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Abstract—A method is provided for constructing upper-
triangular square matrices over the univariate polynomial ring
over a finite field, under certain constraints on the eigenvalues
of the matrices. In some cases of interest, the degree of the
determinant of such matrices is shown to be the smallest
possible. The method is then applied to construct generator
polynomial matrices of quasi-cyclic codes for correcting phased
burst errors. Finally, an interpolation-based list decoding algo-
rithm is presented for these codes, which, for a wide range of
code parameters, is shown to outperform existing list decoding
schemes.

Index Terms—List decoding, phased burst error, quasi-cyclic
code, spectral analysis and design, subspace subcode.

I. I NTRODUCTION

In [19], Semenov and Trifonov presented a counterpart of
the BCH bound for quasi-cyclic codes. Generalizations to (an
analog of) the Hartmann–Tzeng bound for quasi-cyclic codes
have since been presented in [22].

Motivated by those results, we consider here the prob-
lem of synthesizing upper-triangular square matrices overthe
univariate polynomial ring over a finite field, under certain
constraints on their eigenvalues. Using the BCH-like bound
of [19], we then illustrate how our synthesis method can
be used to construct quasi-cyclic codes with prescribed error
correction capabilities. We also present an interpolation-based
list decoding algorithm for them.

Our formulation of the matrix synthesis problem, which
could be of independent interest, is presented below. Hereafter,
for integers a ≤ b, we denote by[a : b] the integer set
{a, a+1, a+2, . . . , b}, with [b] being a shorthand notation for
[1 : b].

Let F = GF(q) and Φ = GF(qh), and fix Γ to be a
subset ofΦ. Also, fix ℓ to be an integer in[h]. Given the
quadruple(F,Φ,Γ, ℓ), we are interested in constructing anℓ×ℓ
matrix G(x) = (gi,j(x))ℓ

i,j=1 over F [x] with the following
properties.
(P1) G(x) = (gi,j(x))ℓ

i,j=1 is upper-triangular, i.e.,gi,j(x) =
0 for i > j.
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(P2) gi,i(x) 6= 0, for everyi ∈ [ℓ].
(P3) There exists a column vectorv ∈ Φℓ whose entries are

linearly independent overF , such that for everyβ ∈ Γ,

G(β)v = 0 .

The elements ofΓ will be referred to as the(designed)
eigenvaluesof G(x) [4, Ch. 1], and the vectorv in (P3) will be
called thecommon eigenvector. Note that the eigenvalues are
roots of the polynomialdet(G(x)) =

∏
i∈[ℓ] gi,i(x) (∈ F [x]).

The degree of the polynomialdet(G(x)) will be (sloppily)
referred to as the degree ofG(x) and will be denoted by
deg G(x); clearly, deg G(x) =

∑
i∈[ℓ] deg gi,i(x).

Next we state our synthesis problem.

Problem 1. Given(F,Φ,Γ, ℓ), find anℓ×ℓ matrix G(x) over
F [x] with the smallest degree, among all matrices that satisfy
properties (P1)–(P3).

The rest of this work is organized as follows. We start
by presenting in Section II the relation of Problem 1 to
the design of quasi-cyclic codes. Then, in Section III, we
present lower bounds on the degree of matricesG(x) that
satisfy properties (P1)–(P3), and in Section IV, we presenta
method for constructing such matrices, which, in certain cases
of interest, attain those bounds (thereby solving Problem 1
for those cases). In Section V, we turn back to quasi-cyclic
codes and illustrate an application of our method to the
design of such codes. Finally in Section VI, we present a list
decoding algorithm for correcting phased burst errors while
using our codes, and we demonstrate that, for a wide range of
code parameters, our codes outperform existing list decoding
schemes.

II. A PPLICATION TO QUASI-CYCLIC CODES

A quasi-cyclic [ℓ × n, k] code (or anℓ-quasi-cyclic[ℓn, k]
code) overF = GF(q) is a linear[ℓn, k] codeC over F with
the additional property that when the entries in a codeword
are arranged (in a prescribed order) to form anℓ × n array
overF , then re-ordering of the columns through a cyclic shift
results in another codeword ofC. If we represent each row
in a codeword array as a polynomial in the setFn[x] of all
polynomials of degree less thann over F , then the codeC
can be written as (see [11]):

C =
{

c(x) ∈ (Fn[x])ℓ :

c(x) = u(x)G(x) MOD ((xn − 1) · 1) ,

for some u(x) ∈ (F [x])ℓ
}

,

where1 is the all-1 row vector inF ℓ, the operation “MOD”
stands for taking the remainder component-by-component, and
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G(x) = (gi,j(x))ℓ
i,j=1 is anℓ×ℓ generator polynomial matrix

overF [x].1 As shown in [11], there is always such a generator
polynomial matrixG(x) for C that satisfies properties (P1)–
(P2); in fact, it satisfies the following stronger property (which
implies (P1)–(P2)).
(P4) There exists an upper-triangularℓ× ℓ matrix H(x) over

F [x] such that, overF [x],

H(x)G(x) = (xn − 1) · Iℓ

(whereIℓ is the identity matrix of orderℓ). In particular,
gi,i(x) dividesxn − 1, for everyi ∈ [ℓ].

WhenG(x) is such a generator polynomial matrix, the redun-
dancy ofC, as a linear code overF , equalsdeg G(x), namely,
the dimension is2

k = ℓn − deg G(x) . (1)

Conversely, ifG(x) is anℓ× ℓ matrix overF [x] that satisfies
property (P4), then it generates a quasi-cyclic[ℓ × n, k] code
over F .

For systematic encoding of generalized quasi-cyclic codes
(which includeℓ-quasi-cyclic codes as a special case), see [14,
Section 2.5] and references therein.

Proposition 1 below is (a modified version of) the BCH-
like bound of [19]. In our setting, the minimum (Hamming)
distance of a quasi-cyclic[ℓ×n, k] codeC overF is measured
in symbols ofF ℓ; namely, we regardC as having lengthn
over F ℓ, and the minimum distance is then the smallest
number of nonzero columns in any nonzeroℓ×n array ofC.3

This definition of minimum distance determines the correction
capability of C when handlingℓ-phased burst errors, i.e.,
bursts of lengthℓ (or less) that are aligned with the columns
of the transmittedℓ × n array.

Proposition 1. Let C be a quasi-cyclic[ℓ × n, k] code over
F = GF(q) wheregcd(n, q) = 1, and letG(x) be a generator
polynomial matrix ofC that satisfies property (P4). Suppose,
in addition, thatG(x) satisfies property (P3) with respect to
the set

Γ = Γα,b,d =
{
αb, αb+1, . . . , αb+d−2

}
, (2)

whered ∈ Z
+, b ∈ Z, andα is a primitiventh root of unity in

the splitting field,Φ = GF(qh), of xn − 1. Then the minimum
distance ofC (over F ℓ) is at leastd.

Proposition 1 follows essentially from [19] (for complete-
ness, we will include a proof based on Proposition 2 below).
Proposition 1 can serve as a design tool for quasi-cyclic
codes.4 Specifically, we seek a generator polynomial matrix

1To simplify the notation, the codewordsc(x) are defined here to be (row)
ℓ-tuples overFn[x], rather than elements of the module(F [x]/〈xn − 1〉)ℓ

and, so,G(x) is seen as a matrix overF [x]. In that regard, we are inconsistent
with the notation in [11].

2As shown in [11], by elementary operations on rows, the matrixG(x)
can be further brought into a reduced form wheredeg gj,i(x) < deg gi,i(x),
for every j < i. Yet this reduction does not affect the diagonal entries and
therefore does not changedeg G(x).

3On the other hand, the goal in [19] is to find a lower bound on the
minimum distance ofC when C is seen as a code of lengthℓn over F .
See Appendix A for the adaptation of the setting of [19] to ours.

4So can the Hartmann–Tzeng-like improvement obtained in [22], yet for
the sake of simplicity, we will refer here only to Proposition1.

G(x) that satisfies properties (P3)–(P4) forΓ = Γα,b,d,
thereby guaranteeing a minimum distance (overF ℓ) of at
leastd; and, by (1), we would likedeg G(x) to be as small
as possible.

In fact, when deg G(x) is the smallest, the respective
quasi-cyclic code is a subspace subcode of a Reed–Solomon
code [7]. We state this in the next proposition.

Proposition 2. Let F , n, d, b, h, Φ, and α be as in
Proposition 1 and letCRS be the[n, n−d+1, d] Reed–Solomon
code CRS over Φ whose set of roots is given byΓα,b,d as
defined by (2). Givenℓ ∈ [h] and a column vectorv ∈ Φℓ

whose entries are linearly independent overF , define the
codeC by

C = CRS(v) =
{
c(x) ∈ (Fn[x])ℓ : c(x) · v ∈ CRS

}
. (3)

Then C is a quasi-cyclic[ℓ × n, k] code overF which is
generated by a polynomial matrix that has the smallest degree
among all polynomial matrices that satisfy properties (P3)–
(P4) with respect to the setΓα,b,d and the common eigenvec-
tor v.

Proof. SinceCRS is cyclic overΦ, the codeC is quasi-cyclic
overF . Let G(x) be a generator polynomial matrix ofC that
satisfies property (P4). For everyu(x) ∈ (F [x])ℓ we have

u(x)G(x) MOD ((xn − 1) · 1) ∈ C

and, so,
u(x)G(x)v MOD (xn − 1) ∈ CRS .

It follows that for everyu(x) ∈ (F [x])ℓ andβ ∈ Γα,b,d:

u(β)G(β)v = 0 ,

which implies thatG(β)v = 0 for every β ∈ Γα,b,d, i.e.,
G(x) satisfies property (P3) with respect toΓα,b,d andv.

Turning now to showing the minimality ofdeg G(x), let
G′(x) be an ℓ × ℓ polynomial matrix that satisfies proper-
ties (P3)–(P4) with respect toΓα,b,d andv, and letC′ be the
quasi-cyclic[ℓ×n, k′] code overF that is generated byG′(x).
We show thatC′ ⊆ C.

Let c(x) ∈ (Fn[x])ℓ be a codeword ofC′. Then, for some
u(x) ∈ (F [x])ℓ,

c(x) = u(x)G′(x) MOD ((xn − 1) · 1)

and, so,

c(β) = u(β)G′(β) , for everyβ ∈ Γα,b,d .

Hence,

c(β) · v = u(β)G′(β)v = 0 , for everyβ ∈ Γα,b,d ,

namely,c(x) · v ∈ CRS. We conclude thatc(x) must be a
codeword ofC.

Proof of Proposition 1.Let v be a common eigenvector of
G(x) with respect to the setΓα,b,d. Then C plays the role
of C

′ in the last proof and is therefore a subcode of the code
CRS(v) defined in (3). The codeCRS(v), in turn, is a subspace
subcode of a Reed–Solomon code with minimum distanced,
thereby yielding the result.
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In view of the connection with subspace subcodes of Reed–
Solomon codes, the lower bounds ondeg G(x) that we present
in the next section are related in part to Theorem 4.4 in [7] (and
Proposition 3 below can also be proved using that theorem).
The paper [7], however, does not present a general strategy
for obtaining constructions that attain those bounds.

III. L OWER BOUNDS ON THE DEGREE

Let F , Φ, Γ, andℓ be as in Section I, and letG(x) satisfy
properties (P1)–(P3) therein. We obtain here lower bounds on
deg G(x), which apply whenℓ = h or whenΓ has a certain
structure which will be of interest (e.g., for our quasi-cyclic
application).

Let P = P(Γ) = {π1, π2, . . . } be a partition ofΓ, such
that any two elementsβ, γ ∈ Γ are in the same subsetπ ∈ P,
if and only if they are conjugate with respect toF (namely,
γ = βqj

for somej ∈ Z
+). For eachπ ∈ P, let Mπ(x) be

the minimal polynomial (with respect toF ) of the elements
of π and letmπ = deg Mπ(x) (thus, |π| ≤ mπ).

We prove in this section the next two propositions. Here-
after, a sum (respectively, product) over an empty set is defined
as0 (respectively,1).

Proposition 3. Whenℓ = h,

deg G(x) ≥ |Γ| · h .

Proposition 4. For eachπ ∈ P, let ρπ be the largest integer
(possibly∞) such that, for someβπ ∈ π,

βqj

π ∈ π for 0 ≤ j < ρπ .

Then,

deg G(x) ≥
∑

π∈P

min(ℓ, ρπ) · mπ (4)

=
(
ℓ ·

∑

π : ρπ≥ℓ

mπ

)
+

∑

π : ρπ<ℓ

ρπ · mπ . (5)

Remark1. The first term in (5) suggests that a minimum-
degree matrixG(x) can be obtained by

G(x) =
( ∏

π : ρπ≥ℓ

Mπ(x)
)
· G∗(x) ,

whereG∗(x) is an ℓ × ℓ minimum-degree matrix for the set
Γ∗ = ∪π : ρπ<ℓπ.

The proofs of both propositions make use of the following
lemma.

Lemma 5. Let π ∈ P and letJ ⊆ [0 : h−1] be of size|J | ≤ ℓ
such that, for someβ ∈ π,

{
γ : γ = βqj

for some j ∈ J
}
⊆ π . (6)

Then
(Mπ(x))|J|

∣∣∣ det(G(x))

when eitherℓ = h or J = [0 : |J |−1].

Remark2. A given elementγ in (6) may correspond to more
than onej ∈ J . For example, we may haveπ = {1}, β = 1,
andJ = [0 : ℓ−1].

Proof of Lemma 5.By properly selectingβ, we can assume
without loss of generality that0 ∈ J . Let v = (v1 v2 . . . vℓ)

T

be a common eigenvector as in property (P3). Forj ∈ J , define

vj =
(
vqh−j

1 vqh−j

2 . . . vqh−j

ℓ

)T

(wherev0 = v). From the definition of a common eigenvector,
we have

G(βqj

)v = 0 , j ∈ J ,

and, raising to theqh−j th power, we get

G(β)vj = 0 , j ∈ J . (7)

Now, when ℓ = h or when J = [0 : |J |−1], the ℓ × |J |
matrix

(
v1 v2 . . . v|J|

)
=

(
vqh−j

i

)

i∈[ℓ],j∈J

has full rank,|J | (≤ ℓ), over Φ [13, pp. 109–110], i.e., the
set{vj}j∈J spans a linear space of dimension|J | over Φ. It
follows from (7) thatrank(G(β)) ≤ ℓ − |J |, i.e., there must
be at least|J | indexesi ∈ [ℓ] for which gi,i(β) = 0. It follows
that (x−β)|J| dividesdet(G(x)) =

∏
i∈[ℓ] gi,i(x), and, since

G(x) is overF [x], we have closure under conjugacy, namely,
(Mπ(x))|J| | det(G(x)).

Proof of Proposition 3.For eachπ ∈ P, let Jπ be a largest
subset of[0 : h−1] such that, for someβπ ∈ π,

βqj

π ∈ π if and only if j ∈ Jπ .

By Lemma 5,
∏

π∈P

(Mπ(x))|Jπ|
∣∣∣ det(G(x)) . (8)

Noting that |Jπ| = |π| · h/mπ, we get thatdeg G(x) ≥∑
π∈P |Jπ| · mπ = |Γ| · h.

Proof of Proposition 4.By Lemma 5, Eq. (8) holds when we
takeJπ to be the set[0 : min(ℓ, ρπ)−1], for everyπ ∈ P.

The setsJπ in the proof of Proposition 4 are very structured.
One may wonder if the bound (4) continues to hold if each
ρπ therein is replaced by|Jπ|, whereJπ is an arbitrary subset
of [0 : h−1] such thatβqj

π ∈ π for someβπ ∈ Φ and every
j ∈ Jπ. The answer is generally false, as demonstrated by a
counterexample in Appendix B.

IV. CONSTRUCTION

Let F , Φ, Γ, and ℓ be as in Section I. We show a
construction of anℓ × ℓ matrix G(x) over F [x] that satisfies
properties (P1)–(P3). In certain cases, the degree ofG(x)
will reach the lower bound of Proposition 4, thereby solving
Problem 1 for those cases.

For our construction, we fixm ≥ ℓ to be a divisor ofh
(e.g.,m = h) andγ0 to be a proper element ofGF(qm) (i.e.,
γ0 does not belong to any proper subfield ofGF(qm)).

We use the notationP, Mπ(x), andmπ, for π ∈ P, as in
Section III. We define the setP∗ ⊆ P by

P∗ = P∗(m) =
{

π ∈ P : |π| < ℓ and m | mπ

}
.
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Our construction will be of the form

G(x) =
( ∏

π∈P\P∗

Mπ(x)
)
· G∗(x) , (9)

whereG∗(x) is anℓ× ℓ matrix that satisfies properties (P1)–
(P3) with respect to the setΓ∗ = ∪π∈P∗π (compare with
Remark 1).

For 1 ≤ s < i ≤ ℓ, define the sets

Pi,s = Pi,s(m) =
{

π ∈ P∗ : s ≤ |π| < i
}

,

and letΓ∗
i = ∪π∈Pi,1

π; i.e., Γ∗
i consists of all elements inΓ

that belong to partition elementsπ ∈ P∗ of size less thani
(thus,Γ∗

1 = ∅).
As a first step in our construction ofG∗(x), we construct

for eachi ∈ [ℓ] a bivariate polynomialBi(x, y) ∈ F [x, y] of
y-degree less thani, with the property that

Bi

(
β, γ−1

0

)
= 0 , for everyβ ∈ Γ∗

i .

To this end, we assume some ordering on the elements of each
π ∈ P∗:

π =
{
βπ,1, βπ,2, . . . , βπ,|π|

}
.

Next, for 1 ≤ s < i ≤ ℓ, we define the following polynomials
pi,s(x) ∈ F [x]:

pi,s(x) =
∑

π∈Pi,s

ai,π,s(x) ·
∏

π′∈Pi,s\{π}

Mπ′(x) ,

whereai,π,s(x) is the unique polynomial inFmπ
[x] such that

ai,π,s(βπ,s) = γ0 ·
( ∏

π′∈Pi,s\{π}

Mπ′(βπ,s)
)−1

.

Note that for everyπ ∈ P∗ and s ∈ [|π|], both γ0 and βπ,s

are elements ofGF(qmπ ), with βπ,s being a proper element
of this field; hence,ai,π,s(x) is well defined.

The following lemma is immediate.

Lemma 6. For 1 ≤ s < i ≤ ℓ and π ∈ Pi,s,

pi,s(βπ,s) = γ0 .

The sought bivariate polynomialBi(x, y) ∈ F [x, y] is now
defined for eachi ∈ [ℓ] by

Bi(x, y) =

i−1∏

s=1

(1 − pi,s(x)y) ,

whereB1(x, y) ≡ 1. We have the following lemma.

Lemma 7. For i ∈ [2 : ℓ] and everyβ ∈ Γ∗
i ,

Bi

(
β, γ−1

0

)
= 0 .

Proof. Given β ∈ Γ∗
i , let π be the unique subset inPi,1 that

containsβ; thenβ = βπ,s for somes ≤ |π| < i, and for this
s we have by Lemma 6 thatpi,s(β) = γ0. It follows that

Bi

(
β, γ−1

0

)
=

i−1∏

s=1

(
1 − pi,s(β)γ−1

0

)
= 0 ,

as claimed.

Our construction of the polynomial matrixG∗(x) in (9) is
iterative. For eachi ∈ [ℓ], we construct ani× i matrix Gi(x)
over F [x], as follows:

Gi(x) =





Bi,0(x) Bi,1(x) Bi,2(x) . . . Bi,i−1(x)
0
...

(∏
π∈Pi,i−1

Mπ(x)
)
· Gi−1(x)

0




,

(10)
whereG0(x) is the “empty” (0 × 0) matrix and

Bi,0(x), Bi,1(x), . . . , Bi,i−1(x)

are the coefficients inF [x] of Bi(x, y), namely,

Bi(x, y) =
i−1∑

j=0

Bi,j(x)yj .

We then letG∗(x) = Gℓ(x). As we show in Proposition 8 be-
low, the resulting matrixG(x) in (9) satisfies properties (P1)–
(P3) with respect to the setΓ.

Example 1. Suppose thatℓ = 2 and thatΓ = π1 ∪ π2, where

π1 =
{
βπ1

}
,

π2 =
{
βπ2

, βq
π2

, βq2

π2

}
,

and where the minimal polynomial ofβπ1
has degreemπ1

≥
2. We takem = mπ1

and γ0 = βπ1
. For i = 1 we have

B1(x, y) ≡ 1 (regardless ofΓ) and, respectively,

G1(x) =
(

1
)

.

Turning to i = 2, we have

B2(x, y) = 1 − p2,1(x)y = 1 − a2,π1,1(x)y = 1 − xy ,

sincea2,π1,1(x) = x is the unique polynomial inFm[x] that
evaluates toγ0 = βπ1

at x = βπ1
. Hence,

G∗(x) = G2(x) =

(
1 −x
0 Mπ1

(x)

)
.

Finally, G(x) = Mπ2
(x) ·G∗(x), and(βπ1

1)T is a common
eigenvector ofG(x) with respect to the setΓ. The degree of
G(x) is mπ1

+ 2mπ2
, thereby attaining the lower bound of

Proposition 4.

Example 2. Suppose thatℓ = 3 and thatΓ = π1 ∪ π2 ∪ π3,
whereπ1 andπ2 are as in Example 1 and

π3 =
{
βπ3

, βq
π3

}
,

and, in addition, assume thatmπ1
≥ 3 and thatmπ1

| mπ3

(e.g.,mπ1
= mπ3

= h ≥ 3). We select againm = mπ1
and

γ0 = βπ1
. The matricesG1(x) and G2(x) will then be the

same as in Example 1. As forG3(x), we will have

B3(x, y) = (1 − p3,1(x)y) (1 − p3,2(x)y)

= 1 − (p3,1(x) + p3,2(x)) y + p3,1(x)p3,2(x)y2 ,

where

p3,1(x) = a3,π1,1(x)Mπ3
(x) + a3,π3,1(x)Mπ1

(x) ,



5

with a3,π1,1(x) being in Fmπ1
[x] such thata3,π1,1(βπ1

) =
βπ1

/Mπ3
(βπ1

) and a3,π3,1(x) being in Fmπ3
[x] such that

a3,π3,1(βπ3
) = βπ1

/Mπ1
(βπ3

), and

p3,2(x) = a3,π3,2(x)

is in Fmπ3
[x] such thata3,π3,2(β

q
π3

) = βπ1
. Hence,

G∗(x) = G3(x)

=




1 −p3,1(x) − p3,2(x) p3,1(x)p3,2(x)
0 Mπ3

(x) −xMπ3
(x)

0 0 Mπ3
(x)Mπ1

(x)



 ,

andG(x) = Mπ2
(x) · G∗(x). Note that

p3,1(βπ1
) = p3,1(βπ3

) = p3,2(β
q
π3

) = βπ1
,

which, in turn, implies thatB3(β, β−1
π1

) = 0 for β ∈ Γ∗
3 =

π1 ∪ π3 (see Lemma 7). It follows that(β2
π1

βπ1
1)T is a

common eigenvector ofG(x) with respect to the setΓ. The
degree ofG(x), which equalsmπ1

+ 2mπ3
+ 3mπ2

, attains
the lower bound of Proposition 4.

Proposition 8. Given (F,Φ,Γ, ℓ), let Gℓ(x) be obtained
from (10) by iterating overi ∈ [ℓ]. Then the matrix

G(x) =
( ∏

π∈P\P∗

Mπ(x)
)
· Gℓ(x)

satisfies properties (P1)–(P3) with respect toΓ. A common
eigenvector is given by

v =
(
γℓ−1
0 γℓ−2

0 . . . γ0 1
)T

, (11)

for the selected elementγ0.

Proof. Properties (P1) and (P2) are straightforward. In order
to establish (P3), it suffices to show that for everyβ ∈ Γ∗,

Gℓ(β)v = 0 .

To this end, we show by induction oni ∈ [ℓ] that for every
β ∈ Γ∗

i ,
Gi(β)vi = 0 ,

wherevi = (γi−1
0 γi−2

0 . . . γ0 1)T (i.e., vi is the i-suffix of
v).

The induction base (i = 1) is obvious, sinceΓ∗
1 is empty.

Given i > 1, by applying the induction hypothesis toi−1 it
follows that for everyβ ∈ Γ∗

i , the lasti−1 entries ofGi(β)vi

are all zero, since they form the vector
(∏

π∈Pi,i−1
Mπ(β)

)
·

Gi−1(β)vi−1. It remains to show that for theseβs, the first
entry of Gi(β)vi is zero as well. This entry, in turn, is given
by

i−1∑

j=0

Bi,j(β)γi−1−s
0 = γi−1

0 Bi

(
β, γ−1

0

)
= 0 ,

where the second equality follows from Lemma 7.

For the selected value ofm (which determines the setP∗ =
P∗(m)), the degree ofG(x) of our construction equals

deg G(x) =
(
ℓ ·

∑

π∈P\P∗

mπ

)
+

∑

π∈P∗

|π| · mπ . (12)

In view of Proposition 4, we can identify setsΓ where this
degree is the smallest possible. E.g., this will be the case if Γ
satisfies the following two conditions.

(i) For some divisorm ≥ ℓ of h, each element ofΓ \ F is
a proper element of an extension field ofGF(qm).

(ii) Each subsetπ ∈ P(Γ) takes the form

π =
{

βπ, βq
π, βq2

π , . . . , βq|π|−1

π

}
.

V. BACK TO QUASI-CYCLIC CODES

We now turn to the motivating application of this work,
namely, designing quasi-cyclic codes. We start with the fol-
lowing proposition, which provides a sufficient condition that
the construction of Section IV yields a generator polynomial
matrix of a quasi-cyclic code.

Proposition 9. Let F = GF(q) and Φ = GF(qh), and let
ℓ ∈ [h] and n ∈ Z

+ be given. Also, letΓ ⊆ Φ be such that
βn = 1 for everyβ ∈ Γ. Then the construction ofG(x) for
(F,Φ,Γ, ℓ), as given in Section IV, satisfies property (P4).

Proof. By the construction it follows that for everyi ∈ [ℓ],
each entry along rowi of G(x) is divisible (in F [x]) by the
diagonal entrygi,i(x). Therefore, we can expressG(x) in the
form

G(x) = D(x)Ĝ(x) , (13)

whereD(x) is anℓ×ℓ diagonal matrix overF [x] whose main
diagonal is given by

(D(x))i,i = gi,i(x) , i ∈ [ℓ] , (14)

and Ĝ(x) is an ℓ × ℓ upper-triangular unimodular matrix
over F [x] (as det(Ĝ(x)) = 1; in fact, D(x) is the Smith
normal form ofG(x), sincegi,i(x) | gi+1,i+1(x) for all i ∈
[ℓ−1] [4, Ch. S1]). Hence,Ĝ(x) has an upper-triangular
inverse,(Ĝ(x))−1, over F [x].

By the construction in Section IV it also follows that
every diagonal entrygi,i(x) is a product of distinct minimal
polynomials of elementsβ of Γ. The assumptionβn = 1
therefore implies thatgi,i(x) dividesxn − 1, for everyi ∈ [ℓ].

Let E(x) be theℓ × ℓ diagonal matrix overF [x] whose
main diagonal is given by

(E(x))i,i = (xn − 1)/gi,i(x) , i ∈ [ℓ] .

By (13)–(14) we then get thatG(x) satisfies property (P4)
with H(x) = (Ĝ(x))−1E(x).

Now, let F = GF(q), let n ∈ Z
+ be such thatgcd(n, q) =

1, and letΦ = GF(qh) be the splitting field ofxn − 1. Given
ℓ ∈ [h], d ∈ Z

+, and b ∈ Z, let the setΓα,b,d be defined
by (2), whereα is a primitiventh root of unity inΦ. Applying
the construction of Section IV to(F,Φ,Γα,b,d, ℓ) with some
divisor m ≥ ℓ of h yields anℓ × ℓ matrix G(x) over F [x]
which, by Proposition 9, generates a quasi-cyclic[ℓ × n, k]
codeC over F , which we denote hereafter by

CF (Γα,b,d, ℓ,m)

(the parametern is determined byα). This code has dimension
k = ℓn − deg G(x), wheredeg G(x) is given by (12) (and
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we would selectm so as to minimizedeg G(x)). Moreover,
by Proposition 1, the minimum distance (overF ℓ) of C is
at leastd. And as demonstrated in Section IV, in certain
cases of the setΓα,b,d (e.g., when conditions (i)–(ii) therein
hold), the attained dimension is the largest possible assum-
ing such a BCH-like design strategy. When this happens,
CF (Γα,b,d, ℓ,m) is equal to the subspace subcodeCRS(v)
of CRS as defined in (3), withv taken as the common
eigenvector ofG(x) with respect toΓα,b,d. Note that in any
case,CF (Γα,b,d, ℓ,m) is always a subcode ofCRS(v).

Remark3. As can be seen from (12), the inclusion of an
eigenvalueβ in Γα,b,d generally results in an increase of
deg G(x) (and therefore in a decrease ofk) by the degree
of the minimal polynomial ofβ; this holds even whenΓα,b,d

contains other conjugates ofβ, unless their number is at
leastℓ. Moreover, the effect ondeg G(x) of eigenvalues that
belong to small (proper) subfields ofΦ can be larger than
just adding the degree of their minimal polynomial; e.g., an
inclusion of an element ofF in Γα,b,d results in an increase
of deg G(x) by ℓ (and not just by1). So the common strategy
used when designing BCH codes, of constructing a designed
root setΓα,b,d which intersects as few and as small conjugacy
classes as possible, becomes less effective asℓ becomes larger
than1.

Example 3. Whenn = qh − 1, d ≤ √
n − 1, andb ∈ {0, 1},

the setΓα,b,d satisfies conditions (i)–(ii) in Section IV for any
divisor m ≥ ℓ of h (see [16, p. 232, Problem 7.1]). In this
case we get from (12) that the redundancy ofCF (Γα,b,d, ℓ,m)
(as a linear code overF ) equals

ℓn − k = deg G(x) =






⌈
qℓ−1

qℓ (d−1)
⌉

h if b = 1

ℓ +
⌈

qℓ−1
qℓ (d−2)

⌉
h if b = 0

,

(15)
and that is since the inclusion of an elementβ in Γα,b,d does
not increase the redundancy ifβ equals theqℓth power of some
other element inΓα,b,d (for b = 0, the additive termℓ is due
to the element1 ∈ Γα,b,d). Observe that if, in addition,ℓ |h,
then (15) is known to be the redundancy (measured in symbols
of F ) of an [n, k] primitive BCH code overGF(qℓ). In fact,
whenℓ |h, we will get precisely such a BCH code if we apply
the construction of Section IV toΓα,b,d and selectm = ℓ
therein. Indeed, when doing so, the common eigenvectorv,
which is given by (11), is overGF(qℓ), and for every codeword
c(x) ∈ CF (Γα,b,d, ℓ, ℓ), the polynomialc(x)·v is overGF(qℓ)
and vanishes at the elements ofΓα,b,d; in other words, it is
a codeword of a BCH codeCBCH over GF(qℓ) of length
n = (qℓ)h/ℓ − 1. The dimension ofCBCH (over F ) is the
same as that ofCF (Γα,b,d, ℓ, ℓ) and, therefore, the two codes
are in fact equivalent. (The conditionℓ |h is assumed also in
the construction of the BCH-like quasi-cyclic codes in [2,§3]
and these codes, too, are equivalent toCBCH.)

Thus, quasi-cyclic codes provide us the flexibility of attain-
ing dimensions as in (15) also whenh is not divisible byℓ.

We end this section by comparing the redundancy in Exam-
ple 3 with those obtained by two schemes: shortening BCH

codes overGF(qℓ) (Example 4) andℓ-level interleaving of
BCH codes overF = GF(q) (Example 5).

Example 4. For n = qh − 1, d ≤ √
n− 1, andb ∈ {0, 1}, let

h′ = ℓ·⌈h/ℓ⌉; note thath′ > h whenℓ does not divideh (when
ℓ |h, the rest of this example coincides with the respective
case in Example 3). We can construct a (shortened quasi-
cyclic) linear [ℓ × n, k′] code C

′ over F by shortening a
primitive BCH code5 of length qh′ − 1 over GF(qℓ) defined
by the consecutive root sequenceΓα′,b,d as in (2), whereα′

is a primitive element inGF(qh′

). The minimum distance
(over F ℓ) of C

′ is at leastd, and its redundancy,ℓn − k′

(being measured in symbols ofF ), is given by (15), except
that h therein is replaced byh′.

Example 5. For n = qh − 1, d ≤ √
n − 1, and b ∈ {0, 1},

let CBCH be a primitive BCH code of lengthn over F =
GF(q) defined by the consecutive root sequenceΓα,b,d (as
in (2), whereα is a primitive element inGF(qh)). Theℓ-level
interleaving ofCBCH produces a quasi-cyclic[ℓ×n, ℓk′′] code
over F , which we denote byC⊙ℓ

BCH. The minimum distance
(over F ℓ) of C⊙ℓ

BCH is at leastd, and its redundancy (when
measured in symbols ofF ) equals

ℓ(n − k′′) =






ℓ
⌈

q−1
q (d−1)

⌉
h if b = 1

ℓ + ℓ
⌈

q−1
q (d−2)

⌉
h if b = 0

(16)

(see [16, p. 260, Problem 8.12]). It is easy to see that (16) is
generally larger—and is never smaller—than (15).

Table I compares the redundancies of (shortened) quasi-
cyclic [ℓ × n, k] binary codes obtained by the constructions
in Examples 3–5, for several choices ofℓ, n (= 2h−1), and
designed minimum distanced; in all cases we have takenb = 0
(the last two columns in the table will be referred to in
Section VI).6

VI. D ECODING

In this section, we present a list decoding algorithm for the
codeCF (Γα,b,d, ℓ,m) defined in Section V. Our error model
will be that of ℓ-phased burst errors: an error means that a
column of the transmittedℓ×n array (overF ) gets corrupted
in at least one of its entries, and the number of errors is the
number of columns that are altered.

Recalling thatCF (Γα,b,d, ℓ,m) is (a subcode of) the code
CRS(v) defined in (3), our discussion here will be more gen-
eral in that we present a list decoding algorithm for subspace
subcodes of generalized Reed–Solomon (GRS) codes. Our
algorithm is based on a similar idea that led to the list decoding
of alternant codes (as subfield subcodes of GRS codes), based
on the Koetter–Vardy (in short, KV) algorithm [10].

5Recall that for fixedd and sufficiently large lengths, primitive BCH codes
have (asymptotically) the smallest redundancy among all knownconstructions
of linear code families, except when the field size is4 or 8 (see [18] and [21]).

6The parameters(ℓ, n, d) in the table are in the range where the construc-
tion in Example 4 still has a smaller redundancy than the construction in [18].
According to the tables in [6] (which intersect with Table I on four parameter
choices) the construction in Example 3 for(ℓ=2, n=127, d=6) improves
by one bit over the smallest redundancy currently known for linear codes of
length127 and minimum distance6 over GF(22).
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TABLE I
REDUNDANCY OF (SHORTENED) QUASI-CYCLIC [ℓ × n, k] CODES OVERGF(2).

Redundancy
h ℓ n d Example 3 Example 4 Example 5 τ L

5 2 31 6 17 20 22 3 10
7 2 127 6 23 26 30 3 42
9 2 511 22 137 152 182 11 46

5 3 31 6 23 27 33 3 10
7 3 127 6 31 39 45 3 42
10 3 1,023 30 253 303 423 15 68

5 4 31 6 24 36 44 3 10
7 4 127 6 32 36 60 3 42
9 4 511 22 175 232 364 11 46

Let F = GF(q) and Φ = GF(qh), and letCGRS ⊆ Φn[x]
be the following[n, n−d+1, d] GRS code overΦ:

CGRS =
{n−1∑

j=0

ηjf(αj)x
j : f(x) ∈ Φn−d+1[x]

}
,

where α0, α1, . . . , αn−1 are (the code locators which are)
distinct elements inΦ, and η0, η1, . . . , ηn−1 are nonzero
(column multipliers) inΦ. Given ℓ ∈ [h] and a column vector
v ∈ Φℓ whose entries are linearly independent overF , define
the codeC by

C = CGRS(v) =
{
c(x) ∈ (Fn[x])ℓ : c(x) · v ∈ CGRS

}
.

Note thatCGRS is not necessarily a cyclic code overΦ and,
therefore,C is not assumed to be quasi-cyclic in this section;
nevertheless, we follow the notational convention of previous
sections in regardingℓ × n arrays overF as elements of
(Fn[x])ℓ.

Let Σ = spanF (v) ⊆ Φ be the ℓ-dimensional subspace
of Φ over F that is spanned by the entries ofv. With any
a(x) ∈ (Fn[x])ℓ, we associate the following polynomial

A(x) = A0 + A1x + . . . + An−1x
n−1 = a(x) · v

in the setΣn[x] of polynomials of degree less thann over Σ.
Accordingly, we can representC through the following sub-
space subcode ofCGRS:

C̃ = CGRS ∩ Σn[x] . (17)

Let c(x) ∈ C be the transmittedℓ × n codeword and let
y(x) = c(x)+e(x) be the receivedℓ×n array overF , where
e(x) is an ℓ × n error array overF containing a number of
nonzero columns which does not exceed a prescribed decoding
radiusτ . Writing

C(x) = C0 + C1x + . . . + Cn−1x
n−1 = c(x) · v

and

Y (x) = Y0 + Y1x + . . . + Yn−1x
n−1 = y(x) · v

(both inΣn[x]), the distance betweenC(x) andY (x), denoted
d(C(x),Y (x)), stands for the number of errors that have
occurred, namely, the number of indexesj for whichYj 6= Cj .

Clearly, any list decoder forCGRS can be applied to
decode any subset—and therefore any subspace subcode—of

CGRS. This applies in particular to decoding with a list size
of 1, which corresponds to bounded-distance decoding (with
decoding radiusτ = ⌊(d−1)/2⌋) and can be performed by any
of the known decoding algorithms for GRS codes. For larger
list sizes, however, the smaller alphabet ofΣ (compared to
Φ) allows us in many cases to guarantee a largerτ than the
guaranteed decoding radius forCGRS.

Figure 1 presents our interpolation-based list decoding
algorithm for the codẽC. Among its input parameters, the
algorithm is provided with the target list sizeL and two
nonnegative integers̄r < r ≤ L which play a role in the
interpolation step of the algorithm (Step 1). The decoding
radiusτ can be any positive integer that satisfies the inequality

τ

n
< Θqℓ

(
d

n
, L, r, r̄

)
, (18)

where

Θσ(δ, L, r, r̄) =

(
L+1

2

)
δ −

(
L+1−r

2

)
−

(
r̄+1
2

)
(σ−1)

(L+1)(r−r̄)
(19)

(with σ standing for the alphabet size of̃C and δ for the
relative minimum distance of the underlying codeCGRS;
typically, r and r̄ are taken so that (19) is maximized—see
discussion after Lemma 10). The(wx, wz)-weighted-degree of
a bivariate polynomialQ(x, z) ∈ Φ[x, z] is denoted in Figure 1
by degwx,wz

Q, and the notationmult{Q, (x0, z0)} stands for
the multiplicity of a bivariate polynomialQ(x, z) ∈ Φ[x, z] at
the point(x0, z0) ∈ Φ2.

The algorithm is a rather straightforward extension of the
KV algorithm when applied to the decoding of alternant codes,
and, respectively, the analysis of the latter carries over to our
algorithm, with the size,q, of the base field now replaced by
the size,qℓ, of the setΣ. We will give here an outline of the
analysis, following the exposition in [16,§9.6].

Conditions (20) and (21) determine the number of signif-
icant coefficients of the polynomialQ(x, z) that is sought
in Step 1. Given an indexj ∈ [0 : n−1], when A = Yj

(respectively,A ∈ Σ \ {Yj}), the condition in (22) translates
into

(
r+1
2

)
(respectively,

(
r̄+1
2

)
) homogeneous linear equations

in the coefficients ofQ(x, z). The inequality (18) guarantees
that the number of (unknown) coefficients ofQ(x, y) exceeds
the number of equations and, therefore, we can always find
a nonzeroQ(x, y) in Step 1 (see [16, Lemmas 9.5 and 9.7]).
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Input:

List sizeL, multiplicities r, r̄.
Decoding radiusτ satisfying (18).
Received wordY (x) =

∑n−1
j=0 Yjx

j ∈ Σn[x].

1) Interpolation: Find Q(x, z) ∈ Φ[x, z] \ {0} such that

deg0,1 Q ≤ L , (20)

deg1,n−d Q < r(n − τ) + r̄τ , (21)

and for everyj ∈ [0 : n−1] andA ∈ Σ:

mult{Q, (αj , A/ηj)} ≥
{

r if A = Yj

r̄ otherwise.
(22)

2) Root-finding:Calculate the set

F =
{

f(x) ∈ Φn−d+1[x] : (z − f(x)) |Q(x, z)
}

.

3) Calculate the set

S =
{

C(x) =

n−1∑

j=0

ηjf(αj)x
j :

f(x) ∈ F and d (C(x),Y (x)) ≤ τ
}

.

Output: List S of (no more thanL) codewords of̃C.

Fig. 1. List decoder for the codẽC defined by (17).

There are known algorithms for implementing Steps 1 and 2
efficiently [1], [8], [9], [12], [15], [17].

The next lemma parallels Lemma 9.8 in [16] and establishes
the correctness of the decoding algorithm.

Lemma 10. Given Y (x) ∈ Σn[x], suppose thatQ(x, z) ∈
Φ[x, y] \ {0} satisfies conditions (20)–(22). Letf(x) ∈
Φn−d+1(x) be such that the respective codewordC(x) =∑n−1

j=0 ηjf(αj)x
j of CGRS satisfiesd (C(x),Y (x)) ≤ τ .

Then,Q(x, f(x)) ≡ 0, namely,z − f(x) dividesQ(x, z).

Proof. DenoteI = {j : f(αj) = Yj/ηj} andI = [0 : n−1] \
I, and suppose that|I| ≤ τ . It follows from (22) that
Q(x, f(x)) is divisible by

∏

j∈I

(x − αi)
r

∏

j∈I

(x − αi)
r̄ ,

which, in turn, has degree

|I|r + |I|r̄ = nr + |I|(r̄ − r)

≥ nr + τ(r̄ − r) = r(n − τ) + r̄τ .

Hence, by (21) it follows thatQ(x, f(x)) ≡ 0.

Thus, if the number ofℓ-phased errors does not exceedτ ,
then the returned listS must contain the correct codeword.
Moreover, sincedeg0,1 Q(x, z) ≤ L, the list S contains at
mostL codewords.

Observe that (19) is non-increasing in the alphabet sizeσ,
which means that we may gain in the decoding radius com-
pared to the underlying codeCGRS, for which we would need
to substituteℓ = h in (18). The maximization of (19) over

(r, r̄) yields the expression for the (finite list size) Johnson
bound [16, §9.8 and Problem 9.10], which, forL → ∞,
approaches (from below) the expression

θσ (δ) =
σ − 1

σ

(
1 −

√
1 − σ

σ − 1
· δ

)
. (23)

Remark4. When r̄ > 0, the number of interpolation points in
Step 1 in Figure 1 isqℓn; so, in that respect, our algorithm
has the same drawback as the KV algorithm when the latter
is used for decoding alternant codes overGF(qℓ) (such as the
codes in Example 4). On the other hand, whenr̄ = 0, the
number of interpolation points is onlyn; this is also the case
where the KV algorithm reduces to the Guruswami–Sudan
algorithm [16,§9.5].

Remark5. Suppose thatC is any code of lengthn and mini-
mum distanced overanyalphabetΣ of sizeqℓ, and letτ andL
be positive integers that satisfy (18) for some(r, r̄). Then there
exists a list decoder forC which returns lists of size at mostL
that always contain the correct codeword, provided that the
number of errors (when measured in symbols ofΣ) does not
exceedτ (see [16,§9.8]). However, in general, such a decoder
is not guaranteed to be efficient. The KV algorithm (for list
decoding alternant codes overGF(qℓ)) and the algorithm in
Figure 1 (for list decoding̃C overΣ = spanF (v)) are efficient
when ℓ is fixed or whenr̄ = 0.

It follows from Remark 5 that the inequality (18) is suffi-
cient for having a list decoder for any of the codes presentedin
Examples 3–5. To the best of our knowledge, maximizing (19)
over (r, r̄) yields, in general, the best trade-off betweenτ
and L currently known for these examples. And as noted in
Remark 5, whend in (18) is taken as the designed minimum
distance, then the list decoder for Examples 3 and 4 is also
guaranteed to be efficient (assuming fixedℓ or r̄ = 0).
Moreover, by a result of Gopalanet al. [5], in many cases
it is also efficient for the codeC⊙ℓ in Example 5. Specifically,
given τ andL0 that satisfy

τ

n
< Θq

(
d

n
, L0, r, r̄

)
(24)

(which is the inequality (18) withℓ = 1), Algorithm 2 in [5] is
shown therein to be a decoder forC⊙ℓ with decoding radiusτ
and list size bounded from above by

(
ι + κ

κ

)
Lκ

0 , (25)

where

ι =

⌈
τ

d − τ

⌉
and κ =

⌈
log2

(
d

d − τ

)⌉
.

The inequality (24) is weaker than (18) in thatL0 may be
smaller than the smallestL that satisfies (18) for a givenτ .
Yet (25) is generally larger than thatL, which means that the
list produced by Algorithm 2 in [5] can be pruned to at mostL
codewords.

We conclude that while Examples 3–5 have the same
guarantee for list decoding performance, in Example 3 we
pay the smallest redundancy for it.
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The last two columns in Table I contain pairs(τ, L) that are
attainable by (18), for the special caseτ = d/2; in this case,
the smallestL equals⌊2d/n⌋ (see Appendix C).7 Note that
in this case,ι = κ = 1 andL0 = L in (25) and, so, Eq. (25)
evaluates to2L.

It is yet to be found whether there is a counterpart of Wu’s
algorithm (as in [3] and [20]) that can replace Figure 1. One
can speculate that for the same pair(τ, L), the multiplicity r
would be replaced in such an algorithm byL−r, thereby
making such an algorithm favorable in the high-rate range.
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APPENDIX A
RELATIONSHIP TO THE MODEL IN [19]

We point out here the connection between our setting in
Section II and the setting in [19]. Given a quasi-cyclic[ℓ×n, k]
codeC over F = GF(q), the goal in [19] is to find a lower
bound on the minimum distance ofC when C is seen as a
code of lengthℓn over F , rather than as a code of lengthn
over F ℓ. Instead of just requiring property (P3), the analysis
in [19, §III.B] considers more generally the linear subspace
(“eigencode”)C ⊆ F ℓ which consists of all vectors inF ℓ that
are orthogonal to the following eigenspace overΦ = GF(qh):

V =
{
v ∈ Φℓ : G(β)v = 0 for every β ∈ Γ

}

(namely,C = {e ∈ F ℓ : e·v = 0 for everyv ∈ V}). WhenC
contains nonzero vectors, the codeC might potentially contain
ℓ × n arrays in which only one column is nonzero (and that
column is then a vector ofC). Therefore, to fit our setting
(where we are interested in the minimum distance measured
in symbols ofF ℓ), we needC to be the trivial code{0}. The
next lemma shows that this condition is, in fact, equivalentto
property (P3), provided thatℓ ∈ [h].

Lemma 11. For ℓ ∈ [h], let V be a linear subspace ofΦℓ with
the property that no nonzero vector inF ℓ is orthogonal toV.
Then there exists a vectorv ∈ V whose entries are linearly
independent overF .

Proof. Let V be anℓ× r matrix overΦ whose columns form
a basis ofV, and letE be the set of all nonzero vectors in
F ℓ with a leading nonzero entry equaling1. We show that
there exists a column vectorw ∈ Φr such thateV w 6= 0 for
everye ∈ E ; the vectorV w can then be taken asv. For every
e ∈ E , define the “bad set”

V(e) = {w ∈ Φr : eV w = 0} .

Clearly,V(e) is a linear subspace ofΦr; furthermore, by the
assumption in the lemma,V(e) 6= Φr. Therefore,|V(e)| ≤
|Φ|r−1 and, so, ranging over alle ∈ E , the total number of
vectors in the bad sets is bounded from above by

|∪e∈EV(e)| ≤
∑

e∈E

|V(e)| ≤ qℓ − 1

q − 1
· |Φ|r−1 <

1

q − 1
· |Φ|r ,

7Whenτ = d/2, there are in fact simpler alternatives to the KV algorithm
or to Figure 1; see, for example [20,§2].

where the last inequality follows fromℓ ≤ h. Hence, there
exists a vectorv = V w that belongs to none of the bad sets.

Remark6. The conditionℓ ∈ [h] in Lemma 11 can always be
met simply by (possibly) replacingΦ with an extension field
of Φ of extension degree⌈ℓ/h⌉.

APPENDIX B
COUNTEREXAMPLE

We show here by a counterexample that, in general, the
bound (4) no longer holds if eachρπ therein is replaced by
|Jπ|, whereJπ is an arbitrary subset of[0 :h−1] such that
βqj

π ∈ π for someβπ ∈ Φ and everyj ∈ Jπ.

Example 6. Suppose thath is a multiple of an integert > 1
such thath/t ≥ ℓ ≥ 2. Let ξ be a primitive element inΦ, let
ω be an element inGF(qt) \ F , and leta(x) be the unique
polynomial inFh[x] such thata(ξ) = ω (sinceξ is primitive,
such a polynomial exists). TakeJ = {0, t, 2t, . . . , (ℓ−1)t} and

Γ = {ξqj

: j ∈ J}

(and, so,P = {Γ} andJΓ = J), and consider theℓ×ℓ matrix

G(x) =





1 a(x) a(x) . . . a(x)
0
... MΓ(x) · Iℓ−1

0




, (26)

whereMΓ(x) is the minimal polynomial ofξ with respect to
F . Let γ be the element−ω ·∑ℓ−2

i=0 ξi in Φ, and consider the
following ℓ−1 vectors

vj =
(
γqj

ξ(ℓ−2)qj

ξ(ℓ−3)qj

. . . ξqj

1
)T

, j ∈ J \ {(ℓ−1)t}.

It can be readily verified thatG(β)vj = 0 for every β ∈ Γ
and j ∈ J \ {(ℓ−1)t}. Sinceℓ ≤ h/t, we get by the choice
of ξ that the powers1, ξ, ξ2, . . . , ξℓ−2 are linearly independent
over GF(qt) and,a fortiori, are also so overF . In addition,
γ is defined through a (unique) linear combination over
GF(qt) of these powers, and this linear combination contains
elements that are not inF ; hence, all the entries inv0—and
therefore all the entries in eachvj—are linearly independent
over F . We conclude that eachvj is a common eigenvector
with respect to the setΓ, as in property (P3) (moreover,
by [13, pp. 109–110] it follows thatv0,v1, . . . ,vℓ−2 are
linearly independent overΦ, thus spanning the right kernel
of G(β) for every β ∈ Γ). The degree ofG(x) in (26) is
(ℓ−1) · deg MΓ(x) = (ℓ−1)mΓ = (ℓ−1)h, while the lower
bound in (4), whenρΓ is replaced by|JΓ| = |J | = ℓ, evaluates
to ℓh.

APPENDIX C
DECODING RADIUSd/2

We start with the next lemma, which characterizes a range
of parameters for which (18) (or (24)) can hold only when
τ ≤ (d+1)/2.
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Lemma 12. For n > (1/8) · (σ/(σ−1)) · (d + 2)2,

n · θσ

(
d

n

)
<

d

2
+ 1 , (27)

whereθσ(δ) is defined in (23).

Proof. Starting from

n >
1

8
· σ

σ−1
· (d + 2)2 ,

it is fairly easy to see that the latter inequality is obtained by
simplifying the inequality

n2 − σ n d

σ − 1
>

(
n − σ

σ−1

(
d

2
+ 1

))2

.

Taking the square root of both sides and rearranging terms
yield

σ−1

σ

(
n −

√
n2 − σ n d

σ − 1

)
<

d

2
+ 1

which, in turn, is equivalent to (27).

Since the right-hand side of (18) is bounded from above
by θqℓ(d/n) (and approaches it from below when maximizing
over (r, r̄) and takingL to infinity), we get that the inequal-
ity (18) holds only whenτ ≤ ⌊(d+1)/2⌋.

Next, we consider the special caseτ = d/2.

Lemma 13. If d is even andτ = d/2, then the smallestL for
which (18) holds is

L =

⌊
2n

d

⌋
, (28)

and this minimum is attained for(r, r̄) = (L−1, 0); when
σ = qℓ = 2, it is also attained for(r, r̄) = (L, 1).

Note that the expression (28) is the largest size of any
constant-weight code of lengthn and minimum distanced
over an Abelian group, where the constant weight isd/2.

Proof of Lemma 13.For τ = d/2 = nδ/2 andσ = qℓ we can
rewrite (18) as

(L+1)(L−r+r̄) · δ

2
>

(
L+1−r

2

)
+

(
r̄+1

2

)
(σ−1) .

Denotings = L− r, and noting that the last inequality cannot
hold if s = r̄ = 0, we obtain

(L+1) · δ

2
>

1

s + r̄

((
s + 1

2

)
+

(
r̄+1

2

)
(σ−1)

)
. (29)

Clearly, s ≤
(
s+1
2

)
, with equality holding only whens =

0, 1. Similarly, r̄ ≤
(
r̄+1
2

)
(σ−1), with equality holding only

when eitherr̄ = 0 or (r̄, σ) = (1, 2). It follows that the
minimum value taken by the right-hand side of (29) is1,
and that minimum is attained when(s, r̄) = (1, 0) or when
(s, r̄, σ) = (0, 1, 2). At the minimum, Eq. (29) becomes
(L+1) · (δ/2) > 1, which, in turn, is satisfied if and only
if L ≥ ⌊2/δ⌋.
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