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Abstract—A decoding algorithm is presented for rank-metric
array codes that are based on diagonal interleaving of maximum-
distance separable (MDS) codes. With respect to this metric,
such array codes are known to be optimal when the underlying
field is algebraically closed. It is also shown that for any list
decoding radius that is smaller than the minimum rank distance,
the list size can be bounded from above by an expression that is
independent of the field.

Index Terms—Array codes, decoding, list decoding, rank
metric.

I. INTRODUCTION

Rank-metric codes over finite fields were introduced almost
40 years ago [3], [6], [14], yet the interest in them was revived
in recent years due to the application of (variants of) such
codes to certain network coding schemes [10], [17].

The (optimal) finite-field maximum-rank distance (MRD)
construction of [3], [6] has been generalized also to cer-
tain infinite fields [1], [12], [15, §6]. However, since the
construction assumes the existence of algebraic field exten-
sions with prescribed extension degrees over the underlying
field, such generalizations are not applicable to fields such
as algebraically closed fields—in particular to the complex
field, which is more relevant to low-rank metric recovery
problems [2]. In fact, except for trivial cases, the rank-metric
Singleton bound cannot be attained over algebraically closed
fields (see Section II below).

In [14, §5] a simple construction of rank-metric codes was
presented, which is optimal in case the field is algebraically
closed. Yet no decoding algorithm was presented for these
codes and, so, one purpose of this work is to present such an
algorithm. We recall the construction in Section II, and present
a linear-algebraic decoding algorithm in Section III. Then, in
Section IV, we show that for any list decoding radius that
is smaller than the minimum rank distance, the list size of a
list decoding algorithm for these codes can be bounded from
above by an expression that is independent of the field. This, in
turn, provides evidence that, with respect to list decoding, there
is a range of parameters for which the rank-metric construction
studied here has advantages also when the underlying field is
a (sufficiently large) finite field.

II. CONSTRUCTION

Let F be a field and let n and µ be positive integers such
that µ ≤ n. For integers a < b, we denote by [a, b⟩ the
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set {a, a+1, a+2, . . . , b−1}, and we let [b⟩ be a shorthand
notation for [0, b⟩. We index the rows and columns in an array
(matrix) A over F starting at 0, with Ai,j denoting the entry
at row i and column j.

For every integer m ∈ [1−n, n⟩, diagonal m in an n × n
matrix refers to the set of n−|m| row–column index pairs

Dm = Dm(n) =
{
(i, j) ∈ [n⟩ × [n⟩ : j − i = m

}
.

In particular, D0 indexes the main diagonal and D1−n (respec-
tively, Dn−1) indexes the length-1 diagonal consisting of the
lower-left (respectively, upper-right) entry (see Figure 1: the
spade suit marks the set D−2 and the diamond suit marks the
set D1). We assume the obvious ordering on the elements of
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Fig. 1. Diagonals in an n× n matrix, for n = 4.

Dm, where (i, i+m) < (i′, i′+m) if and only if i < i′. For
a matrix A ∈ Fn×n, the notation (A)Dm

stands for the row
vector in Fn−|m| that is formed by the entries indexed by Dm

(in the order assumed on the elements of Dm).
In [14, §5], the following array code C = CF (n, µ) over (a

sufficiently large field) F was presented:

C =
{
Γ ∈ Fn×n : (Γ)Dm

∈ Cm ,

for m ∈ [1−n, n⟩
}
,

where the set Cm = Cm(n−|m|, µ) is a prescribed linear
maximum-distance separable (MDS) code over F of length
n− |m| and minimum (Hamming) distance µ (and dimension
n−|m|−µ+1; when n−|m| < µ, the code Cm contains just the
all-zero codeword). As a concrete example, each constituent
code Cm can be taken as a (possibly extended) generalized
Reed–Solomon (GRS) code over F , assuming that |F | ≥ n−1
when 1 < µ < n.

The code C is linear over F with dimension

k =

n−µ∑
m=µ−n

(n− |m| − µ+ 1)

= (n− µ+ 1) + 2

n−µ∑
m=1

(n−m− µ+ 1)
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= (n− µ+ 1) + 2

n−µ∑
ℓ=1

ℓ

= (n− µ+ 1)2 .

Moreover, in every nonzero Γ ∈ C, there is necessarily a
smallest (or largest) index m such that (Γ)Dm is a nonzero
vector, which, in turn, is a codeword of Cm and therefore
must contain at least µ nonzero entries; thus, the rank of Γ
must be at least µ (and there are code arrays Γ ∈ C of rank
exactly µ). Hence, in the notation of [14], the code C is a linear
µ-[n × n, k=(n−µ+1)2] array code over F (with minimum
rank µ).

Conversely, it is known that the dimension k of any linear
µ-[n × n, k] array code C over an algebraically closed field
F must satisfy the upper bound

k ≤ (n− µ+ 1)2 . (1)

This bound is obtained through the characterization of the set
M = MF (n, µ−1) of n × n matrices of rank < µ over
such a field F as an irreducible algebraic variety of dimension
dimM = n2 − (n − µ + 1)2 [8, Prop. 12.2]; the bound (1)
then follows from

0 = dim({0}) = dim(M∩C) ≥ dimM+ dimC − n2

(see [9, p. 48, Prop. 7.1]). Note that unless µ = 1, the
bound (1) is strictly stronger than the rank-metric Singleton
bound k ≤ n(n−µ+1), which applies to any field and which
is attained by the MRD construction for finite fields (as well
as for certain other fields [1], [15]).1

III. DECODING

Let Γ ∈ C = CF (n, µ) represent a transmitted code array
and let the received array be Y = Γ + E, where E is
in Fn×n and has rank less than µ/2. In this section, we
present an efficient algorithm for recovering Γ out of Y .
The decoding problem can be seen as a variant of a matrix
completion problem of the low-rank matrix E, where the
contents of E along the diagonals Dm is known to the decoder
for |m| > n − µ (since along those diagonals Γ is zero),
and is concealed by additive “noise”—namely, codewords of
Cm(n−|m|, µ)—along the remaining diagonals.

A. Overview

We start by presenting the principles of the decoding (albeit
not in a manner that yields the most efficient implementation
of it). Our decoder recovers iteratively the contents of E (or,
rather, of Γ) along diagonal Dm, as m ranges from 1−n
to n−1.

For m ∈ [1−n, n⟩, let

Tm = Tm(n) = ∪m′∈[1−n,m⟩Dm′ (2)

=
{
(i, j) ∈ [n⟩ × [n⟩ : j − i < m

}
,

1The results of this work can be extended easily through code shortening
to ℓ×n rectangular arrays: the dimension of C then becomes (ℓ−µ+1)(n−
µ + 1), which is also the value that will replace the right-hand side of (1).
For simplicity, however, we have opted to assume that ℓ = n.

namely, Tm indexes all entries in an n×n array that lie below
diagonal Dm (the shape of Tm is a triangle for m ≤ 1 and a
pentagon for m > 1).

Suppose that the entries of E have already been recovered
at all positions (i, j) ∈ Tm, for some m ∈ [1−n, n⟩ (recall
that this holds vacuously for m = µ − n, since (Γ)Dm′ is
necessarily the all-zero codeword when m′ < µ−n). Consider
the n× n array Ỹ whose entries are given by:

Ỹi,j =

{
Ei,j if (i, j) ∈ Tm
Yi,j otherwise

(see an example in Figure 2; note that Ỹ would be the
received array if (Γ)Dm′ were the all-zero codeword for all
m′ < m). Now, perform a (partial) Gaussian elimination on Ỹ ,
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Fig. 2. Array Ỹ , for n = 7 and m = −1. The heart suit marks Dm.

by subtracting scalar multiples of rows (respectively, columns)
that intersect Tm, from rows of a lower index (respectively,
from columns of a higher index), thereby eliminating as many
nonzero entries as possible among the entries that are indexed
by Tm. It is easy to see that during this process, entries in Ỹ
that are indexed by Tm∪Dm are modified by terms that depend
only on the already-recovered entries E (and not on any of
the remaining entries of Ỹ ).

Denote by Z̃ the result of the Gaussian elimination, and
let P be the set of index pairs (i, j) ∈ Tm such that Z̃i,j ̸=
0 (see an example in Figure 3). Next, we mark as erasures
the entries along Dm that share a row index or a column
index with elements of P . As we show in Section III-C below,
the number of erasures plus twice the number of additional
errors in (Z̃)Dm must be less than µ, thereby allowing us to
recover (E)Dm by applying a combined error–erasure decoder
for Cm(n−|m|, µ) to (Z̃)Dm

.
In the next subsections, we present and analyze a more

efficient implementation of this decoding idea. In particular,
through bookkeeping of the elementary operations applied
when m′ < m, we do not need to start the Gaussian
elimination all over again when decoding (E)Dm .

B. The decoding algorithm

Figure 4 presents a decoder for C. As mentioned in Sec-
tion III-A, the algorithm recovers iteratively the contents of Γ
along the diagonals Dm, for m ← 1−n, 2−n, . . . , n−1 (see
the main loop in Figure 4). The input to the algorithm is the
n×n received array Y , and the output is a reconstructed code
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Fig. 3. Array Z̃, for n = 7 and m = −1. The stars mark the positions
indexed by P , and the crossed entries are the (at most 2|P|) erasure positions
along diagonal Dm.

array Γ̂. The algorithm uses several data structures: a subset
P ⊆ [n⟩ × [n⟩ (as in Section III-A) of size less than µ/2,
another subset Q ⊆ [n⟩ × [n⟩ (marking erasure positions) of
size less than µ, and several n× n matrices over F , namely,
L, R, U , and V . These matrices are sparse: L and R contain
O(µn) nonzero entries and U and V contain less than µ/2
nonzero entries. A fifth matrix, Z, is represented as such only
for convenience: except for less than µ/2 of its entries (which
are indexed by the set P), each iteration of the algorithm
utilizes only one diagonal of Z and, so, different iterations
may reuse the same area ((Z)Dm

will coincide with (Z̃)Dm

described in Section III-A).

Input: received array Y ∈ Fn×n;
Output: code array Γ̂ ∈ CF (n, µ).

Γ̂← 0;
L,R← In; /* Initialize to the identity matrix */
P ← ∅;
For m← 1−n, 2−n, . . . , n−1 do:

1) (Z)Dm
← (L · (Y − Γ̂) ·R)Dm

;
2) Q ← {(i, j) ∈ Dm : ∃r s.t. (i, r) ∈ P or (r, j) ∈ P};
3) Decode (Z)Dm

into (Γ̂)Dm
∈ Cm to recover |Q| erasures

indexed byQ and less than (µ−|Q|)/2 additional errors;
4) (Z)Dm

← (Z)Dm
− (Γ̂)Dm

;
5) U, V ← 0;
6) For (i, i+m) ∈ Dm s.t. (j, i+m) ∈ P for some j do:

a) Ui,j ← Zi,i+m/Zj,i+m;
b) Zi,i+m ← 0;

7) For (j−m, j) ∈ Dm s.t. (j−m, i) ∈ P for some i do:
a) Vi,j ← Zj−m,j/Zj−m,i;
b) Zj−m,j ← 0;

8) Update:
a) L← (In − U) · L;
b) R← R · (In − V );
c) P ← P ∪ {(i, j) ∈ Dm : Zi,j ̸= 0};
d) If |P| ≥ µ/2 declare “decoding failure” and stop.

Fig. 4. Decoding algorithm for CF (n, µ).

Each iteration m starts by setting an initial contents to the
entries of Z that are indexed by diagonal Dm (step 1); that
contents is a function of the received array Y , the already-
decoded diagonals of Γ, and matrices L and R computed in
previous rounds. A combined error–erasure decoders for Cm =
Cm(n−|m|, µ) is then applied to (Z)Dm

to recover ϱ ∈ [µ⟩
erasures and less than (µ−ϱ)/2 additional errors (steps 2–4);
the ϱ erasures are indexed by the set Q which consists of all
index pairs (i, j) ∈ Dm that share a row or a column with the
support, P , of the previously-computed entries of Z (along
diagonals Dm′ for m′ < m). In steps 5–7, a partial Gaussian
elimination is performed on the entries of Z that are indexed
by (i, j) ∈ Dm, with In −U representing row operations and
In − V column operations. The overall effect of the row and
column operations that are performed throughout the course
of the main loop is accumulated into the matrices L and R.
Those matrices, along with the support P of Z, are updated
in step 8.

C. Validity

Next, we analyze the algorithm. The value of a variable
in the algorithm (e.g., the matrix Z) right after step 2 in
iteration m of the main loop will be denoted by adding the
superscript m (e.g., Z(m)). Also, define the matrix E(m) by

E(m) = L(m) · E ·R(m) , (3)

and recall the definition of Tm in (2).
We have the next proposition, part (vi) of which establishes

the validity of the algorithm in Figure 4.

Proposition 1. Let Y = Γ+E, where Γ ∈ C and rank(E) <
µ/2. The following properties hold for iteration m of the
algorithm in Figure 4, for all m ∈ [1−n, n⟩.

i) P(m) =
{
(i, j) ∈ Tm : Z

(m)
i,j ̸= 0

}
, and no two index

pairs in P(m) share the same row or the same column.
ii) Z

(m)
i,j = E

(m)
i,j , for (i, j) ∈ Tm.

iii) L(m) and R(m) are upper-triangular, with the main
diagonal entries being all 1, and the nonzero entries
in In − L(m) (respectively, in In − R(m)) are all in
columns j (respectively, rows i) such that (j, i) ∈ P(m)

for some i (respectively, j).
iv) |P(m)| ≤ rank(E(m)) = rank(E) < µ/2.
v) (Z(m))Dm

= (Γ)Dm
+ (E(m))Dm

.
vi) The decoding in step 3 is successful, namely,

(Γ̂(m+1))Dm
= (Γ)Dm

.

Proof. We start by showing that parts (i), (ii), and (v) imply
the other parts (for the same iteration m). We will then use
induction to establish those former parts.

(i) ⇒ (iii). By part (i) it follows that P(m) ⊆ Tm, and by
steps 6 and 7 in Figure 4 we then get that U (m) and V (m)

are strictly upper-triangular. This and steps 8a–8c imply the
result.

(i)–(iii) ⇒ (iv). By part (iii) and the definition of E(m) it
follows that rank(E(m)) = rank(E). Also, parts (i) and (ii)
imply that |P(m)| ≤ rank(E(m)).
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(iv)–(v) ⇒ (vi). The set Q(m), which is computed in step 2
during iteration m, contains all index pairs in D(m) that share
a row or a column with some index pair in P(m). Clearly,
|Q(m)| ≤ 2|P(m)| (see Figure 3). Now, among the entries of
(E(m))Dm

that are indexed by Dm \ Q(m), only less than

µ/2− |P(m)| ≤ (µ− |Q(m)|)/2
can be nonzero, or else the rank of E(m) would be at least µ/2,
thereby contradicting part (iv). From part (v), we conclude that
the decoding in step 3 is guaranteed to be successful.

We now prove parts (i), (ii), and (v) for iteration m, assum-
ing by induction that all parts hold for some iteration m−1
(the induction base, m = 1−n, is obvious).

Induction step for part (i). Steps 4, 6b, and 7b in it-
eration m−1 do not affect the contents of Z at positions
(i, j) ∈ Tm−1, yet eliminate nonzero entries of Z at positions
(i, j) ∈ Dm−1 that share rows and columns with P(m−1). The
result follows from step 8c and the induction hypothesis on
part (i).

(As we pointed out earlier, steps 5–7 in the iterations
1−n, 2−n, . . . ,m−1 perform a Gaussian elimination on the
rows and columns of the portion of Z that is indexed by
(i, j) ∈ Dm−1 ∪ Tm−1 = Tm, with In − U representing the
row operations and In − V the column operations in each
iteration. As a result of this elimination, the nonzero entries
in that portion of Z, which are indexed by P(m), must be in
distinct rows and columns.)

Induction step for part (ii). Assuming the induction hypoth-
esis for iteration m−1, we get, for every (i, j) ∈ Tm−1:

E
(m)
i,j = (L(m) · E ·R(m))i,j

= ((In − U (m))

· L(m−1) · E ·R(m−1) · (In − V (m)))i,j
(3)
= ((In − U (m)) · E(m−1) · (In − V (m)))i,j

= ((In − U (m)) · Z(m−1) · (In − V (m)))i,j

= Z
(m−1)
i,j ,

where the penultimate equality follows from the induction
hypothesis on part (ii) and the definition of the matrices U
and V ; the properties of these matrices also imply the last
equality. Since iteration m−1 affects Zi,j only at positions
(i, j) ∈ Dm−1, it follows that Z

(m)
i,j = Z

(m−1)
i,j for every

(i, j) ∈ Tm−1, namely, for this range of index pairs,

Z
(m)
i,j = E

(m)
i,j .

It remains to show that the latter equality holds also for
(i, j) ∈ Dm−1 (= Tm \ Tm−1). Let Z̃ be the contents of
Z right after step 4 in iteration m−1. It follows from the
induction hypothesis on parts (ii), (v), and (vi) that Z̃i,j =

E
(m−1)
i,j for (i, j) ∈ Tm. From steps 6 and 7 we then get, for

(i, j) ∈ Dm−1,

Z
(m)
i,j = ((In − U (m)) · Z̃ · (I − V (m)))i,j

= (In − U (m)) · E(m−1) · (In − V (m))i,j
(3)
= ((In − U (m))

· L(m−1) · E ·R(m−1) · (In − V (m)))i,j

= (L(m) · E ·R(m))i,j

= E
(m)
i,j .

Induction step for part (v). From step 1 we have,

(Z(m))Dm

= (L(m) · (Y − Γ̂(m)) ·R(m))Dm

= (L(m) · (E + Γ− Γ̂(m)) ·R(m))Dm

(3)
= (L(m) · (Γ− Γ̂(m)) ·R(m))Dm + (E(m))Dm . (4)

At this point, we can already assume that part (iii) holds for
iteration m, since this part was proved based only on part (i),
for which we have already established the induction step;
thus, L(m) and R(m) are upper-triangular. In addition, by the
induction hypothesis on part (vi) for iterations up to m−1, we
have Γ̂

(m)
i,j = Γi,j for all (i, j) ∈ Tm. Therefore,

(L(m) · (Γ− Γ̂(m)) ·R(m))Dm = (Γ− Γ̂(m))Dm

and, so, from (4),

(Z(m))Dm
= (Γ− Γ̂(m))Dm

+ (E(m))Dm

= (Γ)Dm
+ (E(m))Dm

,

where the last equality follows from the fact that Γ̂
(m)
i,j = 0

for (i, j) ̸∈ Tm.

Remark 1. When rank(E) < µ/2, the algorithm in Figure 4
produces the correct code array already at iteration m = n−µ,
since each subsequent iteration m ∈ [n−µ+1, n⟩ should result
in an all-zero codeword, (Γ̂)Dm

, in step 3. Those last µ−1
iterations, however, could be used for (partial) error detection
through step 8d, in case rank(E) ≥ µ/2.

D. Complexity

We turn now to analyzing the time complexity of the
algorithm in Figure 4, expressed as a number of arithmetic
operations and element insertions into sets. It is easy to see
that with the exception of steps 1, 3, and 8a–8b, all steps can be
carried out in time complexity of O(|P|) = O(µ) per iteration.
(Step 4, as written, seemingly requires O(n) operations per
iteration, yet in fact it requires only O(µ) operations assuming
that the decoder of Cm in step 3 also outputs the error locations
and the error–erasure values.)

By part (iii) in Proposition 1 it follows that for every (i, j) ∈
Dm, the update of Zi,j in step 1 requires O(µ) operations.
Hence, this step requires O(µn) operations per iteration.

Step 3 applies a decoder for Cm; when this code is taken
as a GRS code, then a straightforward implementation of a
syndrome-based GRS decoder requires O(µn) operations.

Finally, steps 8a–8b involve |P| elementary operations on
the rows of L and on the columns of R, amounting to O(µn)
operations per iteration.

In summary, the time complexity of the decoder in Figure 4
is O(µn2). The space complexity has already been discussed
at the beginning of Section III-B: with the exception of the
input and output arrays (each containing n2 elements of F ),
the algorithm uses two subsets of [n⟩× [n⟩ of size O(µ), four
sparse matrices (namely, L, R, U , and V ) containing O(µn)
nonzero elements of F , and a matrix Z in which less than
n+µ/2 entries need to be kept from one step of the algorithm
to the next.
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In comparison, implementations of the known decoding
algorithms for the MRD construction of [6] require a number
of arithmetic operations (of F ) which scales at least as
µn2 log n log log n, whenever µ = O(n/ log log n); see [7],
[16], [19].

E. Algebraic formulation of the decoding problem

We consider now the special case where each constituent
code Cm is a GRS code with the (µ−1) × (n−|m|) parity-
check matrix

Hm =
(
αℓ(b+i)

)
ℓ∈[µ−1⟩, i∈[n−|m|⟩

=


1 1 . . . 1
αb αb+1 . . . αn−|m|−1+b

α2b α2(b+1) . . . α2(n−|m|−1+b)

...
...

...
...

α(µ−2)b α(µ−2)(b+1) . . . α(µ−2)(n−|m|−1+b)

 ,

where α is a prescribed nonzero element in F of multiplicative
order O(α) ≥ n (e.g., O(α) =∞), and b = max{0,−m}.

Our analysis of this case will be under the more general
setting of list decoding, where the error array is assumed to
have rank at most τ , for a prescribed decoding radius τ ∈ Z+

(we will elaborate more on list decoding in Section IV).
Let Y = Γ + E, where Γ ∈ C and rank(E) = ρ. Then E

can be written as

E =
∑
r∈[ρ⟩

u⊤
r vr , (5)

where each of the ordered sets {ur}r∈[ρ⟩ and {vr}r∈[ρ⟩
contains ρ row vectors in Fn that are linearly independent
over F . For each vector ur = (ur,i)i∈[n⟩, we associate the
polynomial

ur(x) =
∑
i∈[n⟩

ur,ix
i

in the set, Fn[x], of polynomials of degree less than n over F .
Also, for each vr = (vr,j)j∈[n⟩, we associate the polynomial

v∗r (x) =
∑
j∈[n⟩

v∗r,jx
j =

∑
j∈[n⟩

vr,n−1−jx
j

(notice the reversed order of coefficients).
For m ∈ [1−n, n⟩ and ℓ ∈ [µ−1⟩, we define the syndrome

component

Sℓ,n−1−m =
(
Hm(Y )⊤Dm

)
ℓ

=
(
Hm(E)⊤Dm

)
ℓ
.

The syndrome (polynomial) vector is defined by

S(x) = (S0(x) S1(x) . . . Sµ−2(x)) ,

where, for each ℓ ∈ [µ−1⟩,

Sℓ(x) =
∑

m∈[1−n,n⟩

Sℓ,n−1−mxn−1−m

=
∑

j∈[2n−1⟩

Sℓ,jx
j (∈ F2n−1[x]) .

We have:

Sℓ(x) =
∑

m∈[1−n,n⟩

(
Hm(E)⊤Dm

)
ℓ
xn−1−m

=
∑

m∈[1−n,n⟩

xn−1−m
∑

i : (i,i+m)∈Dm

αiℓEi,i+m

(5)
=

∑
m∈[1−n,n⟩

xn−1−m
∑

i : (i,i+m)∈Dm

αiℓ
∑
r∈[ρ⟩

ur,ivr,i+m

=
∑
r∈[ρ⟩

∑
m∈[1−n,n⟩

xn−1−m
∑

i : (i,i+m)∈Dm

αiℓur,iv
∗
r,n−1−m−i

=
∑
r∈[ρ⟩

ur(α
ℓx) v∗r (x) .

Recalling that the syndrome vector S(x) can be computed
from the received array Y , the (list-)decoding problem up to a
given decoding radius τ can be formulated as finding ordered
pairs of vectors in (Fn[x])

ρ for ρ ∈ [τ+1⟩,(
U(x) = (ur(x))r∈[ρ⟩,V (x) = (vr(x))r∈[ρ⟩

)
,

with the components of U(x) (respectively, V (x)) being
linearly independent polynomials over F , such that

Sℓ(x) =
∑
r∈[ρ⟩

ur(α
ℓx) v∗r (x) , ℓ ∈ [µ−1⟩ . (6)

For each such pair (U(x),V (x)), the respective ordered sets,
{ur}r∈[ρ⟩ and {vr}r∈[ρ⟩, define an error array E via (5).
Moreover, the association (U(x),V (x)) 7→ E is one-to-one
if U(x) is in the following canonical form:

• ur(x) is monic, for every r ∈ [ρ⟩;
• deg ur−1(x) < deg ur(x), for every r ∈ [1, ρ⟩; and—
• ur,i = 0, for every r ∈ [1, ρ⟩ and i ∈ {deg us(x)}s∈[r⟩.

Clearly, when τ < µ/2, Eq. (6) has at most one canonical
solution (U(x),V (x)).

Example 1. We consider the case µ = 3 and τ = (µ−1)/2 =
1 (correcting an error array of rank at most 1): here (6) reduces
to

S0(x) = u(x) v∗(x)

S1(x) = u(αx) v∗(x) ,

where, for simplicity, we have omitted the subscript 0 from
u0(x) and v0(x). Clearly, S0(x) = S1(x) = 0 implies E = 0.
Otherwise, u(x) satisfies the equality

S0(x)u(αx) = S1(x)u(x) , (7)

which is, in fact, a set of linear equations in the coefficients
of u(x) ∈ Fn[x]. Specifically, letting d = degS0(x), from (7)
we have d = degS1(x) and

deg u∑
j=i

uj

(
αj · S0,d+i−j − S1,d+i−j)

)
= 0 , (8)

i = deg u,deg u− 1, . . . , 0

(note that S0(x) = u(x)v∗(x) implies that deg u ≤ d). It
follows from (8) that deg u is the unique t ∈ [n⟩ for which

αt =
S1,d

S0,d
.

Assuming that u(x) is monic (i.e., ut = 1), one can solve (8)
iteratively—and uniquely—for ui, i = t−1, t−2, . . . , 0 (the
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coefficient of ui in (8) equals αi · S0,d − S1,d, which is
necessarily nonzero for i ∈ [t⟩).

Thus, we decode E = u⊤v by first solving (7) for a monic
u(x) ∈ Fn[x], and then let v∗(x) = S0(x)/u(x).

More generally, the decoding algorithm in Figure 4 can
be reformulated to have as input the syndrome vector S(x)
(instead of the array Y ) and as output the error array E;
a decomposition of E as in (5) (which can be carried out
through a simple Gaussian elimination) then yields a solution(
U(x)=(ur(x))r∈[ρ⟩,V (x)=(vr(x))r∈[ρ⟩

)
of (6). Going into

more detail, in each iteration m of the main loop in Figure 4,
step 1 inserts into (Z)Dm

the vector

(L · (Y − Γ̂) ·R)Dm = (Γ + E + Ê(m))Dm ,

with the entries of (Ê(m))Dm
standing for linear combinations

of (already decoded) entries Ei,j = Yi,j−Γ̂i,j , for (i, j) ∈ Tm.
Hence, the syndrome of (Z)Dm with respect to the parity-
check matrix Hm can be expressed as:

Hm(Z)⊤Dm
= Hm

(
Γ + E + Ê(m)

)⊤
Dm

= Hm(E)⊤Dm
+Hm

(
Ê(m)

)⊤
Dm

=
(
Sℓ,n−1−m

)
ℓ∈[µ−1⟩ +Hm

(
Ê(m)

)⊤
Dm

(where (Sℓ,n−1−m)ℓ∈[µ−1⟩ is the vector of coefficients of
xn−1−m in S(x)). The syndrome Hm(Z)⊤Dm

can then be
used in steps 3 and 4 to recover (E + Ê(m))Dm , from which
one can extract (E)Dm

. Thus, throughout the iterations, S(x)
(rather than the whole received array Y ) suffices for obtaining
the syndromes Hm(Z)⊤Dm

, which, in turn, suffice in order to
recover E (and, therefore, (U(x),V (x))).

IV. LIST DECODING

We consider now the list decoding capabilities of the array
code C = CF (n, µ): given a decoding radius τ ∈ Z+, we
seek an upper bound on the list size LC(τ), being the largest
intersection of any coset of C (within Fn×n) with the set of
n×n matrices of rank at most τ over F . Clearly, LC(τ) grows
unboundedly with |F | when τ ≥ µ, since C contains at least
|F |−1 arrays of rank µ (see also [4, Thm. 1]). Our main result
(Theorem 4 below) implies that the converse is also true: when
τ < µ, the list size is bounded from above by an expression
that depends on n and µ, but not on F .

Before getting to the main result, we consider, in Proposi-
tions 2 and 3, the special cases µ ∈ {2, n} in more detail.

Proposition 2. When each constituent code Cm in C =
CF (n, 2) is taken to be a single-parity code over F ,

LC(1) ≤
(
2n− 2

n− 1

)
, (9)

with equality holding if |F | ≥ 2n− 3.

Proof. For µ = 2 and τ = 1, Eq. (6) becomes

S0(x) = u(x) v∗(x) (10)

(where we have omitted the subscript from u0(x) and v0(x)).
In particular, S(x) = (S0(x)) forms the (whole) syndrome
that is associated with a given coset of C. Constraining u(x)
to be monic, each pair (u(x), v(x)) uniquely defines an error

array E = u⊤v in that coset. Recalling that S0(x) is a nonzero
polynomial in F2n−1[x], Eq. (10) is satisfied by at most

(
2n−2
n−1

)
pairs (u(x), v(x)) ∈ (Fn[x])

2 where u(x) is monic. Moreover,
this bound is tight when S0(x) factors into distinct degree-1
terms over F and degS0(x) ∈ {2n−3, 2n−2}.

In contrast, the finite-field MRD construction of [3], [6]
requires, for µ = 2 and τ = 1, a list size of (|F |n−1)/(|F |−
1), thereby growing unboundedly with |F | for every fixed n >
1 [18]. To avoid such an unbounded growth for τ = 1, we must
therefore select µ ≥ 3 and incur a redundancy of 2n (instead
of n when µ = 2). The list size of CF (n, 2) for τ = 1, on
the other hand, is bounded from above by an expression that
does not depend on F , and the redundancy is 2n−1.

Remark 2. When |F | < 2n− 3 and µ = 2, the exact value of
LC(1) becomes generally more involved to analyze, as the at-
taining syndrome S0(x) may contain factors with multiplicities
as well as irreducible factors of degree greater than 1. Table I
lists, for F = GF(2) and several values of n, syndromes
S0(x) that correspond to the largest possible list size, along
with the value of that list size (for n = 4, 5, 11, 12, 21, 22, the
maximizing syndromes are in fact unique).

Proposition 3. For C = CF (n, n) and every τ ∈ [1, n⟩,

LC(τ) = min

{⌊
n

n− τ

⌋
, |F |

}
. (11)

Proof. We prove the proposition more generally for every one-
dimensional array code over F of the form {λ ·A : λ ∈ F},
where A is nonsingular in Fn×n. Given any Y ∈ Fn×n, the
matrix E = Y − λ · A in the coset of Y will have rank at
most τ for the eigenvalues λ ∈ F of Y ·A−1 whose geometric
(and therefore algebraic) multiplicities are at least n−τ . Since
Y ·A−1 can have at most min{⌊n/(n−τ)⌋, |F |} such eigen-
values, we get the right-hand side of (11) as an upper bound
on LC(τ). This bound is attained when Y ·A−1 is a diagonal
matrix whose main diagonal contains min{⌊n/(n−τ)⌋, |F |}
distinct elements of F , each appearing at least n−τ times.

Recall that the finite-field MRD construction for even µ = n
(which has dimension n) requires a list size of |F |n/2 + 1
already for τ = n/2 [13].

Theorem 4. For C = CF (n, µ),

LC(µ−1) ≤
n−µ∏
i=0

((
n+ i

µ− 1

) / (
µ− 1 + i

µ− 1

))
. (12)

Proof. We assume that F is algebraically closed; otherwise,
replace F with its algebraic closure K and C with the span
over K of a basis of C. Denoting by M =MF (n, µ) the set
of n×n matrices of rank < µ over F , we show that for every
Γ ∈ Fn×n, the cardinality of the intersection of the coset C+Γ
with M does not exceed the right-hand side of (12). Clearly,
this holds when Γ ∈ C, so we assume hereafter in the proof
that Γ ̸∈ C (and, in particular, that µ > 1).

Fixing Γ ∈ Fn×n \ C, we denote by G = G(Γ) the one-
dimensional subspace {λ · Γ : λ ∈ F} of Fn×n, and we let
H be a hyperplane in Fn×n such that C ⊆ H yet G ̸⊆ H (e.g.,
H is the dual space of the one-dimensional space spanned by a
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TABLE I
VALUES OF LC(1) WHEN Cm IS A SINGLE-PARITY CODE OVER F = GF(2) AND ATTAINING SYNDROMES FOR SEVERAL VALUES OF n.

n S0(x) deg S0(x) LC(1)

3 x2 + x = x(x + 1) 2 4
4 x4 + x2 = x2(x + 1)2 4 7
5 (x4 + x)(x2 + x) = x2(x + 1)2(x2 + x + 1) 6 12
6 (x4 + x)(x2 + x)x = x3(x + 1)2(x2 + x + 1) 7 18
7 (x4 + x2)(x4 + x) = x3(x + 1)3(x2 + x + 1) 8 26
8 (x4 + x2)(x4 + x)(x2 + x) = x4(x + 1)4(x2 + x + 1) 10 36
9 (x4 + x2 + x)(x4 + x2)(x4 + x) = x4(x + 1)3(x2 + x + 1)(x3 + x + 1) 12 52
10 (x8 + x)(x4 + x)(x2 + x) = x3(x+1)3(x2+x+1)(x3+x+1)(x3+x2+1) 14 78
11 (x8 + x)(x4 + x2)(x4 + x) = x4(x+1)4(x2+x+1)(x3+x+1)(x3+x2+1) 16 114
12 (x8 + x2)(x8 + x)(x2 + x) = x4(x+1)4(x2+x+1)2(x3+x+1)(x3+x2+1) 18 160
13 (x8 + x2)(x8 + x)(x2 + x)x = x5(x+1)4(x2+x+1)2(x3+x+1)(x3+x2+1) 19 216
14 (x8 + x2)(x8 + x)(x4 + x2) = x5(x+1)5(x2+x+1)2(x3+x+1)(x3+x2+1) 20 284

...
19 (x16 + x)(x8 + x)(x4 + x)(x2 + x)x = x5(x+1)4(x2+x+1)2(x3+x+1)(x3+x2+1) 31 1, 288

· (x4+x+1)(x4+x3+1)(x4+x3+x2+x+1)
20 (x16 + x)(x8 + x)(x4 + x2)(x4 + x) = x5(x+1)5(x2+x+1)2(x3+x+1)(x3+x2+1) 32 1, 744

· (x4+x+1)(x4+x3+1)(x4+x3+x2+x+1)
21 (x16 + x)(x8 + x)(x4 + x2)(x4 + x)(x2 + x) = x6(x+1)6(x2+x+1)2(x3+x+1)(x3+x2+1) 34 2, 294

· (x4+x+1)(x4+x3+1)(x4+x3+x2+x+1)
22 (x16 + x)(x8 + x2)(x8 + x)(x4 + x2) = x6(x+1)6(x2+x+1)3(x3+x+1)(x3+x2+1) 36 2, 954

· (x4+x+1)(x4+x3+1)(x4+x3+x2+x+1)

row vector that is added to a parity-check matrix of the direct
sum C⊕ G to form a parity-check matrix of C). We have

C = (C⊕ G) ∩ H .

The sets C, C ⊕ G, H, and M are irreducible algebraic
varieties in the affine space An2

(F ), each forming the common
set of roots of a respective set of homogeneous multivariate
polynomials over F . Hence, their projective counterparts, C′,
(C ⊕ G)′, H′, and M′ (obtained by removing the all-zero
matrix and collapsing, for a nonzero matrix A in the respective
variety, the set {λ ·A : λ ∈ F ∗} into one element) are well-
defined projective irreducible varieties in the projective space
Pn2−1(F ). Since M′ ∩ (C⊕ G)′ ∩H′ =M′ ∩ C′ is empty, it
follows from [9, p. 48, Thm. 7.2] that

dim(M′ ∩ (C⊕ G)′) + dimH′ − (n2 − 1) < 0 ,

which, with dimH′ = n2 − 2, implies that M′ ∩ (C⊕ G)′ is
finite.

The degree ofM′, as a variety, is known to equal the right-
hand size of (12) [5, §12.4.1], [8, pp. 243–244].2 Since (C⊕
G)′, being a linear projective space, has degree 1, it follows
from Bézout’s theorem that the intersection M′ ∩ (C ⊕ G)′

cannot be larger that the right-hand side of (12) [8, Thms. 18.3
and 18.4]. The equality

|M ∩ (C+ Γ)| = |M′ ∩ (C⊕ G)′|

concludes the proof.

The bound in Theorem 4 can grow exponentially with n2

(e.g., when µ = n/2); still, as shown for µ = 2, the required
redundancy for a given decoding radius and list size can be
smaller for C than for other known schemes (albeit for very
large fields). Specifically, given n and decoding radius τ , by
selecting µ = τ + 1 the code C has redundancy 2τn − τ2

2This generalizes to ℓ×n matrices by changing any one of the two instances
of n in (12) to ℓ (the resulting expression is symmetric in ℓ and n).

and list size as in Theorem 4. In contrast, it is known that for
many values of τ ≤ n/5 and for sufficiently large finite fields
F , such a list size can be achieved with the finite-field MRD
construction, only when µ ≥ 2τ + 1 [13], thereby incurring a
redundancy of 2τn (see also [4], [11], and references therein).
It is worth noting that the parameters (k=(n−µ+1)2, τ=µ−1)
correspond to a point (k/n2, τ/n) which lies right on a
threshold curve of rate versus relative decoding radius τ/n:
below (any fixed positive margin of) the curve most random
rank-metric codes over F = GF(q) are list decodable with a
fixed list size, while above (any fixed positive margin of) the
curve the list size grows exponentially with n2 log q [4].

The bound (12) is generally not tight for fields that are not
algebraically closed. E.g., for n = 10 and µ = 2, the bound
coincides with (9) and equals 48, 620, yet for the construction
of Section III-E over F = GF(2) the actual list size turns out
to be 78 (see Table I). Computing upper bounds on LC(τ) for
µ/2 ≤ τ < µ − 1 is left for future work, and so is finding
a respective list decoding algorithm (which is efficient in the
value of LC(τ)).
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