Lemma 6. For j = 0, 1, . . . ,m,

ξj ≥ 2j−m−1 ,

with equality only ifj = m.

Proof. For everyj = 1, 2, . . . ,m,

ξj = 2ξj−1 − ξ2
j−1 < 2ξj−1

and, so, by backward induction onj, with the induction base
beingξm = 1/2, we have

ξj−1 > ξj/2 ≥ 2j−m−1/2 = 2j−m−2 .

Lemma 7. For j = 1, 2, . . . ,m,

xij
≥ ξj and xij−1 ≥ ξj−1 .

Proof. For j = 1, 2, . . . ,m, we have

xij
= B1(xij−1) ≤ B1(xij−1

) , (16)

where the inequality follows fromxij−1 ≤ xij−1
. Also, xim

≥
xn = 1/2 = ξm, which serves as the base for a backward
induction onj, with the following induction step:

xij−1

(16)

≥ B−1
1 (xij

) ≥ B−1
1 (ξj) = ξj−1 .

Hence,xij
≥ ξj for j = 0, 1, . . . ,m. It also follows that for

j = 1, 2, . . . m,

xij−1 = B−1
1 (xij

) ≥ B−1
1 (ξj) = ξj−1 .

From Lemmas 3 and 4 we get that for everyp ∈ [0, 1):

1 − f(x, p)

1 − p
=

f(x, 1) − f(x, p)

1 − p

≥ ∂

∂p
f(x, p)

∣
∣
∣
p=1

≥ 1

1 − log x
,

namely,

f(x, p) ≤ 1 − 1 − p

1 − log x
.
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Hence, by Lemmas 6 and 7,

f(xij−1, qj−1) ≤ 1 − 1 − qj−1

1 − log ξj−1
≤ 1 − 1 − qj−1

m−j+3
.

Combining with (15), we obtain

qj ≤ qj−1

(

1 − 1 − qj−1

m−j+3

)

, j = 1, 2, . . . ,m . (17)

Let U = (u0, u1, . . . , um) be a sequence that satisfies (17)
with equality, namely, for a givenu0 ∈ (0, 1) (to be determined
later on):

uj = uj−1

(

1 − 1 − uj−1

m−j+3

)

, j = 1, 2, . . . ,m . (18)

Equivalently,

1−uj = (1−uj−1)
(

1+
uj−1

m−j+3

)

, j = 1, 2, . . . ,m . (19)

It is easy to see that the sequenceU is decreasing and its
elements are all in(0, 1). The following lemma is immediate.

Lemma 8. Let (q0, q1, . . . , qm) be any sequence that sat-
isfies (17), whereq0 = u0. Then qj ≤ uj , for all j =
1, 2, . . . ,m.

Next, we turn to analyzing the sequenceU . To this end,
we fix a positive indexk ∈ {1, 2, . . . ,m} and assume thatuk

equals some fixed realθ ∈ (0, 1) to be determined later on.
Lemma 9 below presents a lower bound onu0, in terms of
uk, and Lemma 11 (whose proof makes use of Lemma 10)
presents an upper bound onuj , for k ≤ j ≤ m. The proofs
of the lemmas are given in Appendix B.

Lemma 9. Assuming thatuk = θ,

u0 > 1 − ρ(θ) ·
(m−k+3

m+3

)θ

,

whereρ(θ) = (1−θ) · eθ2/4 (< 1).

Lemma 10. Given (uk =) θ, let ℓ ≤ m be an integer such
that

k ≤ ℓ ≤ k − (m−k+3) · ln θ + ln
( m−ℓ+3

m−k+3

)

. (20)

Then, fork ≤ j ≤ ℓ,

uj <
m−j+3

m−k+3
.

Lemma 11. If (uk =) θ ≤ θ0 = (3/8)1/8/e ≈ 0.325, then,
for k ≤ j ≤ m,

uj <
m−j+3

m−k+3
. (21)

Remark1. The bound (21) corresponds in fact to the case
whereθ = θ0. For smallerθ, one can decrease the right-hand
side of (21) by a constant factor (which depends onθ).

Lemmas 8, 9, and 11 lead to the following result.

Proposition 12. If p0 is selected so that

p0 = q0 = u0

(

> 1 − ρ(θ) ·
(m−k+3

m+3

)θ
)

for someθ ≤ θ0, then, fork < j ≤ m,

qj ≤ uj <
m−j+3

m−k+3
.

The last proposition already implies a mapping(δ,m) 7→
ǫ+(δ,m) that is vanishing (albeit slowly) asm → ∞, for
which (3) is satisfied.

Theorem 13. Given δ ∈ (0, 1−(1/e)), let k be the smallest
integerκ satisfying

δ ≥ ρ0 ·
(m−κ+3

m+3

)θ0

,

where θ0 (> 0.325) is as in Lemma 11 andρ0 = (1−θ0) ·
eθ2

0/4 (< 0.693). Then, for everyw ∈ {0, 1}n such that
‖w‖ = m,

Bw(αw + δ) ≥ 1 − ǫ ,

where

ǫ = ǫ+(δ,m) =
3 · ln 2

m−k+3
=

1

Ω(m · δ1/θ0)
. (22)

Proof. Selectingp0 = q0 = 1 − δ (as in (13)), we get from
Proposition 12 that2

pn = qm <
3

m−k+3
.

The result then follows by noting thatǫ in (22) satisfies (14)
and thatm−k+3 = ⌊(m+3) · (δ/ρ0)

1/θ0⌋.

In Section III-C below, we present a much better decay of
ǫ+(δ,m) than (22).

In Appendix B, we prove the following (somewhat stronger)
version of Lemma 9.

Lemma 14. If (uk =) θ ≥ 1 − (2/3) e−5/4 ≈ 0.809, then

u0 > 1 − 2

3
· m−k+3

m+3
.

Note, however, that this lemma, as stated, cannot be used
in conjunction with Lemma 11, since the two lemmas apply
to disjoint ranges of values ofuk. For sufficiently largerm,
the valueθ0 in Lemma 11 can be lowered at the expense of
some scaling of the term(m−j+3)/(m−k+3) in (21). We
demonstrate this in Appendix C.

C. Fine analysis of the evolution

We use the notation(qj)
m
j=0 and (ξj)

m
j=0 as defined in

Section III-B.
The next proposition serves as our tool for getting a sharper

threshold behavior of the functionsx 7→ Bw(x) .

Proposition 15 (Log-squaring rule). For j = 1, 2, . . . ,m:

|qj ln ξj | ≤ |qj−1 ln ξj−1|2 .

The proof of the proposition makes use of the following
lemma, the proof of which can be found in Appendix D.

Lemma 16. For everyz ∈ (0, 1],

− ln (z(2 − z)) ≤ ln2 z .

2The requirementδ < 1 − 1/e guarantees thatp0 > 1/e, which was
assumed to obtain the relation (13).
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Proof of Proposition 15.We will use (15) where we bound
f(xij−1, qj−1) from above using Lemmas 5 and 16. Writing
υj−1 = ξ

qj−1

j−1 , we have, forj = 1, 2, . . . ,m:

f(xij−1, qj−1) ≤ f(ξj−1, qj−1)

=
1

qj−1
· log (υj−1(2 − υj−1))

log (ξj−1(2 − ξj−1))

≤ 1

qj−1
· ln2 υj−1

− ln ξj

= qj−1 ·
ln2 ξj−1

− ln ξj
,

where the first inequality follows from Lemma 5 and the
second from Lemma 16. Combining with (15) we obtain:

qj = qj−1 · f(xij−1, qj−1) ≤ (qj−1)
2 · ln2 ξj−1

− ln ξj
,

thereby yielding the result.

The next theorem is our main result.

Theorem 17. Theorem 13 holds with (22) replaced by

ǫ = ǫ+(δ,m) = β2
√

m−k+4

< β2τ·δω·√m

, (23)

whereβ = 8
√

ln 2 (< 0.955), ω = 1/(2θ0) (< 1.537), and
τ = 1/ρω

0 (> 1.758).

Proof. For k as defined in Theorem 13, letr be the unique
integer which satisfies

(m−r+2)2 ≤ m−k+3 < (m−r+3)2 . (24)

Selectingp0 = q0 = 1 − δ (as in (13)), we get from (24) and
Proposition 12 that

qr <
m−r+3

m−k+3
<

1

m−r+1
,

which, with Lemma 6, yields

|qr ln ξr| < ln 2 .

By Proposition 15 it follows that

pn = qm ≤ 1

| ln ξm| · (ln 2)2
m−r

= (log e) · (ln 2)2
m−r

(24)

≤ (log e) · (ln 2)2
√

m−k+4−3

= (log e) · β2
√

m−k+4

.

Noting that ǫ in (23) satisfies (14) and thatm−k+4 =
⌊(m+3) · (δ/ρ0)

2ω⌋ + 1 > m · (δ/ρ0)
2ω yields

ǫ = β2
√

m−k+4

< β2(δ/ρ0)ω·√m

= β2τ·δω ·√m

.

For specific (small)n and m, one can enumerate over
all words w ∈ {0, 1}n of a given Hamming weightm and
compute a tight (i.e., best) mappingδ 7→ ǫ = ǫ+(δ, n,m) for
which (3) holds. We have done that forn = 16 and listed in

Table I the values ofδ that correspond toǫ+(δ, n,m) = 10−4,
for any given m, along with the maximizing (i.e., worst)
word w. Based on the results in the table, one may speculate
whether, in general, for givenn and m, the word w that
exhibits the slowest threshold behavior is one for which the
support indexesij are consecutive. In Table II, we have listed
the wordsw that exhibit the smallest derivatives ofBw(x) at
x = αw.

Proof of Theorem 1.The first part (Eq. (4)) is obtained by
combining Theorem 17 with (2), and the second part (Eq. (5))
follows from Proposition 2.

IV. FUTURE WORK

We present below an alternate characterization of the func-
tions x 7→ Bw(x); this characterization could lead to a
different approach for deriving the threshold behavior of these
functions.

For wordsw ∈ {0, 1}n, consider subsetsAw ⊂ {0, 1}2n

defined recursively as follows:A0 = {11}, A1 = {01, 10, 11},
and

Aw0 = {uv : u,v ∈ Aw}
Aw1 = {uv : u ∈ Aw or v ∈ Aw} .

It follows inductively from the recursive definition that each
Aw is a monotone set for alln and all w, in the sense that
v ∈ Aw implies thatu ∈ Aw for every u ∈ {0, 1}2n

that
satisfies the inequalityu ≥ v componentwise.

It is not hard to see thatBw(x) can be expressed as

Bw(x) = Prob{V ∈ Aw} ,

whereV is a random word taking values in{0, 1}2n

whose
entries are independent, identically distributed Bernoulli-x
random variables. We conjecture that it should be possible
to derive the aforementioned, or perhaps sharper, threshold
behavior forBw(x) using isoperimetric based methods that
have established the threshold behavior of the probabilities of

TABLE I
VALUES OF δ, PERHAMMING WEIGHT m, THAT CORRESPOND TO

ǫ+(δ, n, m) = 10−4 , AND ATTAINING WORDS w, FOR n = 16.

m δ Maximizing w

0 0.00001 0000000000000000
1 0.00454 1000000000000000
2 0.07181 1100000000000000
3 0.20717 1110000000000000
4 0.24676 1111000000000000
5 0.18810 1111100000000000
6 0.14995 0111111000000000
7 0.12081 0011111110000000
8 0.11101 0011111111000000
9 0.10138 0011111111100000

10 0.09771 0001111111111000
11 0.10170 0001111111111100
12 0.10809 0001111111111110
13 0.11820 0001111111111111
14 0.07332 0011111111111111
15 0.01216 0111111111111111
16 0.00013 1111111111111111
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some famous monotone sets under Bernoulli measures. The
threshold behavior of the error probability of decoding linear
codes on binary symmetric and erasure channels, for example,
was established using such tools in [12]. We remark that a
straightforward application of the main result (Theorem 2.2)
of [12] does not seem possible, however, as the implied
threshold behavior depends on a property of the boundary of
the monotone sets in question, that, in the case of the setsAw

above, fails to imply any threshold behavior.

APPENDIX A
ADDITIONAL PROOFS FORSECTION III-A

For the upcoming proofs, we find it convenient to define
the following functionQ : [0, 1] → R: for everyz ∈ (0, 1],

Q(z) = z log z + (2 − z) log (2 − z) ,

andQ(0) = limz→0+ Q(z) = 2. It is easy to see thatQ(z) =
2(1 − H(z/2)), whereH(z) = −z log z − (1 − z) log (1 −
z) is the binary entropy function. Thus, forz ∈ [0, 1], the
function Q(z) takes on[0, 2], is decreasing and convex, and
(d/dz)Q(z) = log (z/(2 − z)).

Proof of Lemma 3.For x = 1 we havef(1, p) = p and the
lemma is immediate; hence we fixx from now on to be in
(0, 1). Let

g(x, p) = −f(x, p)·log (x(2−x)) = − log x− 1

p
log (2−xp) .

Since log (x(2 − x)) < 0 for x ∈ (0, 1], it suffices to show
that for any suchx, the functionp 7→ g(x, p) is increasing and
concave on[0, 1].

Write y = y(x, p) = xp. Then

∂

∂p
y(x, p) = y lnx .

TABLE II
SMALLEST DERIVATIVES OF Bw (x) AT x = αw PERHAMMING WEIGHT

m, AND ATTAINING WORDS w, FOR n = 16.

m (d/dx) B(x)|x=αw
Minimizing w

0 32768.34658 0000000000000000
1 150.71087 1000000000000000
2 17.18959 1100000000000000
3 8.95317 1110000000000000
4 9.54279 1111000000000000
5 12.58686 0111110000000000
6 15.31910 1110000000000111
7 16.56761 0011111110000000
8 17.50690 0011111111000000
9 16.56761 1100000001111111

10 15.31910 0001111111111000
11 12.58686 1000001111111111
12 9.54279 0000111111111111
13 8.95317 0001111111111111
14 17.18959 0011111111111111
15 150.71087 0111111111111111
16 32768.34658 1111111111111111

Computing the partial derivative ofg(x, p) with respect top,
we get:

∂

∂p
g(x, p) = − ∂

∂p

(1

p
log

(
2 − y(x, p)

))

= − ∂

∂p

(1

p
log (2 − y)

)

− ∂

∂y

(1

p
log (2 − y)

)

· ∂

∂p
y(x, p)

=
1

p2
· log (2 − y) +

1

p
· y log x

2 − y

=
1

p2(2 − y)

(

(2 − y) log (2 − y) + y log y
)

,

i.e.,
∂

∂p
g(x, p) =

Q(y)

p2(2 − y)
. (25)

For p ∈ (0, 1] andx ∈ (0, 1) we havey = xp ∈ (0, 1) thereby
implying that(∂/∂p) g(x, p) > 0, namely, thatp 7→ f(x, p) is
increasing.

As our next step, we compute the second partial derivative,
(∂2/∂p2) g(x, p), from (25). Recalling that(d/dz)Q(z) =
log (z/(2 − z)) and that (∂/∂p) y(x, p) = (y ln y)/p, we
obtain:

∂2

∂p2
g(x, p)

=
∂

∂p

( Q(y)

p2(2 − y)

)

+
∂

∂y

( Q(y)

p2(2 − y)

)

· ∂

∂p
y(x, p)

= − 2Q(y)

p3(2 − y)

+
1

p2(2 − y)

(
Q(y)

2 − y
+ log

( y

2 − y

))

· y ln y

p

=
2ϕ(y)

p3(2 − y)2
,

where

ϕ(y) = (y − 2) · Q(y) + (ln 2) · y log2 y .

Thus, to establish the concavity ofp 7→ f(x, p), it remains
to show thatϕ(y) < 0 for y ∈ (0, 1). To this end, since
ϕ(1) = 0, it suffices to show thaty 7→ ϕ(y) is increasing at
everyy ∈ [0, 1). Indeed,

d

dy
ϕ(y) = Q(y) + (y − 2) log

( y

2−y

)

+ (ln 2) log2 y + 2 log y

= 2Q(y) + (ln 2) log2 y

> 0 .

This completes the proof.

Proof of Lemma 4.It follows from (25) that

∂

∂p
f(x, p)

∣
∣
∣
p=1

= − Q(x)

(2 − x) log (x(2 − x))

= − Q(x)

Q(x) + 2(1 − x) log x
.
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Hence, the lemma will be proved once we show that

−2(1 − x) log x

Q(x)
− 2 ≤ − log x . (26)

We prove (26) separately for the neighborhood(0, ε0] of
x = 0 and for the neighborhood[1 − ε0, 1] of x = 1, where
ε0 is a fixed small positive real for which theO(·) terms that
appear in our analysis become sufficiently small. Forx in
the interval(ε0, 1 − ε0), the inequality (26) can be verified
numerically, or “by inspection” through Figure 3; in fact, the
figure suggests that on that interval, the (negative) derivative
(with respect tox) of the left-hand side of (26) is always
greater than the derivative of the right-hand side.

The neighborhood ofx = 0. Starting with the left-hand
side of (26), and lettingO(x) denote a term that grows at
most linearly withx, we have:

−2(1 − x) log x

Q(x)
− 2 = − 2(1 − x) log x

2 + x log x − O(x)
− 2

= − 2 log x + 4 − O(x)

2 + x log x − O(x)

= − log x − 2 + O(x log2 x)

≤ − log x ,

for sufficiently smallx > 0.
The neighborhood ofx = 1. Both sides of (26) converge

to 0 whenx → 1. Substitutingx = 1 − ε, the derivative with
respect toε of the left-hand side can be verified to be1, while
the derivative of the right-hand side equalslog e (> 1). Hence,
for smallε > 0, the left-hand side equalsε+O(ε2), while the
right-hand side equalsε · log e + O(ε2).

x
0 1

5

RHS

LHS

Fig. 3. Left-hand side and right-hand side of (26).

Proof of Lemma 5.Fixing p ∈ (0, 1), it can be verified that
at everyx ∈ (0, 1),

∂

∂x
f(x, p) =

(1 − x)(1 − y) · ln 2

p · x(2 − x)(2 − y)(log (x(2 − x)))2
· µ(x) ,

wherey = y(x, p) = xp (> x) and

µ(x) = p · Q(x)

1 − x
− Q(y)

1 − y
.

Hence, we need to show thatµ(x) is negative forx ∈ (0, 1).
Sinceµ(1) = limx→1 µ(x) = 0, it suffices to show thatµ(x)
is increasing at everyx ∈ (0, 1). Now,

d

dx

Q(x)

1 − x
=

log (x(2 − x))

(1 − x)2

and, so,

d

dx
µ(x) = p · log (x(2 − x))

(1 − x)2

− log (y(2 − y))

(1 − y)2
· p · xp−1

︸ ︷︷ ︸

(∂/∂x) y(x,p)

=
p

x · ln 2
·
(

ν(x) − ν(y)
)

,

where

ν(x) =
x · ln (x(2 − x))

(1 − x)2
.

Thus, the proof reduces to showing thatx 7→ ν(x) is
decreasing on(0, 1), which, by taking derivatives, is equivalent
to having

η(x) =
2(1 − x)2

(2 − x)(1 + x)
+ ln (x(2 − x)) < 0 .

Sinceη(1) = 0, it therefore suffices to show thatx 7→ η(x) is
increasing on(0, 1). Indeed,

d

dx
η(x) =

2(x2 + 2)(1 − x)2

x(2 − x)2(1 + x)2
> 0 .

APPENDIX B
ADDITIONAL PROOFS FORSECTION III-B

Proof of Lemma 9.From (19) and the monotonicity ofU we
have

1 − uj ≥ (1 − uj−1)
(

1 +
θ

m−j+3

)

, j = 1, 2, . . . , k ,

and, so,

1 − θ = 1 − uk ≥ (1 − u0) ·
k∏

s=1

(

1 +
θ

m−s+3

)

.

Therefore,

1 − u0 ≤ (1−θ) ·
k∏

s=1

(

1 +
θ

m−s+3

)−1

< (1−θ) ·
k∏

s=1

exp

{

− θ

m−s+3
+

θ2

2(m−s+3)2

}

< (1−θ) · exp

{

−θ ·
k∑

s=1

1

m−s+3

+
θ2

2
·

m∑

s=−∞

1

(m−s+3)2

}

< (1−θ) · exp

{

−θ · ln
( m+3

m−k+3

)

+
θ2

4

}

,



10

where the second inequality follows fromln (1+z) > z−z2/2
(for z ∈ (0, 1)) and the last inequality follows from

b∑

s=a

1

s
>

∫ b+1

a

d z

z
= ln

(b+1

a

)

and
b∑

s=a

1

s2
<

b∑

s=a

( 1

s−1
− 1

s

)

=
1

a−1
− 1

b
,

for integersb ≥ a > 1. Thus, we conclude that

u0 > 1 − (1−θ) · eθ2/4

︸ ︷︷ ︸

ρ(θ)

·
(m−k+3

m+3

)θ

.

Proof of Lemma 10.We prove the lemma by induction onj.
The lemma trivially holds for the induction base (j = k),
whereuk = θ < 1. Assuming now thatj > k, we have

uj
(18)
= θ ·

j
∏

s=k+1

(

1 − 1 − us−1

m−s+3

)

< θ ·
j

∏

s=k+1

exp
{

−1 − us−1

m−s+3

}

≤ θ ·
j

∏

s=k+1

exp

{

−1 − (m−s+4)/(m−k+3)

m−s+3

}

,

where the last step follows from the induction hypothesis.
Hence,

uj < θ · exp

{

−
(

1 − 1

m−k+3

)( j
∑

s=k+1

1

m−s+3

)

+
j−k

m−k+3

}

< θ · exp

{
j−k

m−k+3

−
(

1 − 1

m−k+3

)

ln
(m−k+3

m−j+3

)}

= θ · exp

{
1

m−k+3
·
(

j−k − ln
(m−j+3

m−k+3

))}

· m−j+3

m−k+3

≤ exp

{

ln θ +
1

m−k+3
·
(

ℓ−k − ln
( m−ℓ+3

m−k+3

))}

· m−j+3

m−k+3
.

By (20), the argument of the lastexp{·} is nonpositive and,
so, we conclude that

uj <
m−j+3

m−k+3
.

Proof of Lemma 11.The minimum of(ln (3/s))/s over s ∈
Z

+ is attained ats = 8; therefore, under the conditions of the
lemma we have

m ≤ k − (m−k+3) ·
(

ln θ − 1

8
ln

(3

8

))

︸ ︷︷ ︸

≤−1

≤ k − (m−k+3) ·
(

ln θ − 1

m−k+3
· ln

( 3

m−k+3

))

≤ k − (m−k+3) · ln θ + ln
( 3

m−k+3

)

,

which means that (20) is satisfied byℓ = m.

Proof of Lemma 14.We start by finding a lower bound onuj ,
for j = 1, 2, . . . , k, as a function ofu0. By (19),

1 − uj = (1 − u0) ·
j

∏

s=1

(

1 +
us−1

m−s+3

)

< (1 − u0) ·
j

∏

s=1

exp

{
us−1

m−s+3

}

= (1 − u0) · exp

{
j

∑

s=1

us−1

m−s+3

}

≤ (1 − u0) · exp

{
j

∑

s=1

1

m−s+3

}

< (1 − u0) · exp

{

ln
( m+2

m−j+2

)}

,

where the last inequality follows from

b∑

s=a

1

s
<

∫ b+1/2

a−1/2

d z

z
= ln

( 2b+1

2a−1

)

< ln
( b

a−1

)

,

for integersb ≥ a > 1. Hence,

uj > 1 − (1 − u0) ·
m+2

m−j+2
. (27)

Next, we compute a lower bound on1 − uk (= 1 − θ):

1 − θ
(19)
= (1 − u0) ·

k∏

s=1

(

1 +
us−1

m−s+3

)

> (1 − u0) ·
k∏

s=1

exp

{
us−1

m−s+3
− u2

s−1

2(m−s+3)2

}

> (1 − u0) · exp

{
k∑

s=1

1

m−s+3

−
k∑

s=1

1 − us−1

m−s+3
− 1

2

m∑

s=−∞

1

(m−s+3)2

}

> (1 − u0) · exp

{

ln
( m+3

m−k+3

)

−
k∑

s=1

1 − us−1

m−s+3
− 1

4

}

> (1 − u0) · exp

{

ln
( m+3

m−k+3

)
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− (1 − u0)(m+2) ·
k∑

s=1

1

(m−s+3)2
− 1

4

}

,

where the last step follows from (27). We therefore get:

(1 − θ) · e1/4 > (1 − u0) ·
m+3

m−k+3

· exp

{

−(1 − u0)
( m+2

m−k+2
− 1

)}

> (1 − u0) ·
m+3

m−k+3

· exp

{

−(1 − u0) ·
3

2
· m+3

m−k+3

}

,

i.e.,

(1 − θ) · e1/4 > ψ
(

(1 − u0) ·
m+3

m−k+3

)

, (28)

whereψ(z) = z·e−(3/2)z. To complete the proof of the lemma,
it remains to show that

(1 − u0) ·
m+3

m−k+3
<

2

3
, (29)

wheneverθ satisfies

(1 − θ) · e1/4 ≤ 2/(3 e) = ψ(2/3) . (30)

Let λ : u0 7→ uk be the (unique) function that mapsu0 to
uk by applying (18) forj = 1, 2, . . . , k; clearly, u0 7→ λ(u0)
is a continuous (strictly) increasing function on(0, 1). Let u∗

0

be the unique valueu0 ∈ (0, 1) for which (29) holds with
equality, and assume by contradiction that (29) does not hold,
namely, thatu0 < u∗

0 for some choice ofθ (= uk) that
satisfies (30) (we are ruling out the equalityu0 = u∗

0 since
otherwise (30) would contradict (28)). Note that under this
assumption, the argument ofψ(·) in (28) is greater than2/3
and is therefore in the range wherez 7→ ψ(z) is decreasing.
We will also assume hereafter that the inequality in (30)
is strict; otherwise, we can slightly increaseθ so that the
respectiveu0 = λ−1(θ) is (increased but is) still smaller
thanu∗

0.
Let ε be the unique positive real for which

(1 − λ(u0)) · e1/4 = ψ(2/3 + ε) . (31)

Under our assumptions, there existsu′
0 ∈ (u0, u

∗
0) such that

2

3
< (1 − u′

0) ·
m+3

m−k+3
<

2

3
+ ε .

We have,

ψ
(

(1 − u′
0) ·

m+3

m−k+3

)

> ψ(2/3 + ε)

(31)
= (1 − λ(u0)) · e1/4

u′
0>u0

> (1 − λ(u′
0)) · e1/4 ,

thereby contradicting (28).

APPENDIX C
EXTENSIONS TOLEMMA 11

Let d0 < d1 < d2 < . . . < dr be positive integers and
θ0, θ1, . . . , θr be respective positive reals in(0, 1) which are

defined iteratively as follows:θ0 is as in Lemma 11 andd0 =
m−k+3 for the respectivek therein. Fori = 1, 2, . . . , r, we
let

di =

⌈
di−1

θi−1

⌉

(32)

and

θi = exp

{
di−1

di
− 1 +

1

di
ln

(di−1

di

)}

. (33)

Write ki = m−di+3, for i = 0, 1, 2, . . . , r. It can be
verified that the conditions of Lemma 10 are implied by (33)
when we substituteθ ← θi, k ← ki and ℓ ← ki−1

therein. Hence, it follows by that lemma and (32) that for
i = 1, 2, . . . , r,

uki−1
≤ m−ki−1+3

m−ki+3
=

di−1

di
≤ θi−1 .

In particular,uk ≤ θ0 (as assumed in Lemma 11). Hence, if
we assume thatukr

= θr, we get that for everyj ≥ k = k0,

uj ≤ m−j+3

m−k0+3
=

m−j+3

m−kr+3
· dr

d0
. (34)

By (32), the factordr/d0, which equals
∏r

i=1(di/di−1), is at
least1/

∏r−1
i=0 θi. On the other hand, we can now use Lemma 9

with kr andθr replacingk and (the smaller)θ0. This will lead
to a smaller (i.e., better) power ofδ in the right-hand side
of (22), yet also to scaling by a factor ofdr/d0.

Example 2. We demonstrate the improvement obtained by
the above analysis when selectingr = 2. Taking θ0 = 0.3
(say) and assuming thatd0 = m−k+3 is a multiple of3, we
get d1 = d0/θ0 = (10/3) d0. Then, we get a lower bound
on θ1 from (33) by replacing the term(1/di) ln (di−1/di)
therein with the lower bound(1/8) ln (3/8), thereby yielding
θ1 > 0.439 > 7/16. In the next iteration, we compute
d2 = ⌈d1/θ1⌉, and, assuming thatd1 is a multiple of7, we get
d2 = (16/7) d1. By (33), we finally getθ2 > 0.504 > 1/2.
The factord2/d0 in (34) in this example is

d2

d0
=

d1

d0
· d2

d1
=

10

3
· 16

7
≈ 7.62 .

When m is very large so that we can assume large
di’s and ignore the ceiling in (32) and the rightmost term,
(1/di) ln (di−1/di), in (33), then (33) becomes

θi = eθi−1−1 ,

in which caseθi converges to1 as i → ∞.

APPENDIX D
ADDITIONAL PROOFS FORSECTION III-C

Proof of Lemma 16.Since both sides vanish atz = 1, it
suffices to show that the derivatives of both sides satisfy the
inequality in the other direction, namely, that

−1

z
+

1

2 − z
≥ 2 ln z

z
,

which simplifies to

1

2 − z
− 1 ≥ ln z .



12

Again, both sides vanish atz = 1, so we show that the
derivatives satisfy the reverse inequality:

1

(2 − z)2
≤ 1

z
.

Indeed, both sides are equal (to1) at z = 1, yet the left-
hand side is increasing on(0, 1], while the right-hand side is
decreasing.
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