
New Array Codes for Multiple Phased Burst

Correction

Mario Blaum∗ Ron M. Roth†

Abstract

We present a new optimal family of array codes over GF (q) for correcting multiple

phased burst errors and erasures, where each phased burst corresponds to an erroneous,

or erased, column in a code array. As for erasures, these array codes have an efficient

decoding algorithm which avoids multiplications (or divisions) over extension fields, re-

placing these operations with cyclic shifts of vectors over GF (q). The erasure decoding

algorithm can be adapted easily to handle, in addition, single column errors as well.

The new array codes are characterized geometrically by means of parity constraints

along certain diagonal lines in each code array, thus generalizing a previously known

construction for the special case of two erasures. Algebraically, these array codes can

be interpreted as Reed Solomon codes over the ring of polynomials over GF (q) modulo

1+x+. . .+xp−2+xp−1 for some prime p which is not the characteristic of GF (q). When

q is primitive in GF (p), the resulting codes become (conventional) Reed-Solomon codes

of length p over GF (qp−1), in which case the new erasure decoding technique can be

incorporated into the Berlekamp-Massey algorithm, yielding a faster way to compute

the values of any prescribed number of errors.

∗IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120.
†Computer Science Department, Technion – Israel Institute of Technology, Haifa 32000, Israel. This work

was done while the author was with IBM Research Division, Almaden Research Center, San Jose, CA.

1 Introduction

In this paper, we address the following coding problem: assume that information is stored

in t × n bit arrays. A t-bit column in such an array is said to be erroneous if at least one

of the bits in that column has been inverted. If the index of an erroneous column is known

(say, by means of some detection device), we say that the column has been subject to an

erasure. Such column errors and erasures, also referred to as phased burst errors (erasures),

usually occur in storage systems, e.g., magnetic tapes, where n is the number of tape tracks

(i.e., the number of bits in each byte written across the tracks) and erasures correspond to

the common case where the read/write head detects a wrongly-coded track: the information

on such a track (or rather, on some corrupted portion of it) might be unreadable; however,

the identity of the erroneous tracks is known (see [10][17]).

In such magnetic tape applications, the parameter t is set according to some decoding

delay requirements i.e., the maximum number of look-ahead cross-track bytes required to

decode a certain byte on the tape. In this paper, we adopt the block-coding approach (as

opposed to convolutional-coding approach [10][14]): the tape is divided into t cross-track

byte segments which are encoded and decoded independently. One of the advantages of

the block-coding approach is that it avoids catastrophic propagation of errors when the

error correcting capability of the code is exceeded, in which case erroneous decoding might

corrupt correct information along whole tracks. Also, since in the convolutional-code case

we maintain zero parity along diagonal lines (of various slopes) through the tape [10][14],

these lines must be extended at the end of the data stream, thus causing overhead. These

extra parity end-bits are not required in the block-code approach. The idea of maintaining

zero parity along certain diagonal lines appears also in [19].

Column errors and erasures also arise in disk arrays [7][11][16]. In this scheme, the disks,

each containing m memory units, are arranged in t×n arrays. We can view such disk arrays

as m layers of t× n arrays over the memory-unit alphabet, where the ith layer, i = 1, 2, . . . ,

consists of the ith memory unit in each disk. The specific memory unit can be a bit, a byte,

a sector, or the whole disk. The proposed coding scheme, presented in this paper, turns out

to be as efficient on the binary layers as on any larger memory unit.

Array codes have been widely studied in recent literature. For a survey on the topic,

1

see [8]. Array codes for single burst correction were studied in [5][9][25], and array codes

for multiple burst correction were addressed in [6]. Single-track correcting array codes, also

called phased burst correcting codes, are treated in [4][12][13]. The array codes presented in

this paper are block-type codes capable of correcting multiple-track errors (or erasures).

An optimal solution to the problem of correcting τ column errors and ρ column erasures

in t × n bit arrays can be obtained by using [n, n − r, r + 1] Reed-Solomon codes over

GF (2t) [15, Ch. 10], where r ≥ 2τ + ρ. In this scheme, each element of GF (2t) is regarded

as a t-bit column, thus transforming the (row-vector) codewords of the Reed-Solomon code

into t× n bit arrays. The optimality of this solution is accounted for by the fact that Reed-

Solomon codes are maximum distance separable (MDS) [15, Ch. 11]: for a given length n

and minimum distance r + 1, they have the maximum attainable dimension. Such a coding

scheme, based on Reed-Solomon codes, is realizable whenever t ≥ log2 n (in which case Reed-

Solomon codes always exist). Furthermore, any pattern of τ errors and up to r−2τ erasures

can be decoded quite efficiently using the error-erasure version of the Berlekamp-Massey

decoding algorithm [1, Ch. 7], requiring r · n operations (i.e., additions, multiplications or

divisions) over GF (2t) for syndrome calculation and O
(
(ρ+ τ) · r

) (
≤ O(r2)

)
operations for

finding the error and erasure values.

In practice, however, the implementation of operations over GF (2t) might turn out to

be quite involved from a hardware point of view. The (asymptotically) most efficient algo-

rithm for performing multiplication over GF (2t) requires O(t log t log log t) AND/XOR bit

operations [20], and this is by using quite a sophisticated hardware (note that, in particular,

the implementation of GF (2t)-multiplication requires a number of GF (2)-operations which

is super-linear in t).

In this paper we aim at simplifying the above encoding-decoding scheme in the multiple-

erasure single-error case (i.e., τ ≤ 1). We introduce a new family of MDS codes which

are similar to Reed-Solomon codes, except that they are defined over certain polynomial

rings, rather than over fields. In the all-erasure case (or when, in addition, a single error

has occurred), these codes provide a significant simplification of the decoding procedure,

compared to Reed-Solomon codes of the same parameters. The simplified decoding scheme,

which requires lower time complexity and less gates in hardware implementation, is obtained

by replacing extension field multiplications with cyclic shifts of binary vectors. The new

2

construction yields codes of t×n arrays whenever t = p− 1 and n ≤ p for some prime p (we

comment later on how the range of parameters can be extended, still preserving the MDS

property and the simplicity of the coding scheme).

More specifically, our codes have parity-check matrices similar to those of Reed-Solomon

codes; however, the underlying field GF (2t) is substituted by the ring of binary polynomials

modulo 1 + x + · · · + xt−1 + xt. The requirement that t + 1 is a prime guarantees that

the resulting codes are, indeed, MDS. In the case of multiple-erasure single-error decoding,

the only multiplications required during encoding and decoding involve ring elements of the

form xi, i = 0, 1, 2, . . . , as one of the operands. Now, using the fact that (x− 1)(
∑t

i=0 x
i) =

xt+1 − 1, multiplications boil down to cyclic shifts of binary vectors of length p = t+ 1, and

the implementation of any encountered arithmetic ring operation requires only t XOR bit

operations. The encoding-decoding scheme presented in [4] and [7] is, in a way, a special

case of the family of codes discussed in this paper for r = 2 (two-erasure correction).

When 2 is primitive in GF (p), our codes are equivalent to Reed-Solomon codes of length

p over GF (2p−1). In such cases, we can apply the proposed simplified procedure for syndrome

calculation, then invoke the Berlekamp-Massey algorithm to find the error locations of any

prescribed number of errors, and finally apply the proposed erasure decoding technique to

compute efficiently the error values. It is a long-standing conjecture that there are “many”

fields GF (p) in which 2 is primitive.

We point out that Reed-Solomon and BCH codes over other rings, namely integer rings,

were studied by several authors in [2][3][21][23][24]. A generalization of the Berlekamp-

Massey algorithm for integer rings is presented in [18].

This paper is organized as follows. In Section 2 we present a geometric definition of the

new codes. In Section 3, we show that these codes can be viewed as Reed-Solomon-type codes

over the above-mentioned polynomial rings, thus verifying that they are MDS. In Section 4

we present a decoding procedure for the all-erasure case, and in Section 5 we show how the

decoding algorithm can be adapted to handle, in addition, single errors as well. Finally, in

Section 6 we address the multiple-error case; in particular, we point out the difficulties that

arise while attempting to generalize the decoding algorithm for the multiple-error case when

the underlying polynomial ring is not a field.

3

2 Geometric presentation of the codes

We start by a geometric description of the array codes considered in this paper. As the

construction can be applied to any finite field, rather than just GF (2), we describe the

codes in this more general setting. Let F = GF (q) and let p be a prime which is not the

characteristic of F (that is, gcd(p, q) = 1). For an integer n ≤ p, let M(p − 1, n) denote

the space of all (p− 1)× n matrices (arrays) Γ = [ci,j]
p−2n−1
i=0,j=0 over F . To simplify notations

in the sequel, we shall assume that each array Γ ∈ M(p − 1, n) has an extra all-zero row

[cp−1,0 cp−1,1 . . . cp−1,n−1], allowing the first index i in ci,j to range from 0 to p− 1.

For an integer a, let ⟨a⟩p stand for the integer b ∈ {0, 1, . . . , p−1} such that b ≡ a (mod p).

The subscript p will sometimes be omitted if no confusion arises.

The linear array code C(p−1, n, r) over F = GF (q) is defined as a subspace ofM(p−1, n)
consisting of all arrays Γ = [ci,j]i,j which satisfy the following p · r linear constraints:

n−1∑
j=0

c⟨m−jl⟩p , j = 0 , 0 ≤ m ≤ p− 1 , 0 ≤ l ≤ r − 1 . (1)

In other words, C(p− 1, n, r) consists of all arrays inM(p− 1, n) such that the entries along

the p lines of slope l, 0 ≤ l ≤ r− 1, sum to zero. This (geometric) definition of C(p− 1, n, r)

is illustrated, for the special case of n = p = 5 and r = 3, in Figures 1–3, where we have

used symbols to mark each one of the parity-check lines defined by (1). Using these figures,

it is easy to verify that the array in Figure 4 is an element of the array code C(4, 5, 3) over
GF (2).

Note that C(p− 1, n, 0) =M(p− 1, n) and that C(p− 1, n, 1) is the array code consisting

of all arrays inM(p− 1, n) whose rows sum to zero. The array codes studied in [4] and [7]

are identical to C(p− 1, p, 2) over GF (2).

Remark 1. It is easy to verify that the code C(p − 1, n, r) can be obtained by taking

the arrays of C(p − 1, p, r) whose last p − n columns are zero and then deleting those zero

columns. In other words, C(p− 1, n, r) can be obtained from C(p− 1, p, r) by shortening. •

In the next section we show that the codes C(p − 1, n, r), when regarded as [n, n − r]

codes over the column alphabet (of size qp−1), are MDS. In particular, it will follow that any

4

0 1 2 3 4

0 3 3 3 3 3

1 △ △ △ △ △
2 ♣ ♣ ♣ ♣ ♣
3 ♢ ♢ ♢ ♢ ♢

Figure 1: Lines of slope 0 in C(4, 5, 3).

0 1 2 3 4

0 3 △ ♣ ♢ •
1 △ ♣ ♢ • 3

2 ♣ ♢ • 3 △
3 ♢ • 3 △ ♣

Figure 2: Lines of slope 1 in C(4, 5, 3).

0 1 2 3 4

0 3 △ ♣ ♢ •
1 ♢ • 3 △ ♣
2 △ ♣ ♢ • 3

3 • 3 △ ♣ ♢

Figure 3: Lines of slope 2 in C(4, 5, 3).

0 1 2 3 4

0 1 1 0 0 0

1 1 0 0 1 0

2 0 1 1 1 1

3 1 0 0 1 0

Figure 4: An element of the array code C(4, 5, 3) over GF (2).

5

r columns in Γ ∈ C(p− 1, n, r) are uniquely determined by the remaining n− r columns or,

equivalently, any n− r columns may serve as information columns (usually the information

column locations are preset, say, to the first n − r columns). Therefore, we can regard the

encoding procedure as a special case of the erasure decoding procedure discussed in Section 4

(see also Remark 3).

Remark 2. The constraints in (1) all include additions, but no multiplications, over

GF (q). Therefore, the array code

Ch(p− 1, n, r)
∆
= C(p− 1, n, r)× C(p− 1, n, r)× · · · × C(p− 1, n, r)︸ ︷︷ ︸

h times

,

viewed as a subset of the (p−1)×n matrices over the space
(
GF (q)

)h
, is a linear array code

over GF (qh), consisting of (p−1)×n matrices which satisfy (1), now regarded as constraints

over GF (qh). Furthermore, the code Ch(p− 1, n, r) over its column alphabet is MDS as long

as C(p − 1, n, r) is MDS. Hence, it suffices to consider array codes over prime base fields

GF (q) only; moreover, the decoding of Ch(p− 1, n, r) can be carried out independently (and

in parallel) on each one of the h layers over GF (q) of the code arrays of Ch(p− 1, n, r). •

3 Algebraic presentation of the codes

In this section we obtain an equivalent definition for C(p− 1, n, r) over the column alphabet

(of size qp−1). Interpreting this alphabet as a polynomial ring, we reveal the relationship

between C(p− 1, n, r) and Reed-Solomon codes.

Let F = GF (q) and let p be a prime such that gcd(p, q) = 1. Denote by Mp(x) the

polynomial
∑p−1

i=0 x
i over F , and let Rp = Rp(q) be the ring of polynomials of degree < p− 1

over F with multiplication taken modulo Mp(x). Also, let R∗p denote the multiplicative

group of the polynomials in Rp which are relatively prime to Mp(x). To avoid confusion

in the sequel, we shall use the indeterminate α instead of x when we refer to polynomials

as elements of Rp. This will also indicate whether operations are taken over the ring of

polynomials F [x] or, rather, over the ring Rp.

First observe that gcd(xl,Mp(x)) = 1, implying αl ∈ R∗p. Also, xp − 1 = (x − 1)Mp(x),

6

implying αp = 1. Since α ̸= 1, we must have O(α) = p, where O(·) stands for the multiplica-

tive order in R∗p. It thus follows that O(αl) = p for all l ̸≡ 0 (mod p). Note also that Rp(q)

is isomorphic to GF (qp−1) when Mp(x) is an irreducible polynomial over F . This happens

if and only if q is a primitive element in GF (p) (see, for instance, [15, p. 506]).

Consider the following r × r matrix

V =

1 1 . . . 1

α0 α1 . . . αr−1

α2
0 α2

1 . . . α2
r−1

...
...

...
...

αr−1
0 αr−1

1 . . . αr−1
r−1

over Rp(q), where the αi’s are distinct and αi = αji , 0 ≤ i ≤ r− 1 (≤ p− 1). We claim that

the columns of V are linearly independent over Rp(q). Clearly, if Rp(q) ∼= GF (qp−1), then

V a Vandermonde matrix which is nonsingular for distinct αi. Referring to the general case,

we first note that for 1 ≤ l < p,

gcd(xl − 1, xp − 1) = xgcd(l,p) − 1 = x− 1 .

Since p is not the characteristic of F we have Mp(1) ̸= 0 i.e., gcd(x− 1,Mp(x)) = 1. Hence,

αl − 1 ∈ R∗p and, therefore, each element of the form αm − αl, m ̸≡ l (mod p), has a

multiplicative inverse in Rp. It follows that the determinant of V is an element of R∗p,
implying that V has an inverse matrix V −1 over Rp. Hence, the columns of V are linearly

independent over Rp.

For r ≤ n ≤ p, let H be the r × n matrix over Rp(q) defined by

H =

1 1 1 . . . 1

1 α α2 . . . αn−1

1 α2 α4 . . . α2(n−1)

...
...

...
...

...

1 αr−1 α2(r−1) . . . α(n−1)(r−1)

,

and let C be the linear code of length n over Rp(q) with H as a parity-check matrix i.e.,

C
∆
=

{
c ∈ (Rp)

n | cHT = 0
}

. (2)

7

Since every r columns in H are linearly independent over Rp, C is a linear code of length n,

dimension n− r and minimum distance r + 1 over Rp. In particular, it is MDS.

Remark 3. When n = p, C is a cyclic code over Rp whose generator polynomial is given

by g(z) = (z − 1)(z − α) · · · (z − αr−1). Therefore, in general (i.e., when n ≤ p), the code

C is an [n, n − r] shortened cyclic code over Rp with the same generator polynomial g(z).

This gives rise to a nonsystematic encoder for C which maps an information polynomial

u(z) of degree < n − r over Rp into a codeword polynomial c(z) =
∑n−1

j=0 cjz
j = u(z)g(z),

where c = [c0 c1 . . . cn−1] ∈ C (see also Remark 8). The (common) division encoder which

computes the residue s(z) of zru(z) modulo g(z) to yield a codeword c(z) = zru(z)− s(z) is

equivalent to the encoder obtained by using the erasure decoding algorithm. •

In the following theorem we show that C is identical to the code obtained by regarding

the columns of the arrays in C(p− 1, n, r) as elements in Rp.

Theorem 1. Let C be the code over Rp(q) defined by (2) and let α
∆
= [1αα2 . . . αp−2]

be a basis of Rp(q) over F = GF (q). Then,

C = {c = αΓ | Γ ∈ C(p− 1, n, r)} .

Proof. Let c = [c0 c1 . . . cn−1] be a codeword in C, with each entry cj being an element

in Rp. Representing each component cj as a polynomial

cj = cj(α) =
p−2∑
i=0

ci,jα
i , ci,j ∈ F , 0 ≤ j ≤ n− 1 ,

we can write c = αΓ, where Γ is the following (p− 1)× n matrix over F :

Γ =

c0,0 c0,1 c0,2 . . . c0,n−1

c1,0 c1,1 c1,2 . . . c1,n−1
...

...
...

...
...

cp−2,0 cp−2,1 cp−2,2 . . . cp−2,n−1

 .

Rewriting the parity conditions cHT = αΓHT = 0, we obtain,

n−1∑
j=0

αjlcj(α) =
n−1∑
j=0

αjl
p−2∑
i=0

ci,jα
i = 0 , 0 ≤ l ≤ r − 1 . (3)

8

For l = 0 we thus have
p−2∑
i=0

αi
n−1∑
j=0

ci,j = 0

or, since the αi are linearly independent over F ,

n−1∑
j=0

ci,j = 0 , 0 ≤ i ≤ p− 2 . (4)

This means that each row in Γ must sum to zero. In particular,

n−1∑
j=0

cj(1) =
n−1∑
j=0

p−2∑
i=0

ci,j = 0 . (5)

Writing (3) and (5) as polynomial congruences over F [x], we obtain

n−1∑
j=0

xjlcj(x) ≡ 0 (mod Mp(x)) , 0 ≤ l ≤ r − 1 , (6)

and
n−1∑
j=0

xjlcj(x) ≡ 0 (mod x− 1) , 0 ≤ l ≤ r − 1 . (7)

As Mp(x) and x− 1 are relatively prime, Equations (6) and (7) are equivalent to

n−1∑
j=0

xjlcj(x) ≡ 0 (mod xp − 1) , 0 ≤ l ≤ r − 1 ,

or
n−1∑
j=0

xjl
p−1∑
i=0

ci,jx
i ≡ 0 (mod xp − 1) , 0 ≤ l ≤ r − 1 , (8)

where we have assumed an extra zero row [cp−1,0 cp−1,1 . . . cp−1,n−1] appended to Γ. Note

that (8) and (3) are equivalent constraints; this is due to the fact that cj(x), j = 0, 1, . . . , n−1,
are all polynomials of degree ≤ p − 2, although the congruences in (8) are taken modulo a

polynomial of degree p.

Rearranging the left-hand side of (8), we obtain,

n−1∑
j=0

xjl
p−1∑
i=0

ci,jx
i ≡

n−1∑
j=0

p−1∑
i=0

ci,jx
i+jl (mod xp − 1)

≡
p−1∑
m=0

xm
∑

⟨i+jl⟩p=m
0≤j≤n−1

ci,j (mod xp − 1)

9

≡
p−1∑
m=0

xm
n−1∑
j=0

c⟨m−jl⟩p , j (mod xp − 1) (9)

≡ 0 (mod xp − 1) . (10)

As the polynomial in (9) is of degree less than p, the congruence in (10) is, in fact, equality

over F [x]. We thus have

p−1∑
m=0

xm
n−1∑
j=0

c⟨m−jl⟩ , j = 0 , 0 ≤ l ≤ r − 1

and, therefore,

n−1∑
j=0

c⟨m−jl⟩ , j = 0 , 0 ≤ m ≤ p− 1 , 0 ≤ l ≤ r − 1 . (11)

This coincides with the constraints in (1) i.e., with the definition of C(p− 1, n, r).

Remark 4. The constraint set (4) (parity on rows) was required in the proof to es-

tablish the equivalence between the congruences modulo xp − 1 and those modulo Mp(x)

(Equations (6), (7) and (8)). To this end, the roots of the Reed-Solomon-type code C should

contain the element 1. This explains the distinction between the case of l = 0 and that

of other values of l. Note, however, that we still obtain an MDS code over Rp even if 1 is

not one of the code (consecutive) roots. The MDS property remains also if we add a “zero

column” [1 0 0 . . . 0]T , or an “infinity column” [0 0 . . . 0 1]T , to the parity-check matrix H.•

Remark 5. The constraint set (1) was used also in [10] and [14] to define codes over rings

of polynomials modulo xt − 1; however, such codes are usually not MDS. As we have just

shown, the codes C(p−1, n, r) over F = GF (q) can be regarded as constructions over the ring

of polynomials over F modulo xp−1, provided that each entry in a codeword is a polynomial

of degree ≤ p−2. The fact that p is a prime (different from the characteristic of F) and that

the degrees are restricted both account for the fact that the code C(p− 1, n, r) is MDS over

the column alphabet. It is easy to verify that our construction can be generalized to any ring

Rt+1(q) of polynomials over F modulo
∑t

i=0 x
i (to yield codes C(t, n, r) over F), provided

that gcd(t + 1, q) = 1 and that n is not greater than any divisor > 1 of t + 1. Under such

conditions, we have gcd(xl − 1,
∑t

i=0 x
i) = 1 for any 1 ≤ l < n, implying that the resulting

array code (consisting of t × n arrays over F) is MDS over the column alphabet. Clearly,

10

we can still replace the parity constraints over Rt+1(q) by congruences modulo xt+1 − 1.

However, since the conditions on n might be too restrictive when t + 1 is composite, we

choose to continue the discussion assuming that t+ 1 = p is a prime. •

4 All-erasure decoding

We now describe the decoding procedure of ρ ≤ r erasures (and no errors) for the array

code C(p− 1, n, r) over F = GF (q) or, rather, for the associated code C over Rp(q) defined

by (2). Later on, in Sections 5 and 6, we show how to incorporate error correction in the

proposed algorithm. Let c ∈ C be the transmitted codeword and assume that ρ erasures

have occurred at the distinct locations j0, j1, . . . , jρ−1. Let y = [y0 y1 . . . yn−1] be the vector

over Rp which equals c at all coordinates except the erased ones, in which it is zero. Also,

let αi = αji and ei = −cji denote the erasure locator and erasure value, respectively, for any

ji, 0 ≤ i ≤ ρ− 1. First, we calculate the syndrome values

Sl = (yHT)l =
n−1∑
j=0

yjα
jl =

ρ−1∑
i=0

eiα
l
i , 0 ≤ l ≤ r − 1 (12)

(all operations over Rp). Having found the syndrome, the decoder has to solve the linear

system

1 1 . . . 1

α0 α1 . . . αρ−1

α2
0 α2

1 . . . α2
ρ−1

...
...

...
...

αρ−1
0 αρ−1

1 . . . αρ−1
ρ−1

e0

e1
...

eρ−1

 =

S0

S1

...

Sρ−1

 (13)

(note that ρ syndrome values are sufficient for decoding ρ erasures).

When ρ = 1, we have e0 = S0. Assume that ρ > 1 and define the polynomials

Gi(z) =
ρ−1∏
s=0
s ̸=i

(1− αsz) =
ρ−1∑
l=0

Gi,lz
l , 0 ≤ i ≤ ρ− 1 , (14)

where Gi,l is the lth symmetric function on {−αs}0≤s≤ρ−1
s̸=i

. We easily see, from the definition

11

of Gi(z), that

αρ−1
m Gi(α

−1
m) =

ρ−1∏
s=0
s̸=i

(αi − αs) if m = i

0 otherwise

, 0 ≤ m ≤ ρ− 1 . (15)

Now,

ρ−1∑
l=0

Gi,ρ−1−l Sl =
ρ−1∑
l=0

Gi,ρ−1−l

ρ−1∑
m=0

emα
l
m

=
ρ−1∑
m=0

em

ρ−1∑
l=0

Gi,ρ−1−lα
l
m

=
ρ−1∑
m=0

emα
ρ−1
m Gi(α

−1
m)

=
(ρ−1∏

s=0
s ̸=i

(αi − αs)
)
ei , 0 ≤ i ≤ ρ− 1 , (16)

the last equality obtained by (15). Summarizing (16), the solution for the ei in (13) is given

by (ρ−1∏
s=0
s ̸=i

(αi − αs)
)
ei =

ρ−1∑
l=0

Gi,ρ−1−lSl , 0 ≤ i ≤ ρ− 1 . (17)

Note that, up to scalar row multipliers, (17) is the same as Equation (13) with both sides

multiplied by the inverse of V
∆
= [αl

i]
ρ−1
l,i=0. Now, recalling that Sl, ei and Gi,l, as elements of

Rp, can be represented by polynomials over F (i.e., Sl = Sl(α) =
∑p−2

m=0 sm,lα
m, ei = ei(α) =∑p−2

m=0 em,iα
m and Gi,l = Gi,l(α) =

∑p−2
m=0 gm,i,lα

m), we can rewrite (17) as the following

polynomial congruence over F [x]:

(ρ−1∏
s=0
s ̸=i

(xji − xjs)
)
ei(x) ≡

ρ−1∑
l=0

Gi,ρ−1−l(x)Sl(x) (mod Mp(x)) , 0 ≤ i ≤ ρ− 1 . (18)

We now present an efficient procedure (Steps 1–4 below) for extracting the values of ei

from (17). The basic idea is to break the multiplications modulo Mp(x) into two pieces:

the first step involves a multiplication modulo xp − 1, whereas the second step rectifies the

result modulo Mp(x). The advantage of this approach stems from the fact that the only

12

multiplications we shall need in order to calculate the right-hand side of (18) involve one

operand of the form xm; now, multiplying by xm modulo xp − 1 is simply a cyclic shift.

For example, let b(α) =
∑p−2

i=0 biα
i ∈ Rp, and suppose we like to perform the multiplication

αmb(α), resulting in an element a(α) =
∑p−2

i=0 aiα
i ∈ Rp. In other words, we would like to

find a polynomial a(x) ∈ F [x] of degree < p− 1 such that

a(x) ≡ xmb(x) (mod Mp(x)) .

First, we find a polynomial â(x) =
∑p−1

i=0 âix
i ∈ F [x] of degree < p such that

â(x) ≡ xmb(x) (mod xp − 1) ;

note that, in particular, a(x) ≡ â(x) (mod Mp(x)). Now, finding the coefficients of â(x) is

easy; these coefficients are given by

âi = b⟨i−m⟩p , 0 ≤ i ≤ p− 1 ,

where we define bp−1
∆
= 0. Second, we rectify â(x) to obtain a(x). This is done by observing

that

a(x) ≡ â(x) ≡ â(x)− âp−1Mp(x) (mod Mp(x))

and, furthermore, that the degree of â(x)− âp−1Mp(x) is at most p− 2; therefore, we must

have a(x) = â(x)− âp−1Mp(x) i.e.,

ai = âi − âp−1 = b⟨i−m⟩p − b⟨−m−1⟩p , 0 ≤ i ≤ p− 2 . (19)

Observe that (19) yields simple expressions for the coefficients of a(α) in terms of those of

b(α) (and, therefore, we could use these expressions directly to calculate a(α)). However, in

general, the computation might involve several multiplications. In order to get any desired

result a(α) ∈ Rp in such cases, we first carry out all calculations modulo xp− 1, ending with

a polynomial â(x) ∈ F [x] of degree < p; then, as a final step, we obtain the coefficients of

a(x) by ai ← âi − âp−1, 0 ≤ i ≤ p− 2.

Returning to Equation (17), we start by calculating the right-hand side of (18) modulo

xp−1; to this end, we need to calculate polynomials Ŝl(x) =
∑p−1

m=0 ŝm,lx
m such that Ŝl(x) ≡

Sl(x) (mod Mp(x)). Let yj = yj(α) (∈ Rp), where yj(x) =
∑p−1

i=0 yi,jx
i (∈ F [x]) and yp−1,j =

13

0, 0 ≤ j ≤ n− 1. Following the derivation of (11), Equation (12) yields the following simple

procedure for calculating the coefficients of Ŝl(x):

/* Step 1: Syndrome calculation (global for all erasures) */

for l← 0 to r − 1 do /* run for each syndrome value Ŝl(x) =
∑p−1

m=0 ŝm,lx
m */

for m← 0 to p− 1 do

ŝm,l ←
∑n−1

j=0 y⟨m−jl⟩p .

Clearly, this first step of the decoding procedure requires no more than r · p · n additions

over F .

Remark 6. As mentioned earlier, in the case of all-erasure decoding, it suffices to

compute only the first ρ syndrome values. Therefore, in this special case, we can assume

throughout this section that r and ρ are identical. However, in order to make the forthcoming

derivation more general (as to allow error correction as well), we prefer to distinguish between

the redundancy r and the number of erasures ρ. •

For each i, i = 0, 1, 2, . . . , ρ− 1, let σi = σi(α) denote the right-hand side of (17) i.e.,

σi(x) ≡
ρ−1∑
l=0

Gi,ρ−1−l(x)Sl(x) (mod Mp(x)) , 0 ≤ i ≤ ρ− 1 .

Let R(z) = R(α; z) =
∏ρ−1

s=0(1−αsz) be the erasure-locator polynomial in the indeterminate

z over Rp, and let S(z) = S(α; z) =
∑r−1

l=0 Slz
l be the syndrome polynomial. Denote by Q(z)

the product of these two polynomials i.e., Q(z) = Q(α; z) = R(z)S(z). It is easy to verify

that, for each i, σi is the coefficient of zρ−1 in the quotient polynomial

Gi(z)S(z) =
R(z)S(z)

1− αiz
=

Q(z)

1− αiz

overRp. Note that the definition of Q(z) is independent of the erasure index i and, therefore,

it need not be computed more than once throughout the erasure decoding process.

Remark 7. There exists a known method (the Forney algorithm [1, p. 184]) for calcu-

lating the erasure values ei out of the erasure-evaluator polynomial (which is congruent to

Q(z) modulo zρ). Obviously, the same expression for ei is obtained by equating the left-hand

side of (17) with the coefficient of zρ−1 in Q(z)/(1− αiz). •

14

In order to extract σi from Q(z)/(1 − αiz), we first transform into calculations modulo

xp − 1. More specifically, we compute a polynomial Q̂(x; z) =
∑r+ρ−1

l=0 Q̂l(x)z
l such that

Q̂(x; z) ≡ Q(x; z) (mod Mp(x)) ,

where the congruence applies to each z-coefficient Q̂l(x) ∈ F [x] (of degree < p) in Q̂(x; z)

with the corresponding z-coefficient in Q(x; z). The polynomial Q̂(x; z) can be computed

easily using the following procedure:

/* Step 2: Computation of Q̂(x; z) (global for all erasures) */

Q̂(x; z)← Ŝ(x; z)
∆
=

∑r−1
l=0 Ŝl(x)z

l (the output of Step 1) ;

for s← 0 to ρ− 1 do

Q̂(x; z)← (1− xjsz)Q̂(x; z) (mod xp − 1) .

Representing each z-coefficient Q̂l(x) of Q̂(x; z) as a p-vector over F , each multiplication

by 1 − xjsz involves a p-block shift of the coefficients of Q̂l(x) over F (by virtue of the

multiplier z); then a cyclic shift by js positions of each coefficient Q̂l(x) (multiplication

by xjs); and finally subtracting the result from the original copy of Q̂(x; z). The overall

complexity of Step 2 thus totals to 1
2
ρ · (2r + ρ − 1) · p (≤ 3

2
r2p) additions over F , plus

ρ · (2r + ρ − 1) shifts of vectors of length p over F . In particular, we do not need any

multiplications over F . Note that, in general, the standard erasure decoding of Reed-Solomon

codes over GF (qt) requires multiplications over the base-field GF (q); moreover, the number

of necessary base-field operations is proportional to ρ · r · t · f(t) where limt→∞ f(t) =∞.

Next, we find the coefficient of zρ−1 in the quotient polynomial Q̂(x; z)/(1−xjiz) to yield

a polynomial σ̂i(x) which is congruent to σi(x) modulo Mp(x). The following direct division

procedure computes the desired coefficient of zρ−1 by iteratively extracting the coefficients

of zl, l = 0, 1, . . . , ρ− 1, in that quotient polynomial.

/* Step 3: Computation of the right-hand side of (17) */

/* Q̂(x; z) =
∑r+ρ−1

l=0 Q̂l(x)z
l is the output of Step 2 */

for i← 0 to ρ− 1 do begin /* run for each erasure */

σ̂i(x) (=
∑p−1

m=0 σ̂m,ix
m)← Q̂0(x) ;

for l← 1 to ρ− 1 do

15

σ̂i(x)← Q̂l(x) + xjiσ̂i(x) (mod xp − 1) ;

σi(x)← σ̂i(x)− σ̂p−1,iMp(x)

end .

The inner loop of the above procedure involves a cyclic shift (by ji) of the coefficients

σ̂m,i ∈ F of σ̂i(x), and then adding the result to the coefficients of Q̂l(x). Hence, Step 3

requires ρ2 ·p additions over F and ρ2 cyclic shifts of p-vectors to find all the values of σi(α),

0 ≤ i ≤ ρ− 1, in Rp (including the final rectification modulo Mp(x)).

Remark 8. Referring to the nonsystematic encoder mentioned in Remark 3, a procedure

similar to Step 2 allows to multiply the information polynomial u(z) with the generator

polynomial g(z) using up to r · p ·n additions over F , plus 2 · r ·n (constant) shifts of vectors

of length p over F . The same order of time complexity is then required at the decoder end

to extract u(z) out of the decoded codeword c(z) = u(z)g(z), using a procedure which is

basically similar to Step 3. •

Having calculated the right-hand side of (17), we now “peel off” iteratively the multipliers

(αi−αs) in the left-hand side of (17) to finally obtain the value of ei for every i. Each resulting

iteration is based on the following lemma.

Lemma 1. Let a(α) =
∑p−2

i=0 aiα
i ∈ Rp(q) (where ai ∈ F = GF (q) and gcd(p, q) = 1),

and define the so-called unbiased coefficients ãi by ãi
∆
= ai − 1

p

∑p−1
j=0 aj, 0 ≤ i ≤ p − 1,

where ap−1
∆
= 0. Then, for any m ̸≡ 0 (mod p), the coefficients of the unique solution

b(α) =
∑p−2

i=0 biα
i for

a(α) = (αm − 1) b(α)

in Rp(q) are given by the recursion

b⟨−km−1⟩p = b⟨−(k−1)m−1⟩p + ã⟨−(k−1)m−1⟩p , 1 ≤ k ≤ p− 1 ,

with bp−1
∆
= 0.

(Recall that 1/p is well-defined in F since gcd(p, q) = 1.)

16

Proof. By (19) we have

ai = b⟨i−m⟩ − b⟨−m−1⟩ − bi , 0 ≤ i ≤ p− 1 . (20)

Summing both sides of (20) over all i, we obtain

p−1∑
i=0

ai = −p · b⟨−m−1⟩

i.e., b⟨−m−1⟩ = −(1/p)
∑p−1

i=0 ai. This proves the lemma for k = 1. The case of larger k is

obtained by substituting i = ⟨−(k − 1)m− 1⟩p, and the value of b⟨−m−1⟩, into (20).

It is easy to verify that the inverse of α− 1 in Rp is given by

P (α)
∆
= −(1/p)

p−2∑
i=0

(p− 1− i)αi

and, therefore, the inverse of αm−1, m ̸≡ 0 (mod p), is P (αm) = −(1/p)∑p−2
i=0 (p−1− i)αim.

Lemma 1 is simply a presentation of the coefficients of b(α) = P (αm)a(α).

Corollary 1. Let a(α) =
∑p−2

i=0 aiα
i and ãi be as in Lemma 1. Then, for any m ̸≡

l (mod p), the coefficients of the unique solution b(α) =
∑p−2

i=0 biα
i for

a(α) = (αm − αl) b(α)

in Rp(q) are given by the recursion

b⟨−k(m−l)−1⟩p = b⟨−(k−1)(m−l)−1⟩p + ã⟨−(k−1)(m−l)+l−1⟩p , 1 ≤ k ≤ p− 1 ,

with bp−1
∆
= 0.

Proof. Transform a(α) = (αm − αl)b(α) into α−la(α) = (αm−l − 1)b(α) and then apply

Lemma 1.

Example 1. The solution b(α) for a(α) = (α5 − α3)b(α) in R7(q) is given by

b6 = 0

b4 = b6 + ã2

b2 = b4 + ã0

b0 = b2 + ã5

b5 = b0 + ã3

b3 = b5 + ã1

b1 = b3 + ã6

.

17

Applying the recursion of Corollary 1 involves no more than 2p additions over F (exclud-

ing the constant multiplier 1/p which boils down to 1 in GF (2)), plus calculation of indices

(= decimation) modulo p. We point out that these index computations can be bypassed by

making use of the layout geometry, giving rise to a modular architecture which is suitable

for VLSI design. We demonstrate this in Appendix A.

When F = GF (2), we can further avoid calculating the unbiased coefficients ãi by per-

forming two recursion steps at a time, in which case the unbiasing sum (1/p)
∑p−1

j=0 aj cancels

out. The resulting recursion, summarized in the next corollary, requires the same number of

additions (XOR, ⊕) as the one in Corollary 1.

Corollary 2. Let a(α), m and l be as in Corollary 1 and, in addition, assume that

F = GF (2). Then, the coefficients of the unique solution b(α) =
∑p−2

i=0 biα
i for

a(α) = (αm ⊕ αl) b(α)

in Rp(2) are given by

b⟨−2s(m−l)−1⟩p = b⟨−(2s−2)(m−l)−1⟩p ⊕ a⟨−(2s−2)(m−l)+l−1⟩p ⊕ a⟨−(2s−1)(m−l)+l−1⟩p

=
2s−1⊕
i=0

a⟨−i(m−l)+l−1⟩p , 1 ≤ s ≤ p− 1 ,

with bp−1 = 0.

Example 2. The solution b(α) for a(α) = (α− α2)b(α) in R5(2) is given by

b4 = 0

b1 = b4 ⊕ a1 ⊕ a2 = a1 ⊕ a2

b3 = b1 ⊕ a3 ⊕ a4 = a1 ⊕ a2 ⊕ a3

b0 = b3 ⊕ a0 ⊕ a1 = a0 ⊕ a2 ⊕ a3

b2 = b0 ⊕ a2 ⊕ a3 = a0

(recall that a4 = 0).

Corollaries 1 and 2 establish the iterative procedure by which the values of ei can be

obtained from (17). For each fixed i, we define the ρ terms e
(k)
i ∈ Rp, k = 0, 1, . . . , ρ− 1, as

18

follows:

e
(k)
i =

(ρ−1∏
s=k
s ̸=i

(αi − αs)
)
ei for 0 ≤ k < i

(ρ−1∏
s=k+1

(αi − αs)
)
ei for i ≤ k ≤ ρ− 2

ei for k = ρ− 1

. (21)

The following procedure solves iteratively for e
(k)
i , k = 1, 2, . . . , ρ − 1, starting with

e
(0)
i = σi (Equation (17)), and ending with ei = e

(ρ−1)
i (all the e

(k)
i are computed into the

same variable ei):

/* Step 4: Extracting the erasure values from (17) */

for i← 0 to ρ− 1 do begin /* run for each erasure */

ei ← σi (the output of Step 3) ;

for k ← 0 to ρ− 2 do

if k < i then

ei ← (αi − αk)
−1ei /* apply the recursion of Corollary 1 */

else

ei ← (αi − αk+1)
−1ei

end .

Since each inner-loop iteration requires at most 2p additions over F , finding each ei

requires at most 2 · ρ · p additions once we have found σi. Totalling over all erasures, Step 4

requires 2 · ρ2 · p additions over F , and the same order of index additions (modulo p) which,

in turn, can be implemented by the scheme described in Appendix A.

The overall complexity of the erasure decoding algorithm thus sums up to r ·p·n additions

over F for syndrome calculation (Step 1), and O(ρ · r)
(
≤ O(r2)

)
operations (= additions

and shifts) of p-vectors over F (Steps 2–4).

The above four-step procedure is demonstrated by way of example in Appendix B.

19

5 Single-error multiple-erasure decoding

The erasure decoding algorithm of Section 4 for C(p − 1, n, r) can be adapted to cover also

the case where a single column error, and up to r − 2 column erasures, have occurred. The

additional time complexity due to the single error amounts to a number of operations which

is linear in p.

For the sake of clarity, assume first that no erasures have occurred. Therefore, the first

two syndrome values are sufficient in order to correct the single column error (if any). Let

Γ ∈ C(p− 1, n, r) over F = GF (q) be the correct (p− 1)× n code array, and let Y = Γ+E

be the received array (both over F), where E is an error array with at most one nonzero

column, indexed j0. Transforming into the linear code C over Rp(q) defined by (2), the

corresponding error vector over Rp(q) is given by

αE = [
← j0 →
0 0 . . . 0 e0 0 0 . . . 0] ,

where e0 = e0(α) is the error value at location j0 and, as in Section 3, α stands for the basis

[1αα2 . . . αp−2] of Rp over F .

The two syndrome values S0 = S0(α) and S1 = S1(α) in Rp, associated with y
∆
= αY ,

are given by

[S0 S1] = yHT = αEHT = [e0 e0α
j0] .

That is, S0 equals the error value e0, whereas the error location j0 is obtained by finding

an integer k such that S1 = S0α
k. Now, as in Section 4, we transform the syndrome

values into the ring modulo xp− 1, resulting in the polynomials Ŝl(x) =
∑p−1

m=0 ŝm,lx
m whose

coefficients (in F) are given by ŝm,l =
∑n−1

j=0 y⟨m−jl⟩p , 0 ≤ m ≤ p− 1, l = 0, 1. In particular,

ŝp−1,0 =
∑n−1

j=0 yp−1,j = 0 and, therefore, deg Ŝ0(x) < p − 1. On the other hand, since

Ŝ0(x) ≡ S0(x) (mod Mp(x)), we must have Ŝ0(x) = S0(x) = e0(x).

The second syndrome value Ŝ1(x), in turn, satisfies the congruence

Ŝ1(x) ≡ xk e0(x) ≡ xk Ŝ0(x) (mod xp − 1) (22)

for k = j0; that is, the p coefficients of Ŝ1(x) (in F) form a cyclically shifted phase of the

coefficients of Ŝ0(x). Note that Ŝ0(x) = 0 corresponds to the no-error case. Furthermore,

since deg Ŝ0(x) < p−1, these polynomials cannot equal any scalar multiple of Mp(x), except

20

the zero polynomial. We therefore conclude that, whenever a single error has occurred, there

exists a unique cyclic shift k modulo p which translates the coefficients of Ŝ0(x) into Ŝ1(x).

This shift, j0, is the solution for k in (22) i.e., it points to the erroneous column.

Hence, the problem of finding the error location boils down to finding the relative cyclic

shift between two phases of a sequence of period p. An algorithm due to Shiloach [22]

solves this problem requiring a number of operations which is linear in p. For the sake of

completeness, this algorithm is presented below. Given two sequences a0, a1, . . . , aN−1 and

b0, b1, . . . , bN−1 over any ordered set, the following procedure finds two integers l,m < N

(if any) for which the vectors [al al+1 . . . aN−1 a0 . . . al−1] and [bm bm+1 . . . bN−1 b0 . . . bm−1]

are both equal (in case there are no such integers, the procedure terminates with h = 0;

otherwise it will terminate with h = N).

l← 0 ; m← 0 ; h← 0 ;

while l < N and m < N and h < N do

if a⟨l+h⟩N = b⟨m+h⟩N then

h← h+ 1

else if a⟨l+h⟩N < b⟨m+h⟩N then

begin m← m+ h+ 1 ; h← 0 end

else

begin l← l + h+ 1 ; h← 0 end .

Now, apply the above procedure to the coefficients of Ŝ0(x) and Ŝ1(x) with N = p. The

desired value of j0 is ⟨m− l⟩p.

We now turn to the case where erasures have occurred as well. As we intend to apply

our results also to the multiple-error case, we shall start the derivation assuming the most

general setting where τ column errors and ρ ≤ r−2τ column erasures have occurred. Let c =

[c0 c1 . . . cn−1] = αΓ denote the correct codeword (over Rp(q)) and let y = [y0 y1 . . . yn−1] =

αY denote the received word, which is assumed to be (say) zero at the erasure locations

j0, j1, . . . , jρ−1. Also, let jρ, jρ+1, . . . , jρ+τ−1 denote the error locations, and for each i, 0 ≤
i ≤ ρ + τ − 1, let ei

∆
= yji − cji and αi

∆
= αji stand for the ith error (or erasure) value and

locator, respectively, both in Rp. Without loss of generality we can assume that the ji’s are

distinct for all 0 ≤ i ≤ ρ+ τ − 1 and that the (proper) error values ei, ρ ≤ i ≤ ρ+ τ − 1 are

all nonzero. Recalling the definition of the syndrome as in (12), we have Sl =
∑ρ+τ−1

i=0 eiα
l
i,

21

0 ≤ l ≤ r − 1.

Theorem 2. Let S(z) =
∑r−1

l=0 Slz
l be the syndrome polynomial and R(z) =

∏ρ−1
s=0(1 −

αsz) be the erasure-locator polynomial (both over Rp) associated with the received word y.

Also, let Q(z) =
∑r+ρ−1

l=0 Qlz
l denote the product R(z)S(z) of these two polynomials. Then,

for any polynomial T (z) =
∑τ ′

l=0 Tlz
l of degree τ ′ ≤ r − ρ− τ over Rp,∑τ ′

l=0 Tl Qm−l = 0 , ρ+ τ ′ ≤ m ≤ r − 1 (23)

if and only if

eiT (α
−1
i) = 0 , ρ ≤ i ≤ ρ+ τ − 1 . (24)

In particular, (23) holds vacuously if τ = 0.

Observe that when 2τ + ρ ≤ r, the error-locator polynomial Λ(z)
∆
=

∑τ
l=0 Λlz

l =∏ρ+τ−1
s=ρ (1− αsz) satisfies (24) and, so,

τ∑
l=0

ΛlQm−l = 0 , ρ+ τ ≤ m ≤ r − 1 .

Proof of Theorem 2. Let P (z) =
∑ρ+τ ′

l=0 Plz
l denote the product T (z)R(z). The left-

hand side of (23) is simply the coefficient of zm in T (z)Q(z) = T (z)R(z)S(z) = P (z)S(z)

and, therefore,
τ ′∑
l=0

Tl Qm−l =
ρ+τ ′∑
l=0

Pl Sm−l , ρ+ τ ′ ≤ m ≤ r − 1 . (25)

Expanding the right-hand side of (25), we obtain

τ ′∑
l=0

Tl Qm−l =
ρ+τ ′∑
l=0

Pl Sm−l

=
ρ+τ ′∑
l=0

Pl

ρ+τ−1∑
i=0

eiα
m−l
i

=
ρ+τ−1∑
i=0

eiα
m
i

ρ+τ ′∑
l=0

Pl α
−l
i

=
ρ+τ−1∑
i=0

αm
i eiP (α−1i)

=
ρ+τ−1∑
i=0

αm
i eiT (α

−1
i)R(α−1i) , ρ+ τ ′ ≤ m ≤ r − 1 .

22

However, R(α−1i) = 0 for 0 ≤ i ≤ ρ− 1 and, so,

τ ′∑
l=0

Tl Qm−l =
ρ+τ−1∑
i=ρ

αm
i eiT (α

−1
i)R(α−1i) , ρ+ τ ′ ≤ m ≤ r − 1 , (26)

where the right-hand side of (26) should read zero if τ = 0.

Let V = [vm,i]m,i be the (r − ρ− τ ′)× τ matrix over Rp defined by vm,i
∆
= αm

i , ρ + τ ′ ≤
m ≤ r − 1, ρ ≤ i ≤ ρ + τ − 1, and let D = [di,j]

ρ+τ−1
i,j=ρ be the τ × τ diagonal matrix over

Rp whose principal diagonal is given by di,i
∆
= R(α−1i), ρ ≤ i ≤ ρ+ τ − 1. Rewriting (26) in

matrix form, the two column vectors

u
∆
=

[
αm
i eiT (α

−1
i)

]ρ+τ−1

i=ρ

and

v
∆
=

[
τ ′∑
l=0

Tl Qm−l

]r−1
m=ρ+τ ′

are related by

v = V D u .

Recalling that the ji’s are distinct, the entries di,i = R(α−1i) are all invertible in Rp, and so

D has an inverse over Rp. In addition, the columns of V are linearly independent over Rp

as long as τ ≤ r− ρ− τ ′. It thus follows that, whenever τ ′ ≤ r− ρ− τ , v = 0 if and only if

u = 0. This completes the proof of the theorem.

We return now to the single-error multiple-erasure case i.e., τ ≤ 1. Assuming that one

error valued eρ ̸= 0 has occurred at location jρ, the error-locator polynomial is given by

Λ(z) = 1−αjρz. Hence, while searching for Λ(z), we shall be looking for polynomials of the

form Tk(z) = 1−αkz, 0 ≤ k ≤ n−1. Observe that, for every j, the value Tk(α
−j) is invertible

in Rp unless j ≡ k (mod p), in which case Tk(α
−j) = 0. In particular, eρTk(α

−jρ) = 0 if and

only if k = jρ. By Theorem 2 it thus follows that the unique solution k for

Qρ+1 − αkQρ = 0

is k = jρ. It is also easy to verify that the no-error case corresponds to Qρ = Qρ+1 = 0. Note

that in the no-erasure case (ρ = 0) discussed earlier, we have R(z) = 1, Q(z) = R(z)S(z) =

S(z) and, therefore, Qρ = Q0 = S0 and Qρ+1 = Q1 = S1.

23

The single-error multiple-erasure decoding procedure is now easily derived. First, we

compute the polynomials

Ŝ(x; z) =
r−1∑
l=0

Ŝl(x)z
l

and

Q̂(x; z) =
r+ρ−1∑
l=0

Q̂l(x)z
l ≡

ρ−1∏
s=0

(1− xjsz)

 Ŝ(x; z) (mod xp − 1)

by the very same Step 1 and Step 2 of Section 4.

Next, we find the unique solution k = jρ to the equation

Q̂ρ+1(x) ≡ xkQ̂ρ(x) (mod Mp(x)) . (27)

In fact, it can be shown that, as long as ρ ≤ r − 2, the congruence in (27) holds not

only modulo Mp(x), but rather modulo xp − 1. This has already been proved for ρ = 0

(Equation (22)); therefore, we can assume that ρ > 0. First, note that the values of the

polynomials Ŝl(x) =
∑p−1

m=0 ŝm,lx
m at x = 1 are independent of l; this is due to the fact that∑p−1

m=0 ŝm,l equals the sum of the entries over F of the received array Y . Therefore,

Ŝ(1; z)
(
= Ŝ(x; z)|x=1

)
=

r−1∑
l=0

Ŝl(1)z
l = Ŝ0(1)

r−1∑
l=0

zl .

Secondly, by the way Q̂(x; z) was defined, we have

Q̂(1; z) =
r+ρ−1∑
l=0

Q̂l(1)z
l

= (1− z)ρŜ(1; z)

= Ŝ0(1)(1− z)ρ
r−1∑
l=0

zl

= Ŝ0(1)(1− z)ρ−1(zr − 1) .

Since we assume that ρ + 1 < r, we must have Q̂ρ(1) = Q̂ρ+1(1) = 0 which, by (27), yields

the claimed congruence

Q̂ρ+1(x) ≡ xkQ̂ρ(x) (mod xp − 1) . (28)

The above derivation also implies that the polynomials Q̂ρ(x) and Q̂ρ+1(x) cannot equal any

scalar multiple of Mp(x), except the zero polynomial (notice though the different reasoning

24

for the no-erasure case as opposed to ρ > 0). Having these two polynomials equal to zero is

an indication that no errors have occurred.

Now, as in the no-erasure case, we solve (28) for k using Shiloach’s algorithm, yielding

the location jρ of the single error (if any). Then, we multiply the polynomial Q̂(x; z) by the

new-found factor 1− xjρ , and continue with Step 3 and Step 4 of Section 4 as if there were

ρ+ 1 erasures.

6 The multiple-error multiple-erasure case

Finally, we turn to the multiple-error multiple-erasure case. Referring to Theorem 2, the

linear constraints in (23) provide, on the one hand, necessary conditions for a given poly-

nomial T (z) to be an error-locator polynomial. On the other hand, by Theorem 2, these

constraints are also sufficient for a polynomial T (z) = 1 +
∑τ ′

l=1 Tlz
l of minimum degree

τ ′ ≤ τ ≤ r − ρ − τ to be the error-locator polynomial as long as the ei are invertible in

Rp(q). Obviously, this is the case when Rp(q) is a field i.e., when q is primitive in GF (p);

and the Berlekamp-Massey algorithm provides in this case quite an efficient way to solve (23)

for a polynomial T (z) = 1 +
∑

l≥1 Tlz
l of smallest degree. Step 1 of the erasure decoding

procedure of Section 4 can be used for fast syndrome calculation, whereas the rest of the

steps can be used to compute the error-erasure values, once the error-locator polynomial has

been found.

The following is a list of the primes 3 ≤ p ≤ 100 (out of a total of 24) for which Rp(2) is

a field: 3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67 and 83. Although it has not been established

yet whether there exist infinitely many fields Rp(2), it is conjectured that the fraction of

such fields among the rings Rp(2), p ≤ N , converges to a positive constant (approximately

0.374) when N →∞.

As for the case where Rp(q) is not a field, the zero divisors in Rp(q) do not allow a

straightforward application of the Berlekamp-Massey algorithm to obtain the error-locator

polynomial: in fact, we might as well have polynomials T (z) = 1 +
∑τ ′

l=1 Tlz
l of degree

τ ′ ≤ τ ≤ r/2 which satisfy (23), and yet T (z) ̸= Λ(z).

Example 3. Let F = GF (2) and p = 7; in this case we have M7(α) = (1+α2 +α3)(1+

25

α+ α3). Now, assume that r = 4 and that two errors (and no erasures) have occurred. The

two error values are given by e0 = 1+α2+α3 and e1 = 1+α+α3, whereas the error locators

are α0 = 1 and α1 = α4. It is easy to verify that the polynomial T (z) = 1 + (α + α3)z

satisfies e0T (α
−1
0) = e1T (α

−1
1) = 0 in R7(2) and, therefore, it also satisfies (23). However,

T (z) ̸= Λ(z) = 1 + (1 + α4)z + α4z2. •

Since the ei might be zero divisors in Rp(q) (as was the case in Example 3), some

additional constraints should be imposed on the minimum-degree solutions T (z) of (23) to

yield Λ(z). For example, we can search only for polynomials T (z) whose values T (αj),

0 ≤ j ≤ p − 1, are all in R∗p ∪ {0} (that is, each of these values, if nonzero, is invertible in

Rp; note that Λ(z) complies with such a requirement and that this is what we actually had

in the single-error case). However, we do not know yet how to incorporate such a constraint

into (23) to obtain an efficient decoding algorithm for an arbitrary number of errors.

Acknowledgment

The authors thank Henk van Tilborg for pointing out the existence of Shiloach’s algorithm

(and improvements thereof) used in Section 5.

Appendix A

In this appendix we suggest a VLSI architecture for implementing the recursion of Corol-

lary 1. Figure 5 depicts a p×n array of cells, where each cell is capable of storing an element

of F . In addition, each cell is equipped with a selector unit which has two data inputs (x

and y), two outputs (u and v), and an input control bit s (see Figure 6). The selector has

two modes of operation, according to the value of the input control s. When s = 0, the

selector is in transparent mode, in which case the input x is directed into u and the input y

is directed into v. By setting s = 1, the selector switches into active mode, where the input y

is now directed into u and the sum x+ y (over F) is directed into v. In order to perform the

recursion of Corollary 1, the selectors in columns m and l are set to active mode, whereas

those in the other columns are transparent. An extra column at the far left of the array is

26

Figure 5: Implementation of the recursion of Corollary 1.

loaded with ãi, i = 0, 1, . . . , p− 1 (see Figure 5). Starting with zero at the last entry of the

mth column, the correct values of bi will eventually turn at the mth column in consecutive

order.

Figure 7 depicts an implementation of the selector unit for the binary case (F = GF (2)).

Referring now to Step 4, observe that, while calculating the e
(k)
i , the active columns in

Figure 5 correspond to column locations which contain erasures i.e., irrelevant information;

furthermore, for each i, e
(k)
i should all be computed into the same column i. Therefore, we

can use the same piece of hardware both as the layout of Figure 5 and as the (p − 1) × n

storage memory for the received array.

27

Figure 6: Selector unit input and output flow.

Figure 7: Implementation of a selector unit over GF (2).

28

Appendix B

The next example illustrates the decoding procedure of Section 4 for C(4, 5, 3) over GF (2).

Assume that the received array is

0 1 2 3 4

0 1 ? ? 0 ?

1 1 ? ? 1 ?

2 0 ? ? 1 ?

3 1 ? ? 1 ?

i.e., columns 1, 2, and 4, containing the values e0(α), e1(α), and e2(α), respectively, have

been erased. We reconstruct the values of ei(α) by the four-step procedure of Section 4.

Step 1: Syndrome calculation. The coefficients of the polynomial Ŝ(x; z) = Ŝ0(x) +

Ŝ1(x)z + Ŝ2(x)z
2 (all in the polynomial ring GF (2)[x] modulo x5 − 1) are given by

Ŝ0(x) = 1 + x2 , Ŝ1(x) = x3 + x4 , and Ŝ2(x) = 1 + x+ x2 + x4 ,

and can be calculated, respectively, following the parity lines depicted in Figures 1–3.

Step 2: Computation of Q̂(x; z). Noting that columns 1, 2, and 4 have been erased,

the polynomial Q̂(x; z) is given by

Q̂(x; z)
∆
=

5∑
l=0

Q̂l(x)z
l = (1− xz)(1− x2z)(1− x4z) Ŝ(x; z)

= (1 + x2) + (x2 + x4)z + (1 + x+ x2 + x3)z2

+ (1 + x4)z3 + (x+ x2)z4 + (x+ x2 + x3 + x4)z5 .

The execution of Step 2 involves three iterations, each consisting of a linear shift of the

current five-bit coefficients Q̂l(x) by one five-bit position, then a cyclic bit-shift of each

coefficient Q̂l(x), and finally XOR-ing the newly computed copies of Q̂l(x) with the original

ones.

Step 3: Computation of σ0, σ1, σ2 (the right-hand side of (17)). Given the values

of Q̂l(x) of Step 2, the value of σ0 = σ0(α) is found by first computing iteratively the binary

coefficients of σ̂0(x) as follows:

σ̂0(x) ← Q̂0(x) = 1 + x2 ;

29

σ̂0(x) ← Q̂1(x) + x σ̂0(x) = (x2 + x4) + x (1 + x2) = x+ x2 + x3 + x4 ;

σ̂0(x) ← Q̂2(x) + x σ̂0(x) = (1 + x+ x2 + x3) + x (x+ x2 + x3 + x4) = x+ x4 ;

all computation taken modulo x5 − 1. Taking now the resulting σ̂0(x) modulo M5(x), we

obtain

σ0(α) = 1 + α2 + α3 .

Computing σ1 and σ2 in a similar manner, we end up with

σ1(α) = 1 + α + α2 + α3 and σ2(α) = α2 + α3 .

Step 4: Extracting the erasure values ei from (17). It remains to solve the following

equations

(α− α2)(α− α4) e0(α) = σ0(α)

(α2 − α)(α2 − α4) e1(α) = σ1(α)

(α4 − α)(α4 − α2) e2(α) = σ2(α)

for e0, e1, and e2.

Starting with e0, we define the intermediate values e
(k)
0 , k = 2, 1, 0, as in (21) i.e., e

(2)
0

∆
= e0,

e
(1)
0

∆
= (α−α4) e

(2)
0 , and e

(0)
0

∆
= (α−α2) e

(1)
0 . We calculate e

(k)
0 iteratively for k = 0, 1, 2 using

the initial condition e
(0)
0 = σ0, where σ0 is as computed in Step 3. Hence, e

(1)
0 is obtained by

solving

(α− α2) e
(1)
0 = 1 + α2 + α3 (= σ0) ,

which, in turn, can be computed using the recursion of Corollary 1 (or Corollary 2), resulting

in

e
(1)
0 = 1 + α + α2

(see Example 2). Having computed e
(1)
0 , the value of e0 = e

(2)
0 is found by solving the

recursion of Corollary 1 that corresponds to

(α− α4) e
(2)
0 = 1 + α + α2 (= e

(1)
0) .

This yields e0 = 1 + α2.

The values of e1 and e2 are found in a similar manner, ending up with e1 = e2 = α2. The

correct code array is, therefore, the one given in Figure 4.

30

References

[1] R.E. Blahut, Theory and Practice of Error Control Codes, Addison-Wesley, Reading,

Massachusetts, 1983.

[2] I.F. Blake, Codes over certain rings, Inform. Control, 20 (1972), 396–404.

[3] I.F. Blake, Codes over certain residue rings, Inform. Control, 29 (1975), 295–300.

[4] M. Blaum, A class of byte-correcting array codes, IBM Research Report RJ 5652

(57151), 1987.

[5] M. Blaum, P.G. Farrell, H.C.A. van Tilborg, A class of burst error-correcting array

codes, IEEE Trans. Inform. Theory, IT-32 (1986), 836–839.

[6] M. Blaum, P.G. Farrell, H.C.A. van Tilborg, Multiple burst-correcting array codes,

IEEE Trans. Inform. Theory, IT-34 (1988), 1061–1066.

[7] M. Blaum, H. Hao, R. Mattson, J. Menon, A coding technique for double disk failures

in disk arrays, IBM Disclosure SA889-0443 (submitted to U.S. Patent Office).

[8] P.G. Farrell, A survey of array error control codes, preprint, 1990.

[9] P.G. Farrell, S.J. Hopkins, Burst-error-correcting array codes, Radio Elec. Engr., 52

(1982), 188–192.

[10] T. Fuja, C. Heegard, M. Blaum, Cross parity check convolutional codes, IEEE Trans.

Inform. Theory, IT-35 (1989), 1264–1276.

[11] G. Gibson, L. Hellerstein, R.M. Karp, R.H. Katz, D.A. Patterson, Coding techniques

for handling failures in large disk arrays, Report No. UCB/CSD 88/477, 1988.

[12] R. Goodman, M. Sayano, Size limits on phased burst error correcting array codes, Elec.

Lett., 26 (1990), 55–56.

[13] R. Goodman, M. Sayano, Phased burst correcting array codes, preprint, 1990.

[14] G.R. Lomp, D.L. Schilling, A new burst and random error correcting code: The projec-

tion code, preprint, 1990.

31

[15] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, North Hol-

land, Amsterdam, 1977.

[16] S.W. Ng, Some design issues of disk arrays, IBM Research Report, RJ 6590 (63550),

1988.

[17] A.M. Patel, Adaptive cross parity code for a high density magnetic tape subsystem,

IBM J. Res. Develop., 29 (1985), 546–562.

[18] J.A. Reeds, N.J.A. Sloane, Shift-register synthesis (modulo m), Siam J. Comput., 14

(1985), 505–513.

[19] D.L. Schilling, D. Manela, PASM and TASM forward error correction and detection

code: method and apparatus, U.S. Patent 4,849,974 (July 1989).

[20] A. Schönhage, Schnelle Multiplikation von Polynomen über Körpern der Characteristick

2, Acta Informatica, 7 (1977), 395–398.

[21] P. Shankar, On BCH codes over arbitrary integer rings, IEEE Trans. Inform. Theory,

IT-25 (1979), 480–483.

[22] Y. Shiloach, A fast equivalence-checking algorithm for circular lists, Inform. Proc. Lett.,

8 (1979), 236–238.

[23] E. Spiegel Codes over Zm, Inform. Control, 35 (1977), 48–51.

[24] E. Spiegel Codes over Zm, revisited Inform. Control, 37 (1978), 100–104.

[25] W. Zhang, J.K. Wolf, A class of binary burst error-correcting quasi-cyclic codes, IEEE

Trans. Inform. Theory, IT-34 (1988), 463–480.

32

