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ABSTRACT

It is shown that the family of q-ary generahzed Reed-Solomon codes is identi-
cal to the family of g-ary linear codes generated by matrmes ofthe form[7 | 4],
where [ is the identity matrix, and 4 is a,generall_zed Cauchy matr,u_g Usmg Cau-
chy matrices, a construction is shown of rmaximal friangular arrays over GF(g),
which are conéfgnt along diagona.ls in a Hankel matrix faéh.ioﬁ. and with the pro- '
perty that every sqﬁare ax;b-arr_ay is nonéingulér. 'Ihis _sdives ah open ',éroble;m
posed by Singleton in [2]. By taking ‘rectamgular sub—arfays of _the_describeci tri-
‘ ﬂngles, it is posmble to construct generator matrices [ 7 | A ] of MDS codes, where
" A is a Hankel matriz, The parameters of the codes are (n, Ic d,forl <n< g+ L,
1<k<n,andd=n—k+ 1.
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I. Introduction

An ('n..k'_,d) linear code over a finite field F=GF(g") is mazrimum distence
sepmﬁble (in short, MDS) if d=n—k +1. MDS codes are op'timal in the sense that
they aclneve the maximum possible minimum “distance for glven length and
dimension. A comprehenswe treatment of MDS codes. the;r propertws and open
questions about them can be found in [1, ch. 11]. MDS codes can be charactenzed
in terms of thglr systematlc generator matnces a8 follows: -let C be .an ('n;k,d)
code with a systematic generator matrix G={ J | A ], where 7 is the i‘éentity
matrix of order k, and 4 is a kx{n—k) matriz. Then C is MDS if and only if every

~square submaktrix of A.is rionsingular [1, ch. 11, Theorem B].

One systemati.c way of building matrices with the propezfty'tha[t every sguare
submﬁtrix is nonsingular is‘the Cauchy maofriz constructioﬁ An 'rxs .m'atfix
A={ay) is called a Cauchy matrix  if m;j;l(; {z ;l-y_.,-) for -some -elements
TuTz T YLYe s m F. If =8 then .the d_é:térmipa,nt_ of 4 is given |1, p.
a23] by - |

11 G —zg){y; )

dot (4) = SEI2_

| 1] (=ity;)

=i, J=<r

Hence, provided that the z; are distinct, the y; are 'distingt,-'.it;d ity #0 for all
1,7, it follows that any square submatrix of a Cauchy matrix is nonsingular.

A is called an extended Couchy mafriz if it has a.row .(cdiuﬁzh)of*ones. and
deleting this row (column) transforms 4 into a Cauchy matmx 3 It can be readlly
verified that the determinant of an 7xr extended Cauchy matnx A with a row of
ones is given by

H '(zj_ —-"’i_) H {y;—w)
teidjLr

det (A) — (_1)7;-_-5- 1sidjer—-1

I {=+y;) !
Esisr -1
Tijer
where 5 is the index of the row of ones in A, Here z x5, - - . ,?:,.,i,yl,ya, Cro Yy Bre

the elements of F that define the Cauchy matrix A. A similar expression, involving
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7 z's and 7—1 y;'s, gives the determinant for the case where Ahasa column-of
ones. It follows that every square submatrix of an extended Cauchy maf.rix Alis
nonsingular if and only if every square submatrix of the underlying Cauchy matrix
2 is nonsingular. |

For any vector z=(%,, #g ' -, 2;), we shall denote by D(z) the diagonal
matrix of order t with Dy=2;. An rxs matrix 4 is 'a-generqlized (extended) Cb.ﬁchy_
matriz, in short, GC (GEC), if it has the form A=D(c)AD{(d), where A is an Txs
(extended) Cauchy iﬁatrix. and e=(c,, cp ' - -, 6,.) and d={d;, dp, - * *, d;) are vec-
tors of nonzero elements of F. Clearly, if all square submatrices of A are non-
singular, so are all square submatrices of A. Therefore, we can construct a sys-
tematic generator matrix for an (n,k) MDS code by concatenating the identity
matrix I of order k with a suitably defined k x{n ~k) GC (GEC) matrix A.

Let a=(a; o -, a_n) be a vectdr of distinet elerﬁents of F, and let
w=(vy, vg ', v} be a vector of r_mnzéro {not necessarily. .d_istih_ct) elements of
"F. C is a generalized Heed-Solomon (m shbx_‘f.. GRS) cbdé_, _dénotéd by

GRS(n .k ,a,v), if it has a generator matrix of .the form

G=[G: G ' G]
where the G;-s are columns of the form

G=(u, way, vaf, -, vl ), isisn,

This definition includes extended GRS codes, for which one of the o4-s is 0. A

further extension which preserves the MDS property is possible by allowing a

column of G of the form
G..=(0,0, - - - ,0v.)7,

where v, is a nonzero element of F. In this case, the code is called a generalized
doubly extended RS code, (in short, GDRS) and we shall keep the notation

GDRS(n+1,k,a,v) in terms of the vectors a and v.by abusing notation and writing

1 For any matriz M, M7 denotes the transpose of M,



ﬂ:(ai, Rg, " Bgop BB, 0, an)-
and
'V=('U1, Va, " Vs Ve Vg, 00, ‘Z),,).

where § is the index of G in . Reed-Solomon codes. r}nd their \_rariants have been
extensiveljr studied, and are well known to be MDS {see for instance |1, chs. 10-
11]).

In this pai)er we show that every GRS {GDRS) code has a systematic generator
matbrix of the form [/]A], wilere AisaGC {GEC) matrix, and conversely, every sys-
tematic generator matrix of that form generates a GRS (GDRS) code. Hence, these
two well-known s.ystematic ways of c'o'nst.ructin-g MDS codes yield exac_tly the same
family of codes. The c.orrespondence between GRS codes and GC matrices is
presented in Section 11, while the correspondenc_e between GDRS .codes and GEC
matrices is presenied in Section IIIL. Note that the. above. ccr'respdndeﬁces do not
cover triply-extended RS codes [1, p. 328], which exist for even walues.of g with
k=3 ork=g-1,

In Section IV we use Cauchy matrices to show the construction over any

F=GF(g) of arrays Sg of the form

1 1 i 1. . i1 1
24 az a3 . . O3 Og-2
ag g . . . O
23

Sq ¢ .

1 a5 0y

1 a5,

1

with g;€F', 1=i<g -2, such that any square submatrix of 5; is nonsingular. Exam-
ples of these arrays were first presented by Singleton in [2] for q#S and g =7, but
no generalization ﬁas given for larger fields {see also[1, p. 322]). We show that the
constructed arrays are maximal in the sense that, when q is odd, no field element

can be appended toc any of the rows {except, obviously, to the first row) without



4.
creating singular Submaft.rices. The same is Vtrue when g is even, except _for one
element that can be appended to each of the third and g—1-st rows. This
corresponds to the triply-extended RS codes mentioned above,

Using a slightly more complicated variation of the construction of S, we alse

show the construction of arrays of the form

bo by by ... by by,
by b2 . ... by,
bg
Tg: .
by
by—2 By
vy

which, as Sy, have the property that every square submatrix is nonsingular. Notice
that 7, has a "pure” Hankel form (i.e.: (7 )y =(Fg)i-141. 1<i=g -1, {}Sjsq—z—l )
whereas 5; has a row and & column of ones that depaift from the Hankel form.
Taking suitable rectangular sub-arrays of -either :-Sé or Ty: it is possible:to con-
struct generator matrices [T | 4] of I\iDS codes, where A is a Hankel matrix.
Since 4 is, by construction, a generalized {extended) Cauchy matrix, the results of
Sections 1I and 11} irnply.that‘ we obtain genera]ized (doubly-extended) Reed Solo-

mon codes,

II, Correspondence between GRS codes and GC matrices.

Theorem 1! Let C be a GRS (n.k,a,v) code defined by e=(aty, 6z, ' * * , 0r ) and
v={v,, vs - .'Un). Then C has a systematic generatof matrix of the form

[ 1| A} where 4is akx{n—k) GC matrix such that 4;=c;d;/ (zi+y;), with

Z = -y . 1=i<sk, (1)
Yy = Oex » 1<j<n—k, (2
-1
L SR
1] {ai—o) (3)
t=fxk
twi
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d’ = ‘uj‘l-k H (ij'_hk_at) N 1$j$‘ﬂ."‘k. (4)

) i<k -
Conversely, if 4 is a kx{n—%) GC matrix defined by vectors x=(z; )y, y=(y; )17

e=(c; ). and d=(d;)2f, such that every sguare submatrix of A'is nonsingular,

then[J | A ] generates a GRS{n k,a,v) code with

oy = —m , 1<i<k, (5)
ﬂj =yj—k B k‘l’lﬁjs'n,, (6)
C:‘.—‘l ,
y = ————— =ik,
T ) ()
1=t=k
tei
U; = , Etl<ji<n, (B)

I 1T (o +yye)
1=tak

Froof: Let C=GRS(n.k,0,v}). Then one generator matrix of C is G=@D(v)-where
Gy=o} L 1si<k, I<j<n. Write G=[ P | @], where P is .t.h.e_ kxk Vandermonde
matrix with Py=ajl 1sij<k, and @ is a kx{n-k) matr,uz with
Q;=ajit, 1=i<k, 1=j=n-k. The systematic generator mﬁtri.x-fbf CIS[I |4

where
A= D{a)"1P 19D (w), {8)

with u=(vv2 " ")), and W=(Ug+1)%+2," ' 's¥s). Consider the polynomial

==k
i

Jile) = ]I (z-a) = Gg;b_lfirzr' (10)

The inverse of the Vandermonde matrix P is given [3, p. 36] by

o Jij-1 o
(P = T——— (ojt,;—a‘) , 1=i, i<k (1)

1=t <k
fa

Hence, it follows from equations {9) and (11} that

Yk
=1

e



r-1
i Fir-1055%

= w"l—ﬁ—'——”l — f 4k
. (oy—y)
1=tk

(R

oy, Jelegae)
- N
T :
H(ﬂﬁn‘“ﬂt)
stsk _
= o7l gy 0 Gy 1=i<k, l<j=zn -k, -(12)
stk ‘

13

Iherefore, with xv,c, end d as defined by equations {1)-(4), we have

g o
Ay = Ej—‘;{; , l=i<k, -1.<_j_s=-ft—~3=. {18

as claimed,

7 Cunversely, given a GC matrix 4 defined by the vectors x.y.c, and 4, and rpx_'o-_.
- vided that every square submatﬁx'of Ais ﬁonsiﬁgﬁiar.'.';evé wan solve éﬁﬁué.’tiﬁns (1)—
{(4) for the vectors & and v;'whiéh define 2 GRS code wi_t.h@enérator ma‘_t.r'ixl[ Ii4l

The solution is given in equations (5)-(8).

QED.

111, Correspondence between GDRS codes and GEC matrices.

Theorem 2 (1) Let € be a GDRS(n+Lk.av) code defined by
=0, 0 gty o, Gy < On), AN V(U1 Vg Ve, Ve Yy "+ Un):
with k<s=<n+1. Then C has & generator matrix of the form [ 1] Z‘],. where
A=[Ay Ag o Aygeys A A ge -, Ay ] 1S 2 kX(n+1-k) GEC matrix obtained
from the GC matrix A of Theorem 1. by ipserting the . column
A;—;d,, (c~1' Ca Loyt Befére the (s—% )-th coluﬁm of A ifs(n-l-l,. or as the last
column if § =n.+t. Here do=2,, , and the G;—s are as. deﬁneﬂ‘inl'(é).

(ii) Let C be a GDRS(n +1,k+1,a'.v)r code defined by a énd v as in (i), but with

1<s<k+1 (note also that the dimension here is k?l-'l, as compared with & in (i)).



'Then C has a generatorlmatrii: of the f_orrﬁ [ T | 41, where

- 3P

| B
tR
By

BN
L

o
is a (Ic+1)x(n—'.'c) GEC matrix obtained from the GC matrix A of Theorem 1 by

inserting the_fow a,=c,.{(d, dg, ", d,,_k) before the s-th row of 4 if s<kf|-1..oz?

as the last row ifrs=k_+1. Here c.=v2?, and the ds-s are as defined in (4)

(iii) - Conversely, given a GEC matrix A such that every square subratrix of 4 is
‘nonsingular, there exist veclors & and v that define a GDRS c.o'de € generated by
{7141

Proof: The proof follows along ‘the same Imes as in Theorem 1, except t.hat.,
‘here we have to account for the add.tl:lonal column G (0,0 O 'u..) in: the genera-
tnr metrix of C. We shall use the mntrices A, P, g, and the vectors u, 'w as deﬁned
in Theorem 1 and its proof.
Part (i): Here G. appears among the columns of & corresponding to the check

digits, and therefore it corresponds to a column

Au= D) PG, = D(u) P hva
in the systematic generator matrix of C, where {P™); denotes the k-th column of

P~ Using {11), we obtain .

Ao = 0P g0 =

1=i<k
i

Now, from (10) we have fiz_1=1 and, by the definitions of ¢; and d., we obtain
A=d,, {c, cg '+, 6,)7, as claimed.

Part (ii): Here 1<s<k+1 and, hence, G. is in the part of & corresponding to the
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information digits. We shall assume, for the sake of clarity, that s=k +1, the other

cases being similar. Write G=[ P | @ ]D(v), where

0
— P
F = .
]
abof - of 1]
and
“~ Q
&g =
a!:ﬁ-l a:'c°+z e Cxwiwa
Define

9(z) = Tz -00) = Sgre”.
t=1 . r=0

It can be readily verified that the inverse of P is given by

P—l

0
Tod1 ' k-1 Gk

Let| 7 | A | be the systematlic generator matrix of C. Then

A=D{{u|v.])7P'ED(w).
Tt follows that the first k rows of 2 are identical to those of 4, and the k+1-st row

of 4 is given by



a.=v;go g1 0 -1} BD(W) .
The entries of a. are given by

+1 k11
o=y -1 A | -
Bej = Vs rzgr—lgrj]”j+k Vs zgr—la;+lg}vj+k
r=1 .

r=1

= vl g (egn) = vaa 1] (@u—) o 1Si<n—k.
156k

Recalling the definition of d; in {(8), and that ©, is deﬁned as 0.=v<', we obtain
8.=C,, (2, dg, - - - , dy_), as claimed.

Part (iii): Given a GEC matrix 4 such that every square submatrix of A is nonsingu-
lar, we use {5)-(B) to obtain the vectors & and v of the corresponding GDRS code,
without the "infinity"” entries. The index of = in e, and of v, In V.’, is datermined by
whether the extenﬂed Cauchy matrix that underlies 4 has a row or a column of
ones, and by the index of that row or column. The value_: of v is equal to the value

. {or d..,.) that multiplies the row (or column) of ones in A,

QED,

IV. Triangular arrays whose submatrices are nonsi ar,

Theorem 3: Let F=GF(g), and let S; dencte the triangular array

11 1 1. . 1 1 1
1 o, ap @ . . 6g3 Gy
Lo 2 . . . Oy —z
1 Xy
S
1 a5 a4z
1 L)
1
where
a; = ——1—.—, l=i=<qg -2,
17

for an arbitrary primitive element y of . Then, every sgquare submatrix of 5 is
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nonsingular.

Eroof: Let S,; dencte the array obtained from 5, by deleting its first and last
rows, and let Sy 1=i=<q -2, 0=<j=<qg —i—1, denote the entries of _;S',;. By the definition
of 5, we have

Sip = 1., 157:59’ —2,

‘and

Sy = Qpejy = Tiy‘—iﬂ_-l— 1<i=q —2, 1<j<g—1-i.

Note that with ¢ and j in the above ranges, we always have 1i+j—1=g -2 and,
hence, ¥**71#1 for ¥ primitive in F. Consider the vectars x={z,, .'L'Vg, ca ,.zg_a)
and Y_-‘-(’yo: Y1 ° . Yg-2) defined by

z; = —y~-1) | 1=i<g -2,

Yo =0,
and

=9 1sj=q -2,
It can be readily verified that

2"'
T +yj

—_—

, 1=i=g -2, Ofjsg —i—-1.

Since all the 2;-s are distinet and nonzero, all the y;-s are distinct, and z;+y; #0
fori and j in the defined ranges, we conclude that every square submatrix of S; is
a nonsingular GC matrix. Now, every square submatrix df Sg is either a square sub-
matrix of Sy, or a rectangular submatrix of Sy with an appended first row of 1's.

The latter square submatrices of S; are GEC matrices which are also nonsingutar.
Q.E.D.
Tor g =5 and g=7, taking y=3, which is a primitive element in both GF(5) and-
GF (7}, we obtain
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1111111
11111 136425
1234 18425
55: 134 H 57: 14258
14 125
1 15
1

These particular examples can be found in [2] and [1, p. 322], and are presented

here as applications of Theorem 3.
| Notice thaf, by construction, every rectangular submatrix A of S, is either a
GC or a GEC matrix ]—Iénce, by Theorems 1 an.d 2, the MDS code generated by
[ 1] A]is either a GKS or a GDRS code.

W_e proceed now to prove that the array 5; of Theorem 3 is, in general, maxi-
mal. First, we need the following lemma.

Lemma 1: (i) Let F be a fleld of characteristic other than two, and let 2.5,

‘and ¢ be distinct elements of F'—}{1} such that ¢ #0 and

C—— = 2 . (14)

Then, the matrix

1 1 1]
M= 1 1 1 I
l-e/c 1-b/c 1-1/c
1 1 1

i-a 1-b - 1-c

is singular over F,
(ii} Let F be a field of characteristic two, and let @ and b be elements of F={0,1}

such that ab #1. Then, the matrix

1 i o1 |
R 1 1
N = 1+ab 1+a2 1+a
1 £ 1

1+b  1+a 1+1/b|
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is singular over F.

Proof: Part (i): Solving for ¢ in (14), it is easy to establish after some elemen-
tary algebraic manipulations that {14) implies
1 1 2

i-a/c @ 1870 i-1/6" (15)

Let w=(1,1,—-2)7. We claim that Mw=0. The claim is trivial for the first row of M,
and it follows from (15) and (14), respectively, for the second and third rows.
Part (ii): Let w={1+ab, (1+a)(1+b), a+b). Then, again after some elementary

algebraic manipulations (modﬁlo 2), it is easy to verify that Nu=0.

QED.

Theorem 4: Let Sq be as defined in Theofem '3, and et
S5¢{0),5;(1). - - - .5;(g —1) denote the rows of Sq-. I q is odri, .tI.'_z:en appending any
elemeﬁt of ' to any 5 (k), isk=g—1, creates a sir.lg.ular équare"submatrix. fqis
even, then the above statement is true except for k=2 and k =g—2,in wﬁich case a.
unique element, equal to o, can be.appended to Sy(k) mthéﬁt creating singulér'
square submatrices. This corresponds to the triply extended (g %2,3,{1) -and
{g+2.9-1,4) MDS codes [1, p. 326].

(Trivially, for any gq, any nonzero elerment of F can be added to the all-ones row
S¢{0) without creating any singular submatrix).

Proof: Let v be an arbitrary element of F, and assume that v is appended to
8;(k), 1=k=<g—1. If u=0, then a trivial 1X1 singular matrix is formed. Hence, we
assume v #0, Moreover, due to the symmetry between rows and columns in Sy, we
can assume without loss of generality that k<{g —1)/2 in the case whe;re g is odd,

and k=g /2 when ¢ is even. Let K = §13 Ul |k<i=<q —2]. Note that K contains all

. 11
the entries of Sq(k)._ If v €K then a singular submatrix of the form L ”I is

formed. Henée. it remains to consider values of v such that v ¢ K. Since 1 and
o), * ', 8y exhaust all the nonzero elements of F, this implies that v=a, for

some 7, 1=r<k. We consider first the case when g is odd. Consider all unordered
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pairs §by, by of distinct elemer_lté of F such that;. b;-!-_b_g*Z'u =Zd.,._. _Sir_lpe the cardi-
nality of K is g ;ka(q+1)/ 2, at least one such pair can be found arnong elements
of K. This p_aif is either of the form fl,u:,-g. k<j<q—2, or of the form
ta;, 0], k=i<j=g—2. In the first case, using 1+a;= 2v = 2a,, we can apply Lemma

1(i} with e =0, b =7, and ¢ =y", to verify that the 3x3 submatrix

1 1 1 ]
1 Qi r g3
1 g v

g
is singular, (Recall that g;=1/{1—y), 1=i<q—2). In the second case, using
a;ta;= 2v = 2o, we apply lemma 1(i) with a=%*, b=y, and e=y", to verify that

the following submatrix is singular:

1 1 1
Oy Oy Tg—yr
L B

We consider now the case when g is even. When k=1, X exhausts:all"the___ﬁonz‘ero
eiements of #'. Hence, no element can .'be appended to"‘b"g('l} "W‘i’.(.hél..lt cré'ating a
singular submatrix. When k=2, the only element left outside X is Ly, and indeed
v=g, can be appended to S;(2) without creating singular submafri;:es. {This is
easily verified by direct computation of the 2x2 and 3x3 determinants involving
o). ‘i‘he 8%{g 1) maximal rectangle containing v, together mth a 3x3 identity
m.atri_x, form a generator matrix for the {g +2.3,g) triply-extended MDS code. Sym-
metrically, when v =g, is appended to S (g —2), we obtain the {g +2,g~1,4) triply-
extended MDS code.

Assurne now that 3<k<g/2 and let v=1a,, for some 1=r<k. Let-s be such that
i<s<k, and s#7 {such an 5 exists because k>2). Then, using Le'_mma 1(ii) with
a=y"% and b=y (ab#1 because 2<r+s<g—2), we obtain that the 'foll.oﬁ'ixfig"is a

singular submatrix:
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1 1 1
Og-1-r-s Bg-1-25 Og_1-5
Bg-1-r Og-1-5 v
Q.E.D.

The row and column of ones in §; depart from the Hankel form of the rest of
the array. We now show a construction of triangular arrays 7; of the sarmne dimen-

sions as Sz, where this departure is avoided, while preserving the property that

q!
every square submatrix is ﬁonsingular. Let B be an element of $=GF {g?) such
that BI*! is the smallest positive power of g that falls into Fi'GF(q-),a and let
P(z)}=z®+uz+n be the minimal polynomial of g over F. Let {o;}a-p be the

sequence over F defined by the linear recursion

oy + po5_y +mogee = 0, 120,

with initial conditions g g==1/7, 09,=0. {Clearly, 50, P{z) being irreducible).
Lemma 2: 0,70 for 0<i<g —1, and o4 =0,
FProof: Using the fact. that §%+uf+n=0, and the definition of the lr{-:jeursive

sequence {g;}, it is easy to prove by induction on © that

ﬁ’or,. — Ny = ﬁh-l,- i=—1. (16)
Let 7 be the least nonnegative integer such that 0,=0. Then, by (18), we have
B +'=—no,_;, which implies that 87! € F. Since 720, this implies that 7 +1=g+1, or
r=q. On the other hand, §2*'€F, and therefore fo, =" +n0,., € F, which is pos-
sible only if 4 =0.

Q.E.D.

lemma 3: For all j=—2 and =0,

Oiaj = 0i—1054+1 — N0 204

A necessary and sufficient condition is that B=M for some primitive element A of &, with
(t,g+1)=1. Notice that ZI" € F for every z € &.
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' Proof: By induction on 1, for all j=-2. For i=0, the claim follows from the

definitions of 0_3 and o_,. Assume the claim is true for 0<i'<i. Then

Ty = Oiefy+1) = Fi-10542 — 0120541
= 0:'—1(‘#”;'“"00;‘) MGl T (‘#0':'—1—")5"1'—2)”1“ = 0105

= 005+1 ~ 101105,
Q.E.D.

Thearem 6: Let Ty denote the triangular array

bo By by . .. bgp by
b, by . ...bg,
bg
Tg: ‘
by2 b1
by

where b;=1/0;, O<i<g ~1, with o; as defined above. Then every square submatrix

of Ty iz nonsingular.

Praof: First, notice that Lemma 2 ensures that b;, 0<i<g -1, is well defined. Define

% = 00, 1si=g-1,
Yj ='G|'J'+1UJ‘_1. G<j<g -1,
Co = 1.
oy = oi, i<i<g~1,
and
d; = 0j, 0<j<sg—1.
Let ty, Osi<g~1, 0sj=<g—~1—i, denote ihe entries of Tq. Then, t.;j=bi+j=cr,;",3j. By

Lemma 3, we have

£ = 1 O=i=g -1, 0=j=q—-1—i.

W 0410541704205

Now, using the definitions of z;, ¥;, ¢;, and d;, and the above expression for {y, it
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can be readily verified that

s
T —c‘—’——, i=i<g -1, 0<j=<g—-1—i,
Tty |

and
tﬂj = Cndj, Osjsq—l.

Hence, every square submatrix of 7y is either a GC mafrix {if it does not include
entries from the first row of Tg). or a GEC matrix {if it includes entries from the
first row). To prove that all the square submatrices are nonsingular, it remains to

show that all the ;-5 are distinct, and that all the y;-s are distinct. Assume 2z, =2,

for some 1<r <s<g-—1. Then,

Or-gfrly = 0s_posh) = &,

for some € F. Applying Equation {16) with i=r~1 and with =5 —1, we obtain

frol = oty = e,
Therefore, f*7 = 6,0, € F, contradicting the defining property of 8. A similar
argument is used Lo prove that the y;-s are all distinet.

Q.E.D.

We close this section with examples of Ty for g=5 and g=7. Using the primi-
tive polynomials P{z)=z*+z+2 over GF(5), and P{z)=z%+z+3 over GF(7), we

obtain

1633136
14424 633136
4424 33136
Ty 424 ; Ty 3136
24 136
4 38

8
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