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Abstract—A method is provided for constructing upper- (P2) g;,(x) # 0, for everyi € [].
triangular square matrices over the univariate polynomial ring (P3) There exists a column vectore d’ whose entries are

over a finite field, under certain constraints on the eigenvalues linearly independent oveF, such that for eveng € T
of the matrices. In some cases of interest, the degree of the ' '
G(B)v=0.

determinant of such matrices is shown to be the smallest
possible. The method is then applied to construct generator ] )
polynomial matrices of quasi-cyclic codes for correcting phased The elements ofl" will be referred to as thedesigned)
burst errors. Finally, an interpolation-based list decoding algo- eigenvaluesf G(x) [4, Ch. 1], and the vectar in (P3) will be
””:jm is preset”ted,forr:hesetmdets' V}’h'Ch’ f‘?rt,a Wl',df C:a”gg, of called thecommon eigenvectoNote that the eigenvalues are
cszghgn?:Srame ers, is shown to outperform existing list decoding | J .o ¢ the polynomiallet(G(z)) = H,»E 0 9ii(x) (€ Flz]).

] The degree of the polynomidlet(G(x)s will be (sloppily)
referred to as the degree & (x) and will be denoted by
deg G(z); clearly,deg G(x) = Ez‘em deg g; i(x).

Next we state our synthesis problem.
pyoblem 1. Given(F, ®,I', ¢), find an’ x £ matrix G(x) over
with the smallest degree, among all matrices that satisfy

Index Terms—List decoding, phased burst error, quasi-cyclic
code, spectral analysis and design, subspace subcode.

I. INTRODUCTION

In [19], Semenov and Trifonov presented a counterpart
the BCH bound for quasi-cyclic codes. Generalizations to (f[x] A
analog of) the Hartmann—Tzeng bound for quasi-cyclic codB&@Perties (P1)~(P3).
have since been presented in [22]. The rest of this work is organized as follows. We start

Motivated by those results, we consider here the proBy presenting in Section Il the relation of Problem 1 to
lem of synthesizing upper-triangular square matrices tver the design of quasi-cyclic codes. Then, in Section IIl, we
univariate polynomial ring over a finite field, under Cel"[airpresent lower bounds on the degree of matricag) that
constraints on their eigenvalues. Using the BCH-like boungtisfy properties (P1)—(P3), and in Section IV, we present
of [19], we then illustrate how our synthesis method cagmethod for constructing such matrices, which, in certasesa
be used to construct quasi-cyclic codes with prescribeok erpf interest, attain those bounds (thereby solving Problem 1
correction capabilities. We also present an interpolatiased for those cases). In Section V, we turn back to quasi-cyclic
list decoding algorithm for them. codes and illustrate an application of our method to the

Our formulation of the matrix synthesis problem, whiclyesign of such codes. Finally in Section VI, we present a list
could be of independent interest, is presented below. ifterea decoding algorithm for correcting phased burst errors avhil
for integersa < b, we denote by[a:b] the integer set ysing our codes, and we demonstrate that, for a wide range of
{a,a+1,a+2,...,b}, with [b] being a shorthand notation forcode parameters, our codes outperform existing list dagodi

[1:0]. schemes.
Let F = GF(q) and ® = GF(¢"), and fixT to be a

subset of®. Also, fix ¢ to be an integer ifh]. Given the
quadruple F, @, T, ¢), we are interested in constructing &x?
matrix G(z) = (gi;(z))i -, over F[z] with the following

Il. APPLICATION TO QUASFCYCLIC CODES

A quasi-cyclic[¢ x n, k] code (or an/-quasi-cyclic[¢n, k]
code) overF = GF(q) is a linear[¢n, k] codeC over F with

properties. _ _ _ the additional property that when the entries in a codeword
(P1) G(x) = (g,(x))i ;—, is upper-triangular, i.eg; ;(x) = are arranged (in a prescribed order) to form/ar n array
0 for i > j. over F', then re-ordering of the columns through a cyclic shift

results in another codeword @. If we represent each row
in a codeword array as a polynomial in the $&ffx] of all
polynomials of degree less thanover F, then the codeC
can be written as (see [11]):

C= {c(m) € (F,[z))* :
c(z) =u(r)G(z) Mop ((z" —1)-1),
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for some u(z) € (F[x])é} ;

where1 is the all4 row vector in F*, the operation tion”
stands for taking the remainder component-by-componeudt, a



G(z) = (gi’j(a;))ﬁj:l is an/ x ¢ generator polynomial matrix G(z) that satisfies properties (P3)—(P4) fdor = Tup.4,

over F[z].* As shown in [11], there is always such a generatdhereby guaranteeing a minimum distance (ov¥&) of at

polynomial matrixG(z) for C that satisfies properties (P1)-leastd; and, by (1), we would likeleg G(x) to be as small
(P2); in fact, it satisfies the following stronger propenghich as possible.

implies (P1)—(P2)). In fact, when deg G(z) is the smallest, the respective
(P4) There exists an upper-triangulax ¢ matrix H (z) over quasi-cyclic code is a subspace subcode of a Reed—Solomon
F[x] such that, over[z], code [7]. We state this in the next proposition.
H(x)G(z) = (2" —=1)- I, Proposition 2. Let ', n, d, b, h, ®, and o be as in

. . . . . Proposition 1 and le€rg be the[n, n—d+1, d] Reed—Solomon
(whereIll is the;dentlty matrix qf ordef). In particular, j4a Crs over @ whose set of roots is given Hy, ;g as
9i.i(x) dividesz™ — 1, for everyi € [{]. defined by (2). Giverf € [h] and a column vectow € ®*

WhenG (z) is such a generator polynomial matrix, the redunyhose entries are linearly independent ovEr define the
dancy ofC, as a linear code ovef, equalsieg G(x), namely, codeC by

the dimension &
C =Crs(v) = {c(z) € (Folz])® : c(z)-ve Crs} - (3)

. . . . .. ThenC is a quasi-cyclic[¢ x n,k] code overF which is
Conversely, ifG:(z) 1S ant > £ matrix ove.rF[m].that satisfies generated by a polynomial matrix that has the smallest degre
property (P4), then it generates a quasi-cyffia n, k] code among all polynomial matrices that satisfy properties (P3)
over I %4) with respect to the sét, ; 4 and the common eigenvec-

k=/tn—degG(x) . @)

For systematic encoding of generalized quasi-cyclic cod
(which include/-quasi-cyclic codes as a special case), see [14,
Section 2.5] and references therein. Proof. SinceCgg is cyclic over®, the codeC is quasi-cyclic
Proposition 1 below is (a modified version of) the BCHover F. Let G(z) be a generator polynomial matrix @f that
like bound of [19]. In our setting, the minimum (Hamming)satisfies property (P4). For eveny(z) € (F[z])* we have
distance of a quasi-cycli¢ x n, k| codeC over F' is measured "
in symbols of F*; name%/, we ]regardl‘ as having lengtm u()G(z) mop ((2" —1)-1) € C
over F¢, and the minimum distance is then the smallesind, so,
number of nonzero columns in any nonzéren array ofC.2 u(z)G(z)v MoD (2" — 1) € Cgrs .
This definition of minimum distance determines the cormecti
capability of C when handling/-phased burst errorsi.e.,
bursts of length? (or less) that are aligned with the columns w(B)G(B)v =0,
of the transmitted’ x n array.

It follows that for everyu(x) € (F[z])¢ and 8 € Tn.p.4:

» ] ) which implies thatG(8)v = 0 for every 8 € Ty 4, i.€.,
Proposition 1. Let C be a quasi-cyclid¢ x n, k] code over G(z) satisfies property (P3) with respectlg , 4 andv.
F = GF(q) whereged(n, q) = 1, and letG(z) be a generator  1ring now to showing the minimality ofieg G(x), let
polynomial matrix ofC that satisfies property (P4). SUPPOSE€gy () he an’ x ¢ polynomial matrix that satisfies proper-
in addition, thatG(z) satisfies property (P3) with respect 0o q (P3)—(P4) with respect 1, ; ; and v, and letC’ be the
the set quasi-cyclic[¢ x n, k'] code overF that is generated b’ ().
L =Topa= {a{ab“, . ,ab+d*2} , (2) We show thatC’ C C.

_ o o Let ¢(x) € (F,[z])* be a codeword of’. Then, for some
whered € Z*, b € Z, anda is a primitiventh root of unity in u(z) € (Flz])t

the splitting field,® = GF(¢"), of 2™ — 1. Then the minimum
distance ofC (over F¥) is at leastd. c(z) = u(z)G (z) mop ((z" —1)-1)

Proposition 1 follows essentially from [19] (for complete-and, so,
ness, we will include a proof based on Proposition 2 below). ,
Proposition 1 can serve as a design tool for quasi-cyclic c(f) = u(B)G'() ,
codes? Specifically, we seek a generator polynomial matrigence,

for everyg € I'np.q -

1To simplify the notation, the codewordgz) are defined here to be (row) c v=u(BG (Bv =0 for ever elubd
(-tuples overF,, [x], rather than elements of the modulE[z]/{z™ — 1))* ) B B) ’ yo amar

and, soG(x) is seen as a matrix ovéf|[z]. In that regard, we areinconsistentname|y,c(x) v € Crs. We conclude that(x) must be a

with the notation in [11].
2As shown in [11], by elementary operations on rows, the ma@ik:) codeword ofC. a

can be further brought into a reduced form whéeg g, ; (z) < deg g;,: (), . -
for every 7 < 7. Yet this reduction does not affect the diagonal entries an'caimof of Proposition 1.Let v be a common eigenvector of

therefore does not changeg G(z). G(z) with respect to the seff, ;4. ThenC plays the role
30n the other hand, the goal in [19] is to find a lower bound on thef C’ in the last proof and is therefore a subcode of the code

minimum distance ofC when C is seen as a code of lengtin over F. ; ; ; ;

See Appendix A for the adaptation of the setting of [19] tosour Crs (U) defined in (3) The COd@RS(v)’ '|n tur.n’. ISa supspace
4S0 can the Hartmann—Tzeng-like improvement obtained in [2&{,fgr subcode F)f a Reed-Solomon code with minimum distaf)ce

the sake of simplicity, we will refer here only to Proposititin thereby yielding the result. O



In view of the connection with subspace subcodes of ReeBroof of Lemma 5By properly selectings, we can assume
Solomon codes, the lower bounds & G(z) that we present without loss of generality that € J. Letv = (v vy ... v)T
in the next section are related in part to Theorem 4.4 in [fifl(a be a common eigenvector as in property (P3).JarJ, define
Proposition 3 below can also be proved using that theorem). e ney ho\T
The paper [7], however, does not present a general strategy v; = (vf vg Y )

for obtaining constructions that attain those bounds. - .
(wherevy = v). From the definition of a common eigenvector,

we have
I1l. L OWER BOUNDS ON THE DEGREE

Let F, @, T', and/ be as in Section |, and l&F(z) satisfy o .
properties (P1)—(P3) therein. We obtain here lower boumds @&nd, raising to the"~7th power, we get

G w=0, jelJ,

deg G(z), which apply wher¥ = h or whenT' has a certain a _ e 7
structure which will be of interest (e.g., for our quasidayc (B)v; » JEJ )
application). Now, when?¢ = h or whenJ = [0:|J|—1], the ¢ x |J|

Let P = P(I') = {m,m2,...} be a partition ofl’, such matrix
that any two element§,~ € T" are in the same subsete P, B g
if and only if they are conjugate with respect o (namely, (or]vz | .o )= ( v )iem,jg

— B’ i +
T= ﬁ. 'for Some; E.Z ).'For eachr € P, let Mx(z) be has full rank,|J| (< ¢), over ® [13, pp. 109-110], i.e., the
the minimal polynomial (with respect t6") of the elements . : .
set{v;},cs spans a linear space of dimensiof over ®. It

of v and letmy. = deg Mx(z) (thus,|x| < m-). follows from (7) thatrank(G(3)) < £ — |J|, i.e., there must

We prove in this §ection the next two proposition;. He.reD—e at least.J| indexesi ¢ [¢] for which g: ;(3) = 0. It follows
after, a sum (respectively, product) over an empty set indeéfi that (z — §)1/1 dividesdet(G(z)) = [[, ’[’;] gv4(x), and, since
1€ (2%4 1 1

as0 (respectively,1). G(z) is over F[x], we have closure under conjugacy, namely,
Proposition 3. When/ = h, (M (x))1| det(G(x)). O

degG(z) > |T'| - h. Proof of Proposition 3.For eachr € P, let J. be a largest

" . subset ofl0: h—1] such that, for some, ,
Proposition 4. For eachr € P, let p, be the largest integer [ ) Gr €™

(possiblyoo) such that, for somg,. € , ﬁgj en ifandonlyif jeJ,.
63rj enm for 0<j<pr. By Lemma 5,
Then, [T (M @)=t | det(G(=)) - ®)
deg G(z) > Z min(4, pr) - My 4 meP
TeP Noting that|J;| = |r| - h/m,, we get thatdeg G(z) >
= (6> me)+ Y pemn. (B) Zewer [al-ma =LA H
T pr>l T pa <t Proof of Proposition 4.By Lemma 5, Eqg. (8) holds when we

Remark1. The first term in (5) suggests that a minimumtake J, to be the sef0: min(¢, p,)—1], for everyr € P. [

degree matrixG(z) can be obtained by The sets/,. in the proof of Proposition 4 are very structured.

G(z) = ( H Mﬂ(ac)) G (x), One may yvonder if the bound (4) co_ntlnues t_o hold if each
px therein is replaced b/ |, whereJ; is an arbitrary subset

of [0:h—1] such that3? € = for somes3, € ® and every

j € Jr. The answer is generally false, as demonstrated by a

T pr >l

where G*(z) is an¥ x ¢ minimum-degree matrix for the set

I* = Ur prcem. L' counterexample in Appendix B.
The proofs of both propositions make use of the following
lemma. IV. CONSTRUCTION
Lemma 5. Letw € P and letJ C [0: h—1] be of sizdJ| < ¢ Let F, &, I', and ¢ be as in Section . We show a
such that, for some& < , construction of arf x ¢ matrix G(x) over F[z] that satisfies
7 , properties (P1)—(P3). In certain cases, the degre&(f)
{7 t =% forsomej € J} cm. (6) " will reach the lower bound of Proposition 4, thereby solving
Then Problem 1 for those cases.
(M,T(x))“” ’ det(G(z)) For our construction, we fixn > ¢ to be a divisor pfh
(e.g.,m = h) and~, to be a proper element &F(¢™) (i.e.,
when either? = h or J = [0:]J|-1]. ~o does not belong to any proper subfield@F(¢™)).

We use the notatio®, M, (x), andm,, for = € P, as in

Remark2. A given elementy in (6) may correspond to more Section IIl. We define the sgb* C P by

than onej € J. For example, we may have= {1}, 8 =1,
andJ = [0:¢-1]. O P*:P*(m):{wep : |w| < ¢ and m\mﬂ}.



Our construction will be of the form Our construction of the polynomial matri&*(x) in (9) is

iterative. For eachi € [¢], we construct an x ¢ matrix G;(z
G(z) = ( 1_{ M”(x)) G(x) ©)  over Flz), as follows:[ | )
TEP\P*
whereG*(z) is an/ x ¢ matrix that satisfies properties (P1)— B”g(x) Birlw) Bis(x) ... Biialx)
(P3) with respect to the sdt* = U,cp+m (COmpare with Gi(z) = _
Remark 1). : (Hwepi,H Mw(x)) -Gi—1(x) 5
For1l < s < i </, define the sets 0
. . (10)
Pis = Pis(m) = {” ePr i ss|nf< Z} ’ where Gy () is the “empty” (0 x 0) matrix and
and letl'; = Urep, ,m, i.e., I'; consists of all elements iR Bio(x), Bi1(2),. .., Bii1(z)
that belong to partition elements ¢ P* of size less tharn ’ " "
(thus,T% = (). are the coefficients iF'[x] of B;(z,y), namely,
As a first step in our construction @ *(z), we construct i1
for eachi € [¢] a bivariate polynomiaB;(z,y) € F[z,y] of Bi(x,y) = ZBij(x)yj ]
y-degree less thain with the property that par
B; (ﬁ,%*l) =0, foreverygel}. We then letG*(x) = Gy (z). As we show in Proposition 8 be-

: . low, the resulting matribG(x) in (9) satisfies properties (P1)—
To this end, we assume some ordering on the elements of eag with respegt to the s(z't) ©) prop (P1)

™ e P
T = {gml,ﬁm’ . ,gﬂﬂl} . Example 1. Suppose that = 2 and thatl" = 7; U7y, where
Next, for1 < s < i < ¢, we define the following polynomials T = {ﬁm} )
Pis(@) € Flal; T = {80,580},
pis@)= > ains@) [[ Me(), and where the minimal polynomial ¢f,, has degreen,, >
TEP; . 7' €Pi, s\ {7} 2. We takem = m,, andyy = [r,. Fori = 1 we have
wherea; » () is the unique polynomial i, [z] such that B1(z.y) =1 (regardless of’) and, respectively,
-1 G1(33) =(1 ) .
ai,w,s(ﬁﬂ',s) =70 " ( H MTr’ (571',3)) . . (
Py \{r} Turning toi = 2, we have
Note that for everyr € P* ands € [|r]], both~, and 3, s By(z,y) =1—poa(x)y=1—agm1(x)y=1—2zy,
are elements oGF(¢™~), with 3, , being a proper element ] ) o
of this field; henceg,_» .(z) is well defined. sinceas -, 1(x) = x is the unique polynomial irF,,[z] that
The following lemma is immediate. evaluates toyo = fr, atz = fr,. Hence,
Lemma 6. For 1 <s<i</andw € P;, () = _(! 7
; G*(z) = Go(2) ( 0 M, (2) ) .
Pialfre) =10 Finally, G(z) = M,,(z) - G*(z), and (8,, 1)T is a common
The sought bivariate polynomid;(z,y) € F'[x,y] is now eigenvector ofG(x) with respect to the sdf. The degree of
defined for eachi € [¢] by G(x) is mx, + 2my,, thereby attaining the lower bound of
i1 Proposition 4. O
Bi(w,y) = [[ (1 = pis(@)y) , Example 2. Suppose that = 3 and thatl’ = 7, U my U 73,
s=1 wherem; andm, are as in Example 1 and

where B (z,y) = 1. We have the following lemma.
T3 = {ﬁﬂgaﬁgr:;} )

and, in addition, assume that., > 3 and thatm,, | mn,

B; (8,7 ") =0. (e.g.,mx, = mg, = h > 3). We select agaim» = m,, and

Yo = Br,. The matricesG,(z) and Gz (z) will then be the

same as in Example 1. As fd@¥3(x), we will have

Lemma 7. For i € [2: {] and everys € T},

Proof. Given 8 € I';, let = be the unique subset iR, ; that
containsg; then g = . s for somes < |r| < 4, and for this
s we have by Lemma 6 that; ;(3) = 7. It follows that Bs(z,y) = (1—p31(2)y) (1 —psa2(z)y)

i—1 = 1—(p31(z) +p32(2)y +ps1(x)ps2(x)y®,
Bi (8,7 ) =] (1 =pis(®%") =0,
1

where

S

as claimed. O p371(l‘) = (13771-171(1’)Mﬂ-3 (I’) —+ a377‘-371(9§')Mﬂ1 (’I) R



with a3 -, 1(z) being in Fy,_ [z] such thatas , 1(8r,) =
Bry /My (Br,) @nd az -, 1(x) being in F,  [r] such that
a3,7r3,1(ﬁ773) = 571'1 /MTH (6”3)7 and

P3,2(T) = a3,75,2(7)

is in £, [r] such thatas , »(0%,) = Bx,. Hence,
G*(z) = Gs()
1 —p31(x) —p3a(x) p31(z)psa2(z)
= 0 Mz, () —x My, (z) )
0 0 M, (x) My, ()
andG(z) = M,,(z) - G*(x). Note that
P3,1(Bry) = 03,1(Brs) = 03,2(BL,) = By

which, in turn, implies thatBs(3, ;') = 0 for § € I'}
m U (see Lemma 7). It follows thats2 G, 1) is a
common eigenvector of#(z) with respect to the sdf. The
degree ofG(x), which equalsm,, + 2m,, + 3m,,, attains
the lower bound of Proposition 4. O

Proposition 8. Given (F,®,I',¢), let G,(xz) be obtained
from (10) by iterating ovei € [¢]. Then the matrix

H Mﬂ(m)) -Gy(x)

TeEP\P*
satisfies properties (P1)—(P3) with respectfo A common
eigenvector is given by

£—2

— (T ) (11)

for the selected element,.

Proof. Properties (P1) and (P2) are straightforward. In ord
to establish (P3), it suffices to show that for everyg I'*,

Gg(ﬁ)v =0.

To this end, we show by induction ane [¢] that for every
g el

wherev; = (vi~! nr
v).

The induction basei(= 1) is obvious, sincd’j is empty.
Giveni > 1, by applying the induction hypothesis ie-1 it
follows that for everys € I';, the lasti—1 entries ofG;(3)v;
are all zero, since they form the vect, cp, ., M=(0)) -
G,_1(B)v;—1. It remains to show that for thesgs, the first
entry of G;(3)v; is zero as well. This entry, in turn, is given

by
ZB .

where the second equality follows from Lemma 7.

N2 (i.e., v; is thei-suffix of

% = B (B ) =

O

For the selected value of (which determines the s@* =
P*(m)), the degree olG(x) of our construction equals

( Z mﬂ)+2|7r\ My

TEP\P* TeEP*

deg G(x (12)

In view of Proposition 4, we can identify seiswhere this
degree is the smallest possible. E.qg., this will be the dabe i
satisfies the following two conditions.
(i) For some divisorn > ¢ of h, each element of \ F' is
a proper element of an extension field ®F (¢™).
(if) Each subsetr € P(I") takes the form

{p;r, 5e, B ,...,ﬂg""“}.

V. BACK TO QUASI-CYCLIC CODES

We now turn to the motivating application of this work,
namely, designing quasi-cyclic codes. We start with the fol
lowing proposition, which provides a sufficient conditidrat
the construction of Section IV yields a generator polyndmia
matrix of a quasi-cyclic code.

Proposition 9. Let F = GF(g) and ® = GF(¢"), and let
¢ € [h] andn € Z* be given. Also, lef” C & be such that
p™ =1 for everyg € T'. Then the construction a&(x) for

(F,®,T,¢), as given in Section |V, satisfies property (P4).

Proof. By the construction it follows that for every € [¢],
each entry along row of G(z) is divisible (in F[z]) by the
diagonal entryy; ;(z). Therefore, we can expre&s(z) in the
form

G(z) = D(z)G(z) , (13)

whereD(x) is an/ x ¢ diagonal matrix ovel’[x] whose main
diagonal is given by

(D(x))i,i = gi,i(z) 5

and G(z ) is an ¢ x ¢ upper-triangular unimodular matrix
Qver F[z] (asdet(G(z)) = 1; in fact, D(z) is the Smith
normal form of G(x), sinceg, ;(x)|git1,i+1(x) for all i
[(—1] [4, Ch. S1]). Hence,@(x) has an upper-triangular
inverse,(G(z))~*t, over F[z].

By the construction in Section IV it also follows that
every diagonal entryy; ;(x) is a product of distinct minimal
polynomials of elements} of I'. The assumptions” = 1
therefore implies thag; ;(x) dividesz™ — 1, for everyi € [/].

Let E(x) be thel x ¢ diagonal matrix overF'[x] whose
main diagonal is given by

(B(z))ii=(z" = 1)/gii(x), i€ll].

By (13)—(14) we then get thati(z) satisfies property (P4)
with H(z) = (G(z)) 1 E(z). O

Now, let F = GF(q), letn € Z* be such thagcd(n, q) =
1, and let® = GF(¢") be the splitting field of:™ — 1. Given
¢ e [h],d e Z", andb € Z, let the setl', ;4 be defined
by (2), wherex is a primitiventh root of unity in®. Applying
the construction of Section IV toF, ®,T', 4, ¢) with some
divisor m > ¢ of h yields an/ x ¢ matrix G(z) over F[z]
which, by Proposition 9, generates a quasi-cy¢fic< n, k]
codeC over F, which we denote hereafter by

CF (Fa,b,da f’ m)

(the parameten is determined byy). This code has dimension
k = ¢n — deg G(z), wheredeg G(x) is given by (12) (and

ie (], (14)



we would selectn so as to minimizeleg G(x)). Moreover, codes overGF(q‘) (Example 4) and/-level interleaving of
by Proposition 1, the minimum distance (ov&f) of C is BCH codes ovelr” = GF(q) (Example 5).

at leastd. And as demonstrated in Section IV, in Certai%xample 4. Forn=q"—1,d< a—1,andbc {0,1}, let

cases of the sef, ;4 (e.9., when conditions (i)—(ii) therein I — (-[1/(]: note thath’ > h when# does not divide: (when

hold), the attained dimension is the largest possible assu . S . .
ing such a BCH-like design strategy. When this happen@h’ the rest of this example coincides with the respective

. case in Example 3). We can construct a (shortened quasi-
Cr(Taup,d, ¢, m) is equal to the subspace subcoBgs(v) S , ) .
of Cre as defined in (3), withv taken as the common cyclic) linear [¢ x n, k'] code C' over F' by shortening a

eigenvector ofG(x) with respect tal', ; 4. Note that in any Erln;rzzvioics?cjt(i)\(/jeé rggleggtzg B ! O\;iriﬁlzg )W(f;gs,d
case,Cr(Tap.4,f,m) is always a subcode @rs(v). y quernte:s.d ’

is a primitive element inGF(¢"). The minimum distance
Remark3. As can be seen from (12), the inclusion of aqover F*) of C’ is at leastd, and its redundancy(n — &’
eigenvalues in I'qpq generally results in an increase ofiheing measured in symbols @), is given by (15), except
deg G(x) (and therefore in a decrease kf by the degree that therein is replaced by’ 0
of the minimal polynomial of3; this holds even whef,, ; 4 N
contains other conjugates of, unless their number is at=x@mple 5. Forn =g¢* —1,d <+/n—1, andb € {0, 1},
least/. Moreover, the effect odeg G(z) of eigenvalues that €t Ceci be @ primitive BCH code of length over 1 =
belong to small (proper) subfields @ can be larger than GF(¢) defined by the consecutive root Siq”e'm@bvd (as
just adding the degree of their minimal polynomial; e.g., afl (2), wherea is a primitive element irtGF(¢")). The:ﬁ-level
inclusion of an element of” in T, 4 results in an increase interleaving ofCgcn produces g@quas&cych[_ﬁ_xn,ék '] code
of deg G(z) by ¢ (and not just byl). So the common strategy V€' F'ZWh'Ch e denote by’gcy. The minimum distance
used when designing BCH codes, of constructing a desigri@¥€" £°) 0f Cgoy IS at leastd, and its redundancy (when
root setl,, ;4 Which intersects as few and as small conjugacyeasured in symbols df) equals

classes as possible, becomes less effectivebasomes larger

than1. O] é(n . k//) _

Example 3. Whenn = ¢" —1,d < \/n — 1, andb € {0, 1}, 040 [%l(d—Z)-‘ h ifb=0

the seftl’ satisfies conditions (i)—(ii) in Section IV for an . .
divisor m“b>d £ of h (see [16, p. (2)32( )Problem 7.1]). In thiys(see [16, p. 260, Problem 8.12]). It is easy to see that (16) is

0 [%(d—ﬂ ho ifb=1 )

case we get from (12) that the redundancyCof(T's ., ¢, m) generally larger—and is never smaller—than (15). O
(as a linear code oveF’) equals Table | compares the redundancies of (shortened) quasi-
cyclic [¢ x n, k] binary codes obtained by the constructions
V}l(d—l)w h ifh—1 in Examples 3-5, for several choices &©fn (= 2"—-1), and
In—k = deg G(z) = a ’ designed minimum distaneg in all cases we have takén= 0
0+ [q’i};l(d,Q)w hifb=0 (the last two columns in the table will be referred to in

(15) Section VI)®

and that is since the inclusion of an elemgnin I',, , 4 does

not increase the redundancydfequals the;‘th power of some VI. DECODING

other element il ; 4 (for b = 0, the additive tern? is due In this section, we present a list decoding algorithm for the
to the element € I, 5, 4). Observe that if, in additior,|h, codeCr(I's5,.q4,¢, m) defined in Section V. Our error model
then (15) is known to be the redundancy (measured in symbuigl be that of /-phased burst errors: an error means that a
of F) of an [n, k] primitive BCH code oveiGF(q%). In fact, column of the transmitted x n array (overF') gets corrupted
when/ | h, we will get precisely such a BCH code if we applyin at least one of its entries, and the number of errors is the
the construction of Section IV td', ;4 and selectn = ¢ number of columns that are altered.

therein. Indeed, when doing so, the common eigenveetor Recalling thatCr (T, 5.4, ¢, m) is (a subcode of) the code
which is given by (11), is oveGF (¢*), and for every codeword Crs(v) defined in (3), our discussion here will be more gen-
c(z) € Cr(Tap.a, !, 1), the polynomiak(z)-v is overGF(¢*)  eral in that we present a list decoding algorithm for subspac
and vanishes at the elementsIaf , 4; in other words, it is subcodes of generalized Reed-Solomon (GRS) codes. Our
a codeword of a BCH cod€gcy over GF(¢%) of length algorithm is based on a similar idea that led to the list dewpd

n = (¢")"* — 1. The dimension ofCpcy (over F) is the of alternant codes (as subfield subcodes of GRS codes), based
same as that o€ (T, 5.4, ¢, ¢) and, therefore, the two codeson the Koetter—Vardy (in short, KV) algorithm [10].

are in fact equivalent. (The conditiofj & is assumed also in . N o
the construction of the BCH-like quasi-cvclic codes in §3] 5Recall that for fixed! and sufficiently large lengths, primitive BCH codes
. q y have (asymptotically) the smallest redundancy among all kremmstructions
and these codes, too, are equivalenCigry;.) of linear code families, except when the field sizé isr 8 (see [18] and [21]).
Thus, quasi-cyclic codes provide us the flexibility of aitai  °The parameterét, n, d) in the table are in the range where the construc-

. . . . . R tion in Example 4 still has a smaller redundancy than the cocison in [18].
ing dimensions as in (15) also whens not divisible by/. [J According to the tables in [6] (which intersect with Tablerl four parameter

. . . . choices) the construction in Example 3 fo6=2,n=127,d=6) improves
We end this section by comparing the redundancy n Exam/' one bit over the smallest redundancy currently known foedr codes of

ple 3 with those obtained by two schemes: shortening BQéhgth 127 and minimum distancé over GF(22).



TABLE |
REDUNDANCY OF (SHORTENED QUASI-CYCLIC [¢ X n, k] CODES OVERGF(2).

Redundancy

h ¢ n ¢ —Example3 Example 4 Examples '
5 2 31 6 17 20 22 3 10
7 2 127 6 23 26 30 3 42
9 2 511 22 137 152 182 11 46
5 3 31 6 23 27 33 3 10
7 3 127 6 31 39 45 3 42
10 3 1,023 30 253 303 423 15 68
5 4 31 6 24 36 44 3 10
7 4 127 6 32 36 60 3 42
9 4 511 22 175 232 364 11 46

Let F = GF(q) and® = GF(¢"), and letCqrs € ®,[r] Cgrs. This applies in particular to decoding with a list size

be the following[n, n—d+1, d] GRS code ovef: of 1, which corresponds to bounded-distance decoding (with
el decoding radius = |(d—1)/2]) and can be performed by any
Cars = nif(a)a? © f(z) € Pp_gprl] b, of the known decoding algorithms for GRS codes. For larger
{]z_:o T il ]} list sizes, however, the smaller alphabetXf(compared to
where «g, aq,...,a,_1 are (the code locators which are)éaa?!‘?]ﬁsegsd;ncg?:y rc:(lj?ﬁg ftg guarantee a largénan the
distinct elements in®, and 79,71, ..,7,_1 are nonzero 9 9 CRs.

Figure 1 presents our interpolation-based list decoding

(column multipliers) in®. Given? € [h] and a column vector algorithm for the codeC. Among its input parameters, the

P ; ) . i
v € ®° whose entries are linearly independent o¥erdefine algorithm is provided with the target list sizb and two

the codeC by nonnegative integers < r < L which play a role in the
C=Cgrs(v) = {c(z) € (Fu[z])t : e(z)-v e Cars} - interpolation step of the algorithm (Step 1). The decoding

. . . radiusT can be any positive integer that satisfies the inequalit
Note thatCggrg is not necessarily a cyclic code ovérand, T yP 9 a y

therefore,C is not assumed to be quasi-cyclic in this section; T .o, (d L. r) (18)
nevertheless, we follow the notational convention of prasi n TA\n )7
sections in regarding x n arrays overF as elements of where

(Fn,[xDZ- (L+1)6 _ (L+17r) _ (f+1) (0_1)

Let ¥ = spanp(v) € ® be the/-dimensional subspace Oy (6, L,7,7) = ~2 2 ~ 2 (19)
of ® over I that is spanned by the entries of With any (L+1)(r=T)
a(z) € (F,[2])", we associate the following polynomial  (with ¢ standing for the alphabet size G and & for the

relative minimum distance of the underlying codg;grs;
typically, » and 7 are taken so that (19) is maximized—see
in the set¥,, [z] of polynomials of degree less thanover .  discussion after Lemma 10). Tlie,, w. )-weighted-degree of
Accordingly, we can represeiit through the following sub- a bivariate polynomiad)(z, 2) € ®[x, 2] is denoted in Figure 1
space subcode dcrs: by deg,,, ,,. @, and the notatiomult{Q, (x, z0)} stands for
= the multiplicity of a bivariate polynomial)(z, z) € @z, z] at
€ =Cors NEnla] (17) the point(zg, z9) € ®2. e e i
Let c(x) € C be the transmitted x n codeword and let  The algorithm is a rather straightforward extension of the
y(z) = c(z) +e(x) be the received x n array overF’, where KV algorithm when applied to the decoding of alternant codes
e(z) is anf x n error array overF’ containing a number of and, respectively, the analysis of the latter carries ovesur
nonzero columns which does not exceed a prescribed decodigorithm, with the sizeg, of the base field now replaced by
radiust. Writing the size,¢’, of the set®. We will give here an outline of the
_ n—1 _ analysis, following the exposition in [169.6].

Cl@)=Cot Cra ...+ Cpaz"™" =cz) v Conditions (20) and (21) determine the number of signif-
and icant coefficients of the polynomial)(z, z) that is sought
in Step 1. Given an indey € [0:n—1], when A = Y]
(respectively,A € ¥\ {Y;}), the condition in (22) translates
(both inX,,[]), the distance betweed(x) andY (z), denoted into ("}") (respectively("7")) homogeneous linear equations
d(C(z),Y (x)), stands for the number of errors that havén the coefficients of)(z, z). The inequality (18) guarantees
occurred, namely, the number of indexefr whichY; # C;. that the number of (unknown) coefficients @z, y) exceeds

Clearly, any list decoder folCqrs can be applied to the number of equations and, therefore, we can always find
decode any subset—and therefore any subspace subcodea—bnzeroQ(z,y) in Step 1 (see [16, Lemmas 9.5 and 9.7]).

Az)=Ag+ Az +...+ A, 12" P =a(z) v

Y(z) =Y+ Yiz+ ...+ Y, 2" =y(z)- v



(r,7) yields the expression for the (finite list size) Johnson

Input: bound [16,§9.8 and Problem 9.10], which, fof — oo,
List size L, multiplicities r, 7. approaches (from below) the expression
Decoding radiug satisfying (18).
Received wordY (z) = Z;.:Ol Yz’ € 8,[]. 0, (5) = 2 — 1 (1 1. .5) ) (23)
1) Interpolation: Find Q(z, z) € ®[z, z] \ {0} such that 7 o-1

Remark4. When7 > 0, the number of interpolation points in
dego, @ < L, B (20) Step 1 in Figure 1 ig;‘n; so, in that respect, our algorithm
degy , 4@ < r(n—7)+77, (21)  has the same drawback as the KV algorithm when the latter

is used for decoding alternant codes oGt (q¢*) (such as the
] codes in Example 4). On the other hand, whege= 0, the
mult{Q, (a;, A/n;)} > { r 'ftrf]‘l =Y; (22)  humber of interpolation points is only; this is also the case
otherwise. where the KV algorithm reduces to the Guruswami-Sudan
2) Root-finding:Calculate the set algorithm [16,§9.5]. O
Remark5. Suppose thaf is any code of lengthn and mini-
F= {f(m) € Cn—anfz] ¢ (2~ f(2)) |Q($>Z)} * mum distancel overanyalphabet of size¢’, and letr and L
3) Calculate the set be' positi\(e integers that sat.isfy (18) for'so(mef).' Then there
) exists a list decoder faf which returns lists of size at mogt
= - that always contain the correct codeword, provided that the
— — . Npd -
S = {C(x) N Z(:) ni f(eg)x” number of errors (when measured in symbols)fdoes not
= exceedr (see [16,59.8]). However, in general, such a decoder
f(z) € F and d (C(z),Y (z)) < T} : is not guaranteed to be efficient. The KV algorithm (for list
. _ decoding alternant codes ovéit(¢)) and the algorithm in
Output: List S of (no more than) codewords ofC. Figure 1 (for list decoding” overX. = span.(v)) are efficient
when/ is fixed or whenr = 0. O

It follows from Remark 5 that the inequality (18) is suffi-
cient for having a list decoder for any of the codes preseinted

There are known algorithms for implementing Steps 1 and®¥@mples 3-5. To the best of our knowledge, maximizing (19)
efficiently [1], [8], [9], [12], [15], [17]. over (r,7) yields, in general, the best trade-off between

The next lemma parallels Lemma 9.8 in [16] and establish@8d L currently known for these examples. And as noted in

the correctness of the decoding algorithm. Remark 5, whenl |n.(18) is taken as the designed minimum
_ distance, then the list decoder for Examples 3 and 4 is also

Lemma 10. GivenY(z) € X, [z], suppose that)(z,z) € guaranteed to be efficient (assuming fixédor 7 = 0).
®fz,y] \ {0} satisfies conditions (20)-(22). Lef(z) € Moreover, by a result of Gopalaet al. [5], in many cases
®n—q41(x) be such that the respective codewd@{z) = it js also efficient for the code®’ in Example 5. Specifically,
> i—o njflaj)a? of Cars satisfiesd (C(z), Y (z)) < 7. givenr and L, that satisfy
Then,Q(z, f(x)) =0, namely,z — f(z) dividesQ(z, z).

and for everyj € [0:n—1] and A € X:

Fig. 1. List decoder for the cod& defined by (17).

_ T d _
Proof. DenoteZ = {j : f(a;) = Y;/n;} andZ = [0:n—1]\ <6 (nJJo,T, 7") (24)
Z, and suppose thafZ| < 7. It follows from (22) that
Q(z, f(x)) is divisible by (which is the inequality (18) witlf = 1), Algorithm 2 in [5] is
B shown therein to be a decoder 1¢¢ with decoding radius
[[@—a) [](@—a), and list size bounded from above by
JeT JjET n
L K
which, in turn, has degree ( . )LS" ; (25)
\Zlr + [ZIF = nr+ [Z|(F—7) where
> nr+7(F—r)=r(n—7)+7T. d
L= and k= |logy, | —— .
Hence, by (21) it follows thaQ(z, f(z)) = 0. O d— 2\d-71

Thus, if the number of-phased errors does not exceed The inequality (24) is weaker than (18) in that may be
then the returned lis§ must contain the correct codewordsmaller than the smalledt that satisfies (18) for a given.
Moreover, sincedeg, ; Q(z,2) < L, the listS contains at Yet (25) is generally larger than that which means that the
most L codewords. list produced by Algorithm 2 in [5] can be pruned to at mést

Observe that (19) is non-increasing in the alphabet size codewords.
which means that we may gain in the decoding radius com-We conclude that while Examples 3-5 have the same
pared to the underlying codézrg, for which we would need guarantee for list decoding performance, in Example 3 we
to substitute/ = h in (18). The maximization of (19) over pay the smallest redundancy for it.



The last two columns in Table | contain paits L) that are where the last inequality follows fromi < h. Hence, there
attainable by (18), for the special case= d/2; in this case, exists a vectow = Vw that belongs to none of the bad sets.
the smallestL equals|2d/n]| (see Appendix CJ.Note that O
in this case, =k =1 and Ly = L in (25) and, so, Eqg. (25) . ,
evaluates t@L. Remark6. The condition? € [h] in Lemma 11 can always be

It is yet to be found whether there is a counterpart of wu'g€t Simply by (possibly) replacing with an extension field
algorithm (as in [3] and [20]) that can replace Figure 1. orf¥ @ Of extension degree(/h]. L
can speculate that for the same p@irL), the multiplicity »

would be replaced in such an algorithm Hy-r, thereby APPENDIXB
making such an algorithm favorable in the high-rate range. COUNTEREXAMPLE
We show here by a counterexample that, in general, the
ACKNOWLEDGMENT

) ) bound (4) no longer holds if each, therein is replaced by
The authors would like to thank the reviewers for thelwaL where J,. is an arbitrary subset df): h—1] such that
comments and suggestions. ﬁ?rj € 7 for someg, € ® and everyj € J,.

APPENDIXA Example 6. Suppose that is a multiple of an integet > 1
RELATIONSHIP TO THE MODEL IN[19] such thath/t > ¢ > 2. Let £ be a primitive element i, let

We point out here the connection between our setting § be an element irGF(q") \ F, and leta(x) be the unique
Section Il and the setting in [19]. Given a quasi-cydfien, k] Polynomial in %, ] such thata(¢) = w (since( is primitive,
codeC over F = GF(q), the goal in [19] is to find a lower such a polynomial exists). Take= {0,¢,2t, ..., ((~1)t} and
bound on the minimum distance & whenC is seen as a F—fed . ey
code of length¢n over F, rather than as a code of length =& ged}

over F*. Instead of just requiring property (P3), the analysigand, so;> = {I'} and.J = .J), and consider thé x ¢ matrix
in [19, §lll.B] considers more generally the linear subspace

(“eigencode”)C C F** which consists of all vectors iR that L a(x) a(x) ... a()
are orthogonal to the following eigenspace o®er GF(q¢"): G(x) = 0 (26)
V={ved’ : G(B)v=0 forevery g € I'} : Mr(z) - I—1

0
(namely,C = {e € F* : e-v = 0 for everyv € V}). WhenC

contains nonzero vectors, the caflenight potentially contain where Mr(x) is the minimal polynomial of with respect to
¢ x n arrays in which only one column is nonzero (and that'. Lety be the element-w - Zf;g £ in @, and consider the
column is then a vector of). Therefore, to fit our setting following /—1 vectors

(where we are interested in the minimum distance measured , A . T

in symbols of F¥), we needC to be the trivial codg0}. The v; = (’yq] =29 =3 e 1) ,jeJ\{(t—1)t}.
next lemma shows that this condition is, in fact, equivatent

property (P3), provided that e [h]. It can be readily verifieq tha@(5)v; = 0 for every 8 € F
) . andj € J\ {(¢{—1)t}. Sincel < h/t, we get by the choice
Lemma 11. For ¢ € [h], letV be a linear subspace @" with ¢ ¢ that the powerd, ¢, €2, ..., /=2 are linearly independent

the property that no nonzero vector #if is orthogonal toV.  gver GF(¢*) and,a fortiori, are also so oveF. In addition,
Then there exists a vectar € V whose entries are linearly ~ is defined through a (unique) linear combination over
independent over. GF(q") of these powers, and this linear combination contains

Proof. Let V be an¢ x r matrix over® whose columns form €lements that are not iff; hence, all the entries imp—and

a basis ofY, and let€ be the set of all nonzero vectors intherefore all the entries in eaaly—are linearly independent
F* with a leading nonzero entry equaliig We show that OVer F. We conclude that each; is a common eigenvector
there exists a column vectas € ®" such thateVw # 0 for With respect to the sef’, as in property (P3) (moreover,

everye € &; the vectorVw can then be taken as For every DY [13, pp. 109-110] it follows thawo,vy,...,v,—o are
e € &, define the “bad set” linearly independent ove®, thus spanning the right kernel
of G(B) for every 8 € T'). The degree oiG(x) in (26) is

Vie)={we e : eVw=0}. (6—1) - deg My(z) = (f—1)mp = ((—1)h, while the lower
Clearly, V(e) is a linear subspace @"; furthermore, by the bound in (4), whemr is replaced by.Jr| = |J| = ¢, evaluates
assumption in the lemma/(e) # ®". Therefore,[V(e)| < 10 ¢h. O
|®|"~! and, so, ranging over at € &, the total number of
vectors in the bad sets is bounded from above by APPENDIXC

¢ -1 o 1 . DECODING RADIUSd/2

[VeeeV(e)] < Z Vie)l = -1 21" < -1 I, We start with the next lemma, which characterizes a range

ecs of parameters for which (18) (or (24)) can hold only when

"Whenr = d/2, there are in fact simpler alternatives to the KV algorithmr < (d+1)/2.
or to Figure 1; see, for example [262].



Lemma 12. For n > (1/8) - (¢/(0—1)) - (d + 2)?,

n-0, <d)<d+1,
n 2

whered,(9) is defined in (23).

[1]
@7)

(2]

(3]
Proof. Starting from

(4]
(5]

>1 o
n>-.— .
8 o—1

it is fairly easy to see that the latter inequality is obtalifey

simplifying the inequality
2
5 ond o (d
- —— (=41 :
a1 (" o1 <2+ ))
. . . rTES]
Taking the square root of both sides and rearranging terms
yield

(d+2)?,

(6]

(7]

(9]

o—1 ond d
— | n—14/n?%— <-+1
o o—1 2
[10]
which, in turn, is equivalent to (27). Oy

Since the right-hand side of (18) is bounded from abo\&?]
by 6,:(d/n) (and approaches it from below when maximizinglg]
over (r,7) and takingL to infinity), we get that the inequal-
ity (18) holds only whenr < |(d+1)/2].

Next, we consider the special case= d/2.

(14]

Lemma 13. If d is even andr = d/2, then the smallesk for [13]

which (18) holds is
[16]
L= fjJ 7 (29)

and this minimum is attained fofr, r) (L—1,0); when
o =q" =2, it is also attained for(r,7) = (L, 1).

(18]

Note that the expression (28) is the largest size of ar[%]
constant-weight code of length and minimum distancel

over an Abelian group, where the constant weight /8. [20]

Proof of Lemma 13For T = d/2 = n§/2 ando = ¢* we can [21]
rewrite (18) as

(L4+1)(L—r+7) - g > <L+21_T) + (T_gl)(a—n .

[22]

Denotings = L —r, and noting that the last inequality cannot
hold if s = # =0, we obtain

(L+1) -

10
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