
An Introduction to Coding for Constrained
Systems

Brian H. Marcus1 Ron M. Roth2 Paul H. Siegel3

Fifth Edition (October 2001)

c© All rights reserved

1IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA.
2Computer Science Department, Technion — Israel Institute of Technology, Haifa 32000, Israel.
3Department of Electrical and Computer Engineering 0407, University of California at San

Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.

Contents

Preface vii

1 Channels and Constraints 1

1.1 Magnetic Recording . 1

1.2 Classical runlength constraints . 3

1.3 Coding for Channels . 5

1.4 Encoding and decoding for constrained systems 6

1.5 Examples of constraints . 11

1.5.1 Anti-whistle constraints . 11

1.5.2 Synchronization constraints . 12

1.5.3 Multiple-spaced runlength constraints 13

1.5.4 Spectral-null constraints . 15

1.5.5 Combined charge–runlength constraints 17

1.5.6 Constraints for PRML . 18

1.6 Background on magnetic recording . 20

1.6.1 Peak detection . 20

1.6.2 PRML detection . 22

1.7 Coding in optical recording . 25

1.7.1 The compact disk . 25

1.7.2 EFM code at rate 8 : 16 . 26

1.7.3 Dc control . 28

i

CONTENTS ii

1.8 Two-dimensional constraints . 31

Problems . 33

2 Constrained Systems 37

2.1 Labeled graphs and constraints . 37

2.2 Properties of labelings . 40

2.2.1 Deterministic presentation . 40

2.2.2 Finite anticipation . 41

2.2.3 Finite memory . 42

2.2.4 Definite graphs . 42

2.2.5 Lossless graphs . 43

2.2.6 Summary of terms . 43

2.2.7 State labeling . 44

2.3 Finite-type constraints . 45

2.4 Some operations on graphs . 48

2.4.1 Power of a graph . 48

2.4.2 Higher edge graph . 49

2.4.3 Fiber product of graphs . 50

2.5 Irreducibility . 50

2.5.1 Irreducible graphs . 50

2.5.2 Irreducible constrained systems . 52

2.6 Minimal presentations . 53

2.6.1 Follower sets and reduced labeled graphs 54

2.6.2 The Moore algorithm . 54

2.6.3 Homing words . 56

2.6.4 Shannon cover of irreducible constrained systems 57

2.6.5 Shannon cover of finite-type constrained systems 58

2.7 Testing algorithms . 60

CONTENTS iii

2.7.1 Testing for losslessness . 60

2.7.2 Testing for finite anticipation . 61

2.7.3 Testing for finite memory . 61

2.7.4 Testing for definiteness . 62

Problems . 62

3 Capacity 69

3.1 Combinatorial characterization of capacity 69

3.2 Algebraic characterization of capacity . 72

3.3 Perron-Frobenius theory . 76

3.3.1 Irreducible matrices . 76

3.3.2 Primitivity and periodicity . 77

3.3.3 Perron-Frobenius Theorem . 81

3.3.4 Stronger properties in the primitive case 85

3.4 Markov chains . 88

3.5 Probabilistic characterization of capacity . 91

3.6 Approaching capacity by finite-type constraints 94

Problems . 95

4 Finite-State Encoders 108

4.1 Definition of finite-state encoders . 108

4.2 Block encoders . 112

4.3 Sliding-block decodable encoders . 116

4.4 Block decodable encoders . 121

4.5 Non-catastrophic encoders . 123

4.6 Relationships among decodability properties 125

4.7 Markov chains on encoders . 125

4.8 Spectral analysis of encoders . 126

CONTENTS iv

Problems . 129

5 The State-Splitting Algorithm 134

5.1 State splitting . 135

5.2 Approximate eigenvectors and consistent splitting 138

5.2.1 Approximate eigenvectors . 139

5.2.2 Computing approximate eigenvectors 141

5.2.3 x-consistent splitting . 143

5.3 Constructing the encoder . 146

5.4 Strong decoders . 151

5.5 Simplifications . 155

5.5.1 State merging . 155

5.5.2 Sliding-block decoder window . 161

5.6 Universality of the state-splitting algorithm 164

5.6.1 Universality for sliding-block decodable encoders 164

5.6.2 Universality for encoders with finite anticipation 165

Problems . 166

6 Other Code Construction Methods 173

6.1 IP encoders . 173

6.2 Stethering encoders . 174

6.3 Generalized tagged (S, n)-encoders . 176

6.4 Encoders through variable-length graphs . 177

6.4.1 Variable-length graphs and n-codability 177

6.4.2 Variable-length state splitting . 178

6.4.3 Method of poles . 179

6.5 Look-ahead encoders . 180

6.6 Bounded-delay encoders . 182

CONTENTS v

6.7 Transforming a generalized encoder to an ordinary encoder 183

Problems . 184

7 Complexity of Encoders 186

7.1 Complexity criteria . 186

7.2 Number of states in the encoder . 187

7.3 Values of p and q . 191

7.4 Encoder anticipation . 193

7.4.1 Deciding upon existence of encoders with a given anticipation 193

7.4.2 Upper bounds on the anticipation . 195

7.4.3 Lower bounds on the anticipation . 198

7.5 Sliding-block decodability . 201

7.6 Gate complexity and time–space complexity 203

Problems . 205

8 Error Correction and Concatenation 207

8.1 Error-Correction Coding . 208

8.2 Linear Codes . 209

8.2.1 Definition . 209

8.2.2 Generator Matrix . 210

8.2.3 Parity-check matrix . 212

8.3 Introduction to Finite Fields . 213

8.4 The Singleton bound and Reed-Solomon codes 216

8.5 Concatenation of ECC and constrained codes 217

8.6 Block and sliding-block compressible codes 220

8.7 Application to burst correction . 223

8.8 Constructing sliding-block compressible excoders 226

8.8.1 Super-vectors . 226

CONTENTS vi

8.8.2 Consistent splittings . 229

8.8.3 Reduction of edge effect in error propagation 234

Problems . 235

9 Error-Correcting Constrained Coding 239

9.1 Error-mechanisms in recording channels . 239

9.2 Gilbert-Varshamov-type lower bounds . 240

9.2.1 Classical bound for the Hamming metric 240

9.2.2 Hamming-metric bound for constrained systems 241

9.2.3 Improved Hamming-metric bounds 243

9.3 Towards sphere-packing upper bounds . 247

9.4 Distance properties of spectral-null codes . 250

9.5 Synchronization/bitshift error correction . 250

9.6 Soft-decision decoding through Euclidean metric 256

9.7 Forbidden list codes for targeted error events 260

Problems . 260

Bibliography 263

Preface

In most data recording systems and many data communication systems, some sequences
are more prone to error than others. Thus, in order to reduce the likelihood of error, it
makes sense to impose a constraint on the sequences that are allowed to be recorded or
transmitted. Given such a constraint, it is then necessary to encode arbitrary user sequences
into sequences that obey the constraint. In this text, we develop a theory of constrained
systems of sequences and encoder design for such systems. As a part of this, we include
concrete examples and specific algorithms.

We begin in Chapter 1 with a description of several applications of constrained systems
of sequences in data recording and data communications. We also give a rough description of
the kinds of encoders and corresponding decoders that we will consider. Chapter 2 contains
the basic mathematical concepts regarding constrained systems of sequences. Many of these
concepts are closely related to fundamental notions in computer science, such as directed
graphs and finite-state machines. In Chapter 3, we develop the notion of capacity from three
different points of view: combinatorial, algebraic and probabilistic. In the course of doing
so, we show how to compute the capacity of an arbitrary constrained system. In Chapter 4
we give a general introduction to finite-state encoders and sliding-block decoders. This
includes Shannon’s fundamental result that relates the maximal code rate of an encoder for
a constrained system to the capacity of a constrained system. In Chapter 5, we develop the
state-splitting algorithm, which gives a rigorous procedure for designing finite-state encoders
for constrained systems.

There are many other ways of designing encoders for constrained systems. In Chapter 6,
we outline some of these techniques and briefly explain how they are related to the state-
splitting algorithm. In Chapter 7, we focus on complexity issues and finite procedures
relating to encoders and decoders for constrained systems. For instance, we give bounds on
the number of states in the smallest encoder for a given constrained system at a given rate.
In Chapter 8 we begin with a very brief introduction to error-correction coding, in particular
Reed-Solomon codes. We then discuss methods of concatenating constrained codes with
error-correction codes. Finally, in Chapter 9 we consider codes which simultaneously have
error-correction and constrained properties. These include spectral null codes and forbidden
list codes which eliminate likely error events for specific channels. We also extend classical
bounds for error-correction codes to combined error-correction–constrained codes.

vii

PREFACE viii

This text is intended for graduate students and advanced undergraduates in electrical
engineering, mathematics and computer science. The main prerequisites are elementary
linear algebra and elementary probability at the undergraduate level. It is also helpful, but
not necessary, to have had some exposure to information theory (for Chapter 3) and error-
correction coding (for Chapters 8 and 9). While Chapter 1 includes discussion of several
engineering applications, the remainder of the text develops the theory in a more formal
mathematical manner.

We are happy to acknowledge that earlier versions of this text were used as notes for
courses on Constrained Systems. One of these versions appeared as Chapter 20 of the
Handbook of Coding Theory [PH98]. We are grateful to students, as well as many of our
colleagues in industry and universities, for helpful suggestions on these earlier versions.

Chapter 1

Channels and Constraints

The purpose of this chapter is to motivate, via several engineering examples, the subject of
coding for constrained systems. Beyond this chapter the text will take on a more mathe-
matical flavor.

1.1 Magnetic Recording

In this section we give a very brief introduction to magnetic recording. For more background
on this subject, the reader is referred to Section 1.6 and the book [WT99].

The essential components of a magnetic recording system are a recording head, a read-
head and a recording medium, such as a rotating magnetic disk. The disk is divided into
concentric tracks. To write a string of data along a track, the recording head is positioned
above the track, and current sent through the head magnetizes the track in one of two
directions called magnetic polarities. This process is illustrated in Figure 1.1. A clock runs
at a constant bit period of T seconds, and at each clock tick (i.e., at each multiple of T), the
recording head has the opportunity to change the polarity on the disk: a 1 is recorded by
changing the direction of the current, while a 0 is recorded by not changing the direction of
the current (i.e., doing nothing). In this way, a 1 is represented as a transition in magnetic
polarity along a data track, while a 0 is represented as an absence of such a transition. So,
we can think of any binary sequence as a sequence of transitions/no-transitions; when we
want to emphasize that we are thinking of a binary sequence in this way, we will call it a
transition sequence.

In reading mode, the read-head, positioned above a track on the rotating disk, responds to
a magnetic transition by an induced voltage; naturally, the absence of a transition produces
no voltage response in the read-head. A bit cell is a window of length T centered on a clock
tick. When a sufficiently high (positive or negative) voltage peak is detected within a bit

1

CHAPTER 1. CHANNELS AND CONSTRAINTS 2

1 0 1 0 0 0 1 1 1 0 1 0

N N S S N N N NS S S S

0

1 0 1 0 0 0 1 1 1 0 1 00

Data

Write current

Magnetic track

Read voltage

Detected data

T

Figure 1.1: Digital magnetic recording.

cell, a 1 is declared; otherwise, a 0 is declared. This scheme is known as peak detection. Note
that as shown in Figure 1.1, the readback voltages corresponding to successive transitions
are of opposite signs; however, in most implementations the peak detector ignores the signs.
We also remark that due to the presence of noise, the readback voltage signal in reality is
not as smooth as Figure 1.1 might suggest.

N SN S N N S SMagnetic track

Read voltage

Figure 1.2: Inter-symbol interference.

Now, if successive 1’s are too close together, then the voltage responses corresponding
to the magnetic transitions may interfere with one another; this is known as inter-symbol
interference. From Figure 1.2, which shows a reconstruction of the received signal with
interference, it is evident that such interference may degrade the signal so that either one or
both transitions are missed. In such a case, a recorded 1 will be mis-read as a 0; perhaps,
even worse, the bit cell corresponding to a transition may be incorrectly identified so that

CHAPTER 1. CHANNELS AND CONSTRAINTS 3

a recorded 01 will be mis-read as 10; such an error is called a peak shift or bit shift. The
likelihood of these kinds of errors can be reduced if 1’s are separated sufficiently far apart,
or equivalently if any two 1’s are separated by a sufficiently long run of 0’s.

Determination of the correct runlength of 0’s between two successive 1’s depends critically
on accurate clocking. But accurate clocking can well be compromised by various imperfec-
tions in the recording system, such as variations in speed of the rotating disk. Thus, clocking
needs to be adjusted periodically via a timing control scheme, which adjusts the clock in
response to identification of peaks in the received signal. For instance, if a peak is supposed
to occur at exactly the mid-point of the bit cell, but instead occurs near the end of the bit
cell, then the next clock tick should be delayed. But during a long run of 0’s, the ideal
received signal will not contain any peaks. Hence, for timing control, it is desirable to avoid
long runs of 0’s.

This discussion suggests that it may be helpful to impose constraints on the binary
sequences that are actually recorded.

1.2 Classical runlength constraints

The (d, k)-runlength-limited (RLL) constraint is described as follows.

Let d and k be integers such that 0 ≤ d ≤ k. We say that a finite length binary sequence
w satisfies the (d, k)-RLL constraint if the following two conditions hold:

• the runs of 0’s have length at most k (the k-constraint), and —

• the runs of 0’s between successive 1’s have length at least d (the d-constraint); the first
and last runs of 0’s are allowed to have lengths smaller than d.

According to the discussion in Section 1.1, for binary transition sequences the d-constraint
reduces the effect of inter-symbol interference and the k-constraint aids in timing control.

Many commercial systems, such as magnetic tape recording systems, use the constraint
(d, k) = (1, 7) or (d, k) = (2, 7). An example of a sequence satisfying the (d, k) = (2, 7)-RLL
constraint is

w = 00100001001000000010 .

Other recording standards include the (1, 3)-RLL constraint, which can be found in flexible
disk drives, and the (2, 10)-RLL constraint, which appears in the compact disk (CD) [Imm91,
Ch. 2] and the digital versatile disk (DVD) [Imm95b].

The set of all sequences satisfying a (d, k)-RLL constraint is conveniently described by
reading the binary labels of paths in the finite directed labeled graph in Figure 1.3. The

CHAPTER 1. CHANNELS AND CONSTRAINTS 4

graph consists of a finite collection of states (the numbered circles) and a finite collection
of labeled directed edges. For each i = 0, 1, . . . , k−1, there is an edge labeled 0 from state
i to state i+1. For each j = d, d+1, . . . , k, there is an edge labeled 1 from state j to state
0. A path in the graph is a sequence of edges such that the initial state of each edge is the
terminal state of the preceding edge.

It can be verified that a sequence w satisfies the (d, k)-RLL constraint if and only if there
is a path in the graph whose edge labeling is w. For this reason, we say that the graph is a
presentation of (or presents) the RLL constraint.

Any set of sequences that can be presented by a labeled graph in this way is called a
constraint or constrained system. We will have much more to say about graph presentations
in Chapter 2.

0 1 d−1 d d+1 k−1 k✲0 0 ·· · ✲0 ✲0 ✲0 0 · ·· ✲0 ✲0

✻ ❄1❄1❄1❄1

······

Figure 1.3: Graph presentation of the (d, k)-RLL constraint.

We may extend the class of (d, k)-RLL constraints to include the case where k = ∞;
namely, there is no upper bound on the length of runs of 0’s. In such a case, the constraint
is described by the labeled graph in Figure 1.4.

0 1 d−1 d✲0 0 ··· ✲0 ✲0 ✛ 0

✻ ❄1

···

Figure 1.4: Graph presentation of the (d,∞)-RLL constraint.

A graph presentation, such as Figure 1.3, represents a constraint by showing which se-
quences are allowed. An alternative representation specifies which sequences are forbidden.
For instance, the (1, 3)-RLL constraint is the set of sequences that do not contain any word
of the list

{11, 0000}
as a sub-string of contiguous symbols. Such a list is called a list of forbidden words. The
reader may check that every (d, k)-RLL constraint can be defined by a very simple list of
forbidden words (Problem 1.3).

CHAPTER 1. CHANNELS AND CONSTRAINTS 5

1.3 Coding for Channels

In the abstract a channel can be viewed as a “black box” with inputs and outputs. The
inputs represent information that is transmitted through the box. The outputs are supposed
to faithfully represent the inputs. However, distortions in the channel can adversely affect
the output. For this reason, coding is applied to protect the inputs.

One usually thinks of a channel as a communications system, in which information is
sent from one point in space to another. Examples of communications systems include
telephones, cellular phones, digital subscriber lines and deep space communications. But
recording systems, such as the magnetic recording system described in Section 1.1, can also
be viewed as channels. The main difference between recording channels and communications
channels is that space is replaced by time. That is, in a recording channel, information is
recorded at one point in time and retrieved at a later point in time [Berl80].

Current recording applications require storage devices to have very high immunity against
errors. On the other hand, the ever-growing demand for storage forces the designers of such
devices to write more data per unit area, thereby making the system less reliable. This is
manifested in the effects of inter-symbol interference, inaccurate clocking, and random noise.

A constrained encoder, also known as a modulation encoder or line encoder , transforms
arbitrary user data sequences into sequences, also called codewords, that satisfy a given
constraint, such as an RLL constraint. Naturally, such an encoder will have a corresponding
decoder called a constrained decoder. We loosely use the term constrained code to refer to
the constrained encoder and decoder together. In the most general terms, the purpose of a
constrained code is to improve the performance of the system by matching the characteristics
of the recorded signals to those of the channel; the recorded signals are thereby constrained
in such a way as to reduce the likelihood of error.

In addition to constrained coding, an error-correction code (ECC) may be used to pro-
tect the data against random noise sources. An ECC must provide an encoder (and cor-
responding decoder) which translates arbitrary user data sequences into codewords. A
good ECC has the property that any two distinct codewords must differ enough so as
to be distinguishable even after being subjected to a certain amount of channel noise.
While both error-correction coding and constrained coding have been active for fifty years,
the former enjoys much greater notoriety. There are many excellent textbooks on ECC,
such as those by Berlekamp [Berl84], Blake and Mullin BM, Blahut [Blah83], Lin and
Costello [LinCo83], MacWilliams and Sloane [MacS77], McEliece [Mcl77], Peterson and Wel-
don [PW72], Pless [Pl89], and Wicker [Wic95]. For an extensive summary of what is known
in the area, refer to the Handbook of Coding Theory [PH98].

What is the difference between an error-correction code and a constrained code? One
difference is that the “goodness” of an error-correction code is measured by how the different
codewords relate to one another (e.g., in how many bit locations must any two codewords

CHAPTER 1. CHANNELS AND CONSTRAINTS 6

differ?), whereas the “goodness” of a constrained code is measured by properties of the
individual codewords (e.g., how well does each codeword pass through the channel?).

On the other hand, this distinction is not hard and fast. Clearly, if an error-correction
code is to have any value at all, then its codewords cannot be completely arbitrary and
therefore must be constrained. Conversely, in recent years, there has been a great deal of
interest in constrained codes that also have error-correction properties. Such developments
have contributed to a blurring of the lines between these two types of coding. Neverthe-
less, each subject has its own emphases and fundamental problems that are shaped by the
distinction posed in the preceding paragraph.

Figure 1.5 shows the arrangement of error-correction coding and constrained coding in
today’s recording systems. User messages are first encoded via an error-correction encoder

✲
Data

✲ Constrained
Encoder

✲
Channel Constrained

Decoder
✲ ECC

Decoder
✲

DataECC
Encoder

Figure 1.5: Coding for recording channels: standard concatenation.

and then via a constrained encoder. The resulting message is recorded on the channel. At
a later time, the (possibly corrupted) version of this message is retrieved and decoded, first
by the constrained decoder and then by the error-correction decoder.

This arrangement places the constrained encoder–decoder pair nearer to the channel than
the error-correction encoder–decoder pair. This makes sense since otherwise the constraints
imposed by the constrained encoder might be destroyed by the error-correction encoder. On
the other hand, in this arrangement the ECC properties imposed by the ECC encoder may
be weakened. For this reason, it may be desirable to reverse the order in which the coders are
concatenated, although it is not at all obvious how to do this. These issues will be discussed
in Chapter 8.

Ideally the messages recorded on a channel should be determined by a single code that
has both “pairwise” error-correction properties as well as “individual” constraint properties.
Such codes will be studied in Chapter 9. For now, we focus only on constrained codes.

1.4 Encoding and decoding for constrained systems

In this section, we give a rough description of the kinds of encoders and decoders that are
used for constrained systems.

The encoder typically takes the form of a finite-state machine, shown schematically in

CHAPTER 1. CHANNELS AND CONSTRAINTS 7

Figure 1.6. A rate p : q finite-state encoder accepts an arbitrary input block of p user bits
and generates a codeword of length q—referred to as a q-codeword—depending on the input
block and the current internal state of the encoder. The sequences obtained by concatenating
the q-codewords generated by the encoder must satisfy the constraint. There are of course
only finitely many states.

Encoder
Combinational

Logic

Encoder State ✛

✲

✲p bits ✲ q bits

Figure 1.6: Finite-state encoder schematic.

Example 1.1 Figure 1.7 depicts a rate 2 : 3 encoder for the (0, 1)-RLL constrained
system [Sie85a]. There are two states, A and B. Each state has exactly four outgoing edges.
Each edge has two labels: a 2-bit input label and a 3-bit output label. To make a better
distinction between input and output labels, we will refer to the former as input tags. Note
that at each state, the set of four outgoing edges carry all possible 2-bit input tags exactly
once.

A B
✲

00/011

❄

01/011

❄
10/110

❲11/010

❖ 00/101✻
01/111

✛ 10/101✛ 11/111

Figure 1.7: Rate 2 : 3 two-state encoder for (0, 1)-RLL constrained system.

One encodes as follows. First, fix an an initial state, say state A. To encode an arbitrary
2-bit input uv, first find the unique outgoing edge e, with input tag uv, from state A; the
encoded 3-codeword is the output label of edge e. To encode the next 2-bit input, execute
the same procedure starting from the terminal state of e. For instance, starting at state A,
the sequence

01 01 00 10 10 01 00 00

encodes to
011 111 011 110 101 111 011 011 ,

CHAPTER 1. CHANNELS AND CONSTRAINTS 8

with corresponding state sequence:

A B A A B B A A A .

The encoded sequences do indeed satisfy the (0, 1)-RLL constraint, i.e., one can never see
two consecutive 0’s; this follows from the observations: (1) one can never see two consecutive
0’s on an edge output label, and (2) whenever an edge carries an output label that ends in
0, the following output labels all begin with 1.

The encoders that we construct should be decodable. One type of decoder that we con-
sider is a state-dependent decoder which accepts, as input, a q-codeword and generates a
length-p block of user bits depending on the internal state, as well as finitely many up-
coming q-codewords. Such a decoder will invert the encoder when applied to valid code
sequences, effectively retracing the state sequence followed by the encoder in generating the
codeword sequence. However, when the code is used in the context of a noisy channel, the
state-dependent decoder may run into a serious problem. The noise causes errors in the
detection of the codeword sequences, and the decoder must cope with erroneously detected
sequences, including sequences that could not be generated by the encoder. It is generally
very important that the decoder limit the propagation of errors at the decoder output re-
sulting from such an error at the decoder input. Unfortunately, an error at the input to a
state-dependent decoder can cause the decoder to lose track of the encoder state sequence,
with no guarantee of recovery and with the possibility of unbounded error propagation.

Example 1.2 Consider the (admittedly artificial) rate 1 : 1 encoder depicted in Fig-
ure 1.8.

A B
✲

0/a ✲1/b
✛

0/c
✛ 1/a

Figure 1.8: Encoder susceptible to unbounded decoder error propagation

If we select state A as the initial state, then the sequence 000000 · · · encodes to the
sequence aaaaaa · · ·. If a single channel error corrupts the first a to b, then the state-
dependent decoder will receive the sequence baaaaa · · · and decode to 111111 · · ·. So, a
single channel error at the beginning may cause many decoding errors.

The decoder therefore needs to have additional properties. Specifically, any symbol error
at the decoder input should give rise to a limited number of bit errors at the decoder output.
A sliding-block decoder makes a decision on a given received q-codeword on the basis of the
local context of that codeword in the received sequence: the codeword itself, as well as a

CHAPTER 1. CHANNELS AND CONSTRAINTS 9

fixed number m of preceding codewords and a fixed number a of later codewords. Figure 1.9
shows a schematic diagram of a sliding-block decoder. It is easy to see that a single error at
the input to a sliding-block decoder can only affect the decoding of codewords that fall in a
“window” of length at most m+a+1 codewords.

p bits

❄

Decoder Logic

❄

q bits

Figure 1.9: Sliding-block decoder schematic.

Example 1.3 Table 1.1 defines a sliding-block decoder for the encoder in Figure 1.7.
Entries marked by “—” in the table do not affect the value of the decoded input tag. For

(current codeword) (next codeword) (decoded input)

010 — 11
011 101 or 111 01
011 010, 011, or 110 00
101 101 or 111 10
101 010, 011, or 110 00
110 — 10
111 101 or 111 11
111 010, 011, or 110 01

Table 1.1: Sliding-block decoder for encoder in Figure 1.7.

example, according to Table 1.1, the codeword 010 decodes to 11; the codeword 011 decodes
to 01 if it is followed by 101 or 111, and it decodes to 00 if it is followed by 010, 011 or 110.

Note that this decoder really does invert the encoding in Figure 1.7. For example, the
3-codeword 010 occurs on exactly one edge as an output label. Since the corresponding input
tag is 11, the codeword 010 decodes to 11. While the 3-codeword 011 occurs as an output
label on two different edges, these edges end at different states. The edge ending at state
B can be followed only by edges whose output labels are the codewords 101 or 111. This

CHAPTER 1. CHANNELS AND CONSTRAINTS 10

is why the codeword 011 decodes to 01 if it is followed by 101 or 111. Similarly, the edge
ending at state A can can be followed only by edges whose output labels are the codewords
010, 011 or 110. This is why 011 decodes to 00 if it is followed by 010, 011 or 110.

Consider an application of the decoder in Table 1.1 to the following sequence of eight
3-codewords

011 111 011 110 101 111 011 011 ;

this is the same sequence that was encoded in Example 1.1. It can be easily verified that
the decoder will recover correctly the first seven respective 2-bit inputs

01 01 00 10 10 01 00 ,

while the eighth 2-bit input can be either 00 or 01. Indeed, since the last 3-codeword is
011, the unique recovery of the eighth 2-bit input is possible only when the next (ninth)
3-codeword becomes available.

We point out that the inability to recover the eighth 2-bit input without additional
information is not a limitation of the decoder, but rather a consequence of the structure
of the encoder of Figure 1.7: the first seven 2-bit inputs lead the encoder to state A, from
which there are two outgoing edges labeled 011. So, unless more information is provided
(e.g., in the form of a ninth 3-codeword) there is no way to tell which edge generated the
eighth 3-codeword.

We emphasize that it is critical for both the encoder and decoder to have knowledge
of the correct framing of sequences into 2-bit inputs and 3-codewords. For the former,
this is a pretty safe assumption since the input comes from the well-controlled computer
CPU. For the latter, this is not so safe. As discussed in Section 1.1 inaccurate clocking
could cause the system to lose or gain a bit and therefore lose the framing into codewords.
However, the k-constraint itself, as well as the coding/synchronization scheme to be discussed
in Section 1.5.2, help to ensure that the decoder has access to the correct framing.

In the literature, the term “code rate” can refer to either the pair of numbers, p : q, or the
ratio, p/q, between these numbers. This is a genuine ambiguity since p : q is more specific
than p/q. For instance, a rate 2:3 encoder is literally different from a rate 4:6 encoder.
However, the two uses of the term can usually be distinguished from context. In this text
we continue tradition by using the term “code rate” to refer to both p : q and p/q.

Shannon proved [Sha48] that the rate p/q of a constrained encoder cannot exceed a
quantity, now referred to as the Shannon capacity, that depends only upon the constraint
(see Chapter 3). He also gave a non-constructive proof of the existence of codes at rates less
than, but arbitrarily close to, the capacity. Therefore, as well as the issues of decodability
mentioned above, any encoding/decoding scheme will be measured by the proximity of its
rate, p/q, to the Shannon capacity.

CHAPTER 1. CHANNELS AND CONSTRAINTS 11

Chapters 4, 5, and 6 deal with general methods of constructing encoders for constrained
systems. In particular, in Chapter 5 we present an algorithm for transforming a graph
presentation of any given constrained system into a finite-state encoder. Still, the design of
a specific encoder for a specific constrained system usually benefits from a good deal of ad
hoc experimentation as well.

1.5 Examples of constraints

In Sections 1.1 and 1.2, we motivated and described runlength limited constraints. In this
section, we describe several other examples of constraints that arise in recording and com-
munications applications.

1.5.1 Anti-whistle constraints

In some applications it is desirable to impose a limit on the maximum length of a particular
periodic sequence. If we view a periodic sequence as a “pure tone” or “whistle,” then such
a constraint can be viewed as an “anti-whistle” constraint.

For example, the k-constraint limits the length of the sequence 000000 · · ·, a sequence
of period 1. One may wish to the limit the length of sequences of period 2: 101010 · · · or
010101 · · ·, as in the following example.

Example 1.4 Figure 1.10 presents the constrained system which simultaneously satisfies

0′ 1′

0 1 2 3

✲0

✲0 ✲0 ✲0

✻1 ❄0

✻ ❄1❄1

Figure 1.10: Limiting the length of the sequences 010101 · · · and 101010 · · ·.

the (1, 3)-RLL constraint and limits the maximum number of repetitions of 10 or repetitions
of 01 to two.

Constraints of this type have been used in a particular version of the wireless infrared
channel for data communication among mobile devices such as laptop computers. In this

CHAPTER 1. CHANNELS AND CONSTRAINTS 12

application, data is transmitted by infrared pulses, with a 1 in a bit cell indicating the
presence of a pulse and a 0 indicating the absence of a pulse. The duty cycle of a sequence
is simply the total number of 1’s in the sequence divided by the length of the sequence. So,
a sequence with a high duty cycle will transmit more pulses per unit time than a sequence
with a low duty cycle. In order to conserve power, it is therefore desirable to restrict the
length of transmitted sequences with high duty cycle.

As in magnetic recording, an RLL constraint is imposed in order to reduce inter-symbol
interference and aid in timing control. If the constraint is a (1, k)-RLL constraint, then
for long sequences the maximum duty cycle is roughly 50% and is achieved only by the
sequences 010101 · · · and 101010 · · ·. Thus, it is desirable to limit the maximum length of
such sequences, as in Example 1.4.

Recently, the Infrared Data Association adopted the Very Fast Infrared (IrDA-VFIr)
standard which includes as part of the format a constraint that simultaneously imposes the
(1, 13)-RLL constraint and limits the maximum number of repetitions of 10 or repetitions of
01 to five [HHH00]. Anti-whistle constraints are also used to aid in timing and gain control
algorithms in magnetic recording [Berg96, p.171].

1.5.2 Synchronization constraints

Recall from the end of Section 1.2 that RLL constraints can be defined by lists of forbidden
words. The example in this section is most easily defined in this way.

Example 1.5 Consider the constraint consisting of all sequences that do not contain
any of the following four 24-bit words

010w001w1 , 010w010w1 , 001w001w1 , 001w010w1 ,

where w0 = 000000 and w0 = 0101010101010. The first word consists of 01 followed by
eight 0’s followed by seven repetitions of 10. The second and third words each differ from
the first word by a single bit shift. And the fourth word differs from the first word by two bit
shifts. We leave it to the reader to construct a (finite) graph presentation of this constraint
(Problem 1.12).

Such a constraint can be useful for synchronization. We describe this as follows.

Recorded data is usually grouped together into sectors consisting of a large number of
bits. When a sector is addressed for retrieval, the read-head will jump to the beginning of the
sector. However, it is difficult to accurately position on the first bit of the sector. Moreover,
in the process of moving to the beginning of a new sector, the clock may be kicked out
of synchronization. For this reason, the sector begins with special patterns that help the

CHAPTER 1. CHANNELS AND CONSTRAINTS 13

clock to reach synchronization quickly, to determine the beginning of encoded data and to
determine the correct framing into q-codewords (if a rate p : q code is used) required by a
constrained decoder. One of these patterns is called a sync mark (see Figure 1.11).

· · · Sync
Mark

Encoded Data
Sync
Mark

Encoded Data
Sync
Mark

Encoded Data · · ·

Figure 1.11: Sync marks.

The position of the sync mark is determined by a correlator which examines the output
of the read-head. If the sync mark is allowed to occur within the actual encoded data, then
one may read a “false sync,” and this could very well cause decoding errors. Thus, it is
desirable to encode the data so that the sync mark is forbidden from the actual encoded
data. Moreover, because of noise in the system it is also helpful to forbid the most likely
perturbations of the sync mark. In one particular magnetic tape system, the first word in
Example 1.5 above was used as a sync mark and the other three words were the most likely
(because of bit shifts) perturbations [AJMS99]. In that system, in addition to forbidding
the words in Example 1.5, a (1, 7)-RLL constraint as well as an anti-whistle constraint, were
imposed simultaneously as well.

Finally, we mention that synchronization is also important in communications sys-
tems [Sklar88]. However, for such systems, synchronization is often dealt with using signal
processing rather than constrained coding techniques.

1.5.3 Multiple-spaced runlength constraints

We next consider the class of multiple-spaced RLL constraints. These constraints are char-
acterized by parameters (d, k, s), where d and k again define the minimum and maximum
allowable runlengths of 0’s, and s indicates that the runlengths of 0’s must be multiples of
s. In particular, s = 2 simply means that all runlengths of 0’s must be even.

Example 1.6 A graph presentation for the (2, 18, 2)-RLL constraint is shown in Fig-
ure 1.12.

The (d, k, 2)-RLL constraints were originally investigated by Funk [Funk82] in the context
of magnetic recording. More recently, and independently, (d, k, 2)-RLL constraints were
shown to play a natural role in magneto-optic recording systems. In a particular example of
such a system [HRuHC], [RuS89], not only was it detrimental to record odd run-lengths of
0’s between successive 1’s, but it was actually impossible! We explain this briefly as follows.

CHAPTER 1. CHANNELS AND CONSTRAINTS 14

0 1 2 3 4 15 16 17 18✲0 ✲0 ✲0 ✲0 0 ·· · ✲0 ✲0 ✲0 ✲0

✻ ❄1❄1❄1❄1

···

Figure 1.12: Graph presentation of the (2, 18, 2)-RLL constraint.

In this system, the recording medium can be magnetized only when it is heated above a
certain threshold temperature. The heat is supplied by a laser, and the magnetization by a
sinusoidally varying background magnetic field with constant frequency and amplitude.

The period of the field is twice the bit period T . The laser fires only at peaks (positive
or negative) of the field. When it fires it marks a portion of the track with one magnetic
polarity or the other (see Figure 1.13). In the figure, the cross-hatched regions indicate one

�

�

�

� �

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

� �

�

�

� �

�

�

�

�

�

�

�

�
�

�

�

� �

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

� �

�

�

�

00 00 00 00 00 00 00 001 1 1 00 0000 00 000011

Clock

Field, fB

Laser

Data

Actual Domains

Idealized Domains

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 1.13: A magneto-optic recording system.

polarity and the blank regions indicate the opposite polarity. After the laser fires, it must
next fire either T seconds later or 2T seconds later. In other words, the laser may skip
one clock cycle but can never skip two consecutive clock cycles (the disk velocity is set so
that there is enough overlap between marks that the track is continuously written). Thus,

CHAPTER 1. CHANNELS AND CONSTRAINTS 15

a magnetic transition occurs when and only when the laser does not skip a clock cycle. So,
if a magnetic transition is caused by firing the laser at bit positions i−1 and i, and the next
magnetic transition is caused by firing the laser at bit positions i+k and i+k+1, then k
must be even. If we view the recorded sequence as 1000 . . .0001, where the first 1 is at bit
position i and the next 1 is at bit position i+k+1, then the number of intervening 0’s is k,
an even number.

Data is read by employing the laser in a lower power mode to reflect light off the medium,
instead of magnetizing the medium. The magnetic polarities, and therefore the magnetic
transitions, can be determined from the reflected light by exploiting a phenomenon known as
Kerr rotation. A prototype for this type of magneto-optical recording system, that employs
the (2, 18, 2)-RLL constraint, was built by IBM [HRuHC], [RuS89], [Weig88]. For more
background on optical recording, the reader is referred to [Bouw85], [Heem82], [Imm91,
Ch. 2], [Pohl92].

1.5.4 Spectral-null constraints

So far, we have focused on binary sequences, mainly because runlength constraints are natu-
rally defined on binary transition sequences. However, some constraints are naturally defined
directly on the sequences of magnetic polarities that are actually recorded. We use the bipo-
lar alphabet {+1,−1}, often denoted simply {+,−}, for these sequences, i.e., one polarity
is represented by +1 and the opposite polarity is represented by −1. When we want to
emphasize that a bipolar sequence represents a sequence of polarities, we call it a polarity
sequence.

We say that a constrained system of bipolar sequences has a spectral null at a (normalized)
frequency f = m/n if there exists a constant B such that for all sequences w = w0w1 . . . wℓ−1

that satisfy the constrained system and 0 ≤ i ≤ i′ < ℓ we have

∣∣∣∣∣∣

i′∑

s=i

wse
−2πsm/n

∣∣∣∣∣∣
≤ B , (1.1)

where =
√
−1 [MS87], [Pie84], [YY76] (the actual frequency is given by f/T , where T

is the bit period). There are other equivalent ways to express this condition in terms of a
power spectral density [Sklar88].

Sequences with a spectral null at f = 0, often called dc-free or charge-constrained se-
quences, have been used in many magnetic tape recording systems employing rotary-type
recording heads, such as the R-DAT digital audio tape systems. Related constraints are
imposed in optical recording to reduce interaction between the recorded data and the servo
system, and also to allow filtering of low-frequency noise resulting from finger-prints [Imm91,
Ch. 2]. The dc-free constraint is also used in communication systems, where low frequency

CHAPTER 1. CHANNELS AND CONSTRAINTS 16

signals tend to be distorted; this includes cable communication lines [GHW92, sec. 4.8.1] as
well as fiber optic links [WF83].

When f = 0, the maximum value of the left-hand side in (1.1) for a given sequence
w = w0w1 . . . wℓ−1 is called the digital sum variation (DSV) of the sequence. The DSV of w
can also be written as

max
0≤i≤i′<ℓ

∣∣∣
i′∑

s=i

ws

∣∣∣ =
(
max

−1≤r<ℓ

r∑

s=0

ws

)
−
(
min

−1≤r<ℓ

r∑

s=0

ws

)
,

which is the largest difference between any two sums that are computed over prefixes of
the sequence (a sum over an empty set being regarded as zero). The larger the value of
B, the less reduction there will be in the spectral content at frequencies approaching the
spectral null frequency f = 0. The set of all sequences with DSV at most B is a constrained
system called the B-charge constraint ; it is presented by the labeled graph of Figure 1.14
(see Problem 1.8).

0 1 2 B
✲+

✛
−

✲+
✛
−

✲+
✛
−

· · · ✲+
✛
−

Figure 1.14: B-charge constraint.

Example 1.7 Consider the following sequence w = w0w1 . . . w20 over {+1,−1}, where
we have also computed the sums

∑i
s=0ws for 0 ≤ i < 21:

wi : + + + − − + + + − − − − − + + + − − − − +

i∑

s=0

ws : 1 2 3 2 1 2 3 4 3 2 1 0 -1 0 1 2 1 0 -1 -2 -1

We have

max
0≤i≤i′<21

∣∣∣
i′∑

s=i

ws

∣∣∣ =
(

max
−1≤r<21

r∑

s=0

ws

)
−
(

min
−1≤r<21

r∑

s=0

ws

)
= 4− (−2) = 6 .

Therefore, the DSV of the sequence w is 6 (see also Figure 1.18 below).

Graphs presenting constraints with spectral nulls at rational sub-multiples of the sym-
bol frequency are described in [MS87]. Higher-order spectral-null constraints, which fur-
ther restrict the spectral content in the vicinity of spectral-null frequencies, are discussed
in [ImmB87], [KS91a], [EC91], [RSV94], [MPi89].

CHAPTER 1. CHANNELS AND CONSTRAINTS 17

1.5.5 Combined charge–runlength constraints

In some applications it is desirable to impose both runlength constraints and charge-
constraints. Recall that runlength constraints are expressed in the setting of binary transition
sequences, and charge-constraints are expressed in the setting of bipolar polarity sequences.
So, in order to describe a combined charge-runlength constraint, we must have a way of
converting from one setting to the other. Formally, this is done as follows.

A bipolar polarity sequence w = w0w1w2 · · · is transformed into a binary transition
sequence z = z0z1z2 · · · by the transformation

zi = |wi − wi−1|/2. (1.2)

Note that zi = 1 if and only if wi 6= wi−1, equivalently if and only if there is a transition in
magnetic polarity.

Conversely, a binary transition sequence z is transformed into a bipolar polarity sequence
w through an intermediate binary sequence x = x0x1x2 · · · according to the rules

xi = xi−1 ⊕ zi and wi = (−1)xi , (1.3)

where ⊕ denotes addition modulo 2. The value of x−1 is set arbitrarily to either 0 or 1,
thereby giving rise to two sequences w which are the same up to overall polarity inversion.
Observe that wi 6= wi−1 if and only if zi = 1.

The transformation defined by equation (1.3) is called precoding because it describes how
a binary sequence, such as a runlength limited sequence, must be converted into pulses of
electrical current before being written on the medium. Naturally then, the transformation
defined by (1.2) is called inverse precoding.

The B–(d, k)-charge–RLL (CRLL) constraint is the set of binary sequences z that satisfy
the (d, k)-RLL constraint with the additional restriction that the corresponding precoded
bipolar sequence w has DSV no larger than B.

Example 1.8 Consider the labeled graph in Figure 1.15. It can be verified (Prob-
lem 1.10) that any precoding of each sequence that can be generated by that graph satisfies
the 6-charge constraint. Conversely, every sequence that satisfies the 6-charge constraint is
a precoding of a sequence that can be generated by the graph in Figure 1.15. Therefore,
the 6–(1, 3)-CRLL constraint consists of all binary sequences that can be generated simul-
taneously by the labeled graphs in Figure 1.15 and Figure 1.16. In Section 2.4.3, we will
show how, given any two labeled graphs, to construct a third labeled graph that presents
the constraint defined by both graphs simultaneously.

The 6–(1, 3)-CRLL and 6–(1, 5)-CRLL constraints have found application in commercial
tape recording systems [Patel75], [MM77], [Mill77].

CHAPTER 1. CHANNELS AND CONSTRAINTS 18

5 4 3

0 1 2

❄

1

❄

1

❄

1
✻

1
✻

1
✻

1

✲0 ✲0

✛
0

✛
0

✛

0

Figure 1.15: Graph presentation of precoding of the 6-charge constraint.

0 1 2 3✲0 ✲0 ✲0

✻ ❄1❄1❄1

Figure 1.16: Graph presentation of the (1, 3)-RLL constraint.

1.5.6 Constraints for PRML

Within the last decade, magnetic recording systems using digital signal processing methods
have appeared on the scene. These systems typically employ a scheme, denoted PRML,
based on partial-response (PR) signaling, with maximum-likelihood (ML) sequence detec-
tion. See [Cid92], [Dol89], [DMU79], [KobT70], [WoodP86]. In many recording applications,
PRML has replaced peak detection.

In PRML systems it proves to be desirable to use binary sequences which satisfy not only
a “global” k constraint, denoted G, but also a separate “interleaved” k constraint, denoted
I, on the even index and odd index subsequences. The G constraint plays exactly the same
role as the k constraint, used for timing control, as in Section 1.2. The I constraint aids
the method (called Viterbi detection) by which data is retrieved in a PRML system. The
data stream is divided into its two sub-strings (the even index and odd index), and each is
retrieved separately. It turns out that an I constraint reduces the probability of long delay
in the output of the Viterbi detector. See section 1.6.2 for more detail on PRML and the
reasons for the I constraint.

To help distinguish the PRML (G, I) constraints from the (d, k)-RLL constraints. we
will use the notation (0,G/I); the 0 may be thought of as a d = 0 constraint, emphasizing
that interference between adjacent transition responses is now acceptable. An example of a
sequence satisfying the (0, 4/4) constraint is

001000010010001001100 .

CHAPTER 1. CHANNELS AND CONSTRAINTS 19

We can represent (0,G/I) constraints by labeled graphs based on states which reflect the
three relevant quantities, the number g of 0’s since the last occurrence of 1 in the sequence
and the numbers a and b which denote the number of 0’s since the last 1 in the two interleaved
sub-strings. We name the states by pairs (a, b), where a is the number of 0’s in the interleaved
sub-string containing the next to last bit, and b is the number in the sub-string containing
the last bit. Note that g is a function of a and b, denoted g(a, b):

g(a, b) =

{
2a+ 1 if a < b
2b if a ≥ b

.

In the (a, b) notation, the set of states V for a (0,G/I) constraint is given by

V = {(a, b) : 0 ≤ a, b ≤ I and g(a, b) ≤ G}

and the labeled edges between states are given by

(a, b)
0−→ (b, a + 1) , provided (b, a + 1) ∈ V

(a, b)
1−→ (b, 0) .

Example 1.9 A graph presentation for the (0,G/I) = (0, 4/4) constraint is shown
in Figure 1.17, where state labels (omitted) agree with integer grid coordinates, starting
with (0, 0) at the lower left. Only the 0-labeled edges are shown in the figure; the reader can
fill in the 1-labeled edges.

• • • • •

• • • • •

• • • • •

• •

• •

✻
✲ ❥ s ⑦

❑ ✻
✲ ❥ s

❪ ❑

♦ ❪

Figure 1.17: PRML (0,G/I) = (0, 4/4) constraint: 0-labeled edges in graph presentation.

CHAPTER 1. CHANNELS AND CONSTRAINTS 20

1.6 Background on magnetic recording

This section is not essential to the remainder of the text. It is intended for those readers
who might be interested in understanding in a little more detail the signal processing meth-
ods used in digital magnetic recording and the motivation for introducing the constraints
described in Sections 1.2 and 1.5.6.

1.6.1 Peak detection

In this section we elaborate on the description of the magnetic recording process given in
Section 1.1.

Recall that in magnetic recording systems, the magnetic material at a given position
along a track can be magnetized in one of two possible, opposing directions. The normalized
input signal applied to the recording head in this process can be thought of as a two-level
waveform w(t) which assumes the values +1 and −1 over consecutive time intervals of bit
period T . In the waveform, the transitions from one level to another, which effectively carry
the digital information, are therefore constrained to occur at integer multiples of the bit
period T , and we can describe the waveform digitally as a sequence w = w0w1w2 · · · over the
bipolar alphabet {+1,−1}, where wi is the signal amplitude in the time interval (iT, (i+1)T].

Example 1.10 Figure 1.18 shows an input waveform that corresponds to the se-
quence w of Example 1.7. The figure also contains the integral of w(t) over time. Since
∫ (i+1)T
u=0 w(u)du =

∑i
s=0ws, one sees from the figure that the DSV of w is indeed 6.

Denote by 2h(t) the output signal (readback voltage), in the absence of noise, corre-
sponding to a single transition from, say, −1 to +1 at time t = 0. If we assume that the
input-output relationship of the digital magnetic recording channel is linear, then the output
signal y(t) generated by the waveform represented by the sequence w is given by:

y(t) =
∞∑

i=0

(wi − wi−1) h(t− iT) ,

with w−1 = 1. Note that the “derivative” sequence w′ of coefficients w′
i = wi−wi−1 consists

of elements taken from the ternary alphabet {0,±2}, and the nonzero values, corresponding
to the transitions in the input signal, alternate in sign.

A frequently used model for the transition response h(t) is the function

h(t) =
1

1 + (2t/τ)2
,

CHAPTER 1. CHANNELS AND CONSTRAINTS 21

+ + + − − + + + − − − − − + + + − − − − +

✲ t

✻

wi

w(t)

−1

+1

✲ t

✻

∫ t
u=0w(u)du

5T 10T 15T 20T

−2
−1
0

+1

+2

+3

+4

Figure 1.18: Input waveform w(t) and integral
∫ t
u=0w(u)du that correspond to a sequence

w.

often referred to as the Lorentzian isolated-step response. The output signal y(t) is therefore
the linear superposition of time-shifted Lorentzian pulses with coefficients of magnitude 2
and alternating polarity. Provided that the density of transitions—reflected in the so-called
density ratio τ/T—is small enough, the locations of peaks in the output signal will closely
correspond to the locations of the transitions in the recorded input signal. With a syn-
chronous clock of period T , one could then, in principle, reconstruct the ternary sequence
w′ and the recorded bipolar sequence w.

Recall that the peak detector determines the location of peaks in the (possibly noisy)
output signal whose amplitude exceeds a pre-specified level. As described earlier, runlength
constraints are desirable for mitigating the effects of inter-symbol interference and improving
the performance of timing recovery schemes. Specifically, the runlength constraint on binary
transition sequences z = z0z1z2 · · · can be translated directly into the constraint on w′ by
means of precoding (1.3) above:

w′
i = wi − wi−1 = (−1)xi−1((−1)zi − 1) = −(−1)xi−1 · 2 zi .

So,
|w′

i| = 2 zi,

and so the runlength constraints on w′ become: the sequence w′ contains at least d symbols
and at most k symbols of value zero between successive nonzero values.

CHAPTER 1. CHANNELS AND CONSTRAINTS 22

1.6.2 PRML detection

At high recording densities, the PRML (partial response maximum likelihood) approach to
be discussed here has been shown to provide increased reliability relative to peak detection.
The motivation for using (0,G/I) constraints can be found in the operation of the PRML
system, which we now describe in simplified terms. The key difference between PRML
and peak detection systems is that PRML reconstructs the recorded information from the
sequence of sample values of the output signal at times t = 0, T, 2T, 3T, . . . , rather than from
individual peak locations. Denote by sinc(x) the real function (sin(πx))/(πx). The PRML
system uses an electronic filter to transform the output pulse 2h(t) resulting from an isolated
transition at time t = 0 into a modified pulse 2f(t) where

f(t) = sinc
(
t

T

)
+ sinc

(
t− T
T

)
. (1.4)

Note that at the consecutive sample times t = 0 and t = T , the function f(t) has the
value 1, while at all other times which are multiples of T , the value is 0. This particular
partial-response filtering is referred to as “Class-4” [Kretz67]. Through linear superposition,
the output signal y(t) generated by the waveform represented by the bipolar sequence w is
given by:

y(t) =
∞∑

i=−1

(wi − wi−1) f(t− iT) ,

where we set w−2 = w−1 = w0. Therefore, at sample times, the Class-4 transition response
results in controlled interference, leading to output signal samples yi = y(iT) that, in the
absence of noise, assume values in {0,±2}. Hence, in the noiseless case, the recorded bipo-
lar sequence w can be recovered from the output sample values yi = y(iT), because the
interference between adjacent transitions is prescribed. Therefore, unlike the peak detection
system, PRML does not require the separation of transitions.

The (0,G/I) constraints arise from the following considerations. Recall that the param-
eter G is comparable to the k constraint in peak detection constraints, ensuring effective
operation of the PRML timing recovery circuits, which typically rely upon frequent occur-
rence of nonzero output samples. Specifically, the G constraint represents the maximum
number of consecutive zero samples allowed in the sample sequence y0y1y2 · · ·.

The parameter I is intimately related to the maximum-likelihood detection method used
in PRML. Before discussing the ML detection algorithm, it is useful to rewrite the output
signal as

y(t) =
∞∑

i=0

(wi − wi−2) sinc
(
t− iT
T

)
,

where, we recall, w−2 = w−1 = w0. This form can be obtained by simple arithmetic from
the original expression for the Class-4 transition response (1.4). This implies the following
relation between the noiseless output samples y0y1y2 · · · and the input bipolar sequence w:

yi = wi − wi−2 , i ≥ 0 .

CHAPTER 1. CHANNELS AND CONSTRAINTS 23

A trellis diagram presenting the possible output sample sequences is shown in Figure 1.19.
Each state is denoted by a pair of symbols that can be interpreted as the last pair of inputs,
wi−2wi−1. There is an edge connecting each pair of states wi−2wi−1 and wi−1wi, and the label
of this edge is yi = wi − wi−2.

•
−−

i−1
•
−−

i
•
−−

i+1
•
−−

i+2

•
−+

•
−+

•
−+

•
−+

•
+−

•
+−

•
+−

•
+−

•
++

•
++

•
++

•
++

✲··· ❘

✯❥

✯❥

✲···
✒

✲0

✯

2

✯
0

✒

2 ❥

−2

❥
0

❘

−2

✲0

✲0

✯

2

✯
0

✒

2 ❥

−2

❥
0

❘

−2

✲0

✲0

✯

2

✯
0

✒

2 ❥

−2

❥
0

❘

−2

✲0

✲ ·· ·✯

✯✒

❥
❘

✲ ·· ·❥

Figure 1.19: Trellis diagram for Class-4 output sequences.

The iterative ML detection algorithm is based upon the technique of dynamic program-
ming in an embodiment of the Viterbi algorithm, familiar from decoding of convolutional
codes. As shown by Forney [For72] and Kobayashi [Koba71], the Viterbi algorithm is an
optimal detector for partial-response (in particular, Class-4) output-signal sample sequences
in the presence of additive white Gaussian noise.

The behavior of the ML detector can be described in terms of the trellis diagram in
Figure 1.19. Denote by r0r1r2 · · · the sequence of (possibly noisy) received samples. Assume
an initial state u = w−2w−1 is specified. For each state v = wℓ−2wℓ−1 in the diagram that can
be reached from u by a path of length ℓ, the ML detector determines the allowable noiseless
output sample word ŷ0ŷ1 . . . ŷℓ−1, generated by a path of length ℓ from u to v, that minimizes
the squared Euclidean distance

ℓ∑

i=0

(ri − ŷi)2 .

The words so determined are referred to as survivor words.

The representation of the output samples as yi = wi − wi−2 permits the detector to
operate independently on the output subsequences at even and odd time indices. Note that,
within each interleave, the nonzero sample values yi must alternate in sign. Figure 1.20
shows a trellis diagram presenting the possible sequences in each of the interleaves.

There are several formulations of the Viterbi algorithm applied to this system. See [FC89],
[Koba72], [SW91], [WoodP86], [Ze87]. The motivation for the I constraint is clear from the
following description of the ML detection algorithm, essentially due to Ferguson [Ferg72].

CHAPTER 1. CHANNELS AND CONSTRAINTS 24

•
−

i−1
•
−

i
•
−

i+1
•
−

i+2

•+ •+ •+ •+

✲··· ❥

✲··· ✯

✲0

✯

2

✲0

❥

−2

✲0

✯

2

✲0

❥

−2

✲0

✯

2

✲0

❥

−2

✲ ·· ·✯

✲ ·· ·❥

Figure 1.20: Trellis diagram for each of the interleaves.

It can be interpreted in terms of a “dynamic threshold detection scheme,” as described by
Wood [Wood90]. We will outline the detector operation on the subsequence of received
samples at even time indices. The procedure for the odd time indices is entirely analogous.

The detector may operate in one of two modes, denoted by the variable m which takes
values in {+1,−1}, according to whether the detector expects the next non-zero sample
value to be positive or negative. In mode m = +1 (respectively, m = −1), the detector uses
a variable R to store the value of the largest (respectively, smallest) sample since the last
change of the mode variable m. It also maintains a variable J to store the time index i of
the largest (respectively, smallest) sample value since the last change of the mode m.

The detector mode and variables are initialized by setting m ← +1, R ← −∞, and
J ← −1.

At each successive time instant i = 2j, j ≥ 0, the detector takes one of three possible
actions, as determined by m, R, J , and the new noisy sample r2j :

1. If m · r2j ≥ m · R, then do ŷJ ← 0, R← r2j , and J ← 2j;

2. else if m ·R − 2 < m · r2j < m · R, then do ŷ2j ← 0;

3. else if m · r2j ≤ m · R− 2, then do ŷJ ← 2m, R← r2j , J ← 2j, and m← −m.

Case 1 corresponds to the situation in which the survivor words at time 2j for both states
in Figure 1.20 are obtained by extending the survivor word at time 2(j−1) for state u = −m.
Case 2 corresponds to the situation in which the survivor word at time 2j for each state u
is the extension of the survivor word at time 2(j−1) for state u. Finally, case 3 corresponds
to the situation in which the survivor words at time 2j for both states are obtained by
extending the survivor word at time 2(j−1) for state u = m.

Cases 1 and 3 correspond to “merging” of survivor paths, thereby determining the esti-
mated value ŷJ for the channel output at the index of the previous merge. In the noiseless
case, the merges occur when the output sample value is either +2 or −2. Case 2, on the
other hand, defers the decision about this estimated value. In the noiseless case, this arises
when the output sample value is 0. Since the latter case could arise for an arbitrary number
of successive time indices, one could encounter a potentially unbounded time span between

CHAPTER 1. CHANNELS AND CONSTRAINTS 25

time J and the generation of the estimated channel output ŷJ—even in the noiseless case.
The I constraint on the maximum runlength of consecutive zero samples in each interleave of
the output sequence is introduced to reduce the probability of such a long delay (or eliminate
the possibility in the noiseless case).

In analogy to the RLL constraints, the G and I constraints on a binary sequence z
translate directly to the corresponding constraints on the ideal output sample sequences
y0y1y2 · · ·. This is accomplished by applying precoding to each of the interleaves of z. This
interleaved precoding transforms z into a bipolar polarity sequence w via an intermediate
binary sequence x according to the rules

xi = xi−2 ⊕ zi and wi = (−1)xi ,

where x−2 = x−1 = 0 and, as before, ⊕ denotes addition modulo 2. The constraint
on the runlengths of consecutive 0’s in the output sample sequence and in the even/odd
subsequences are then reflected in corresponding (0,G/I) constraints on the binary sequences
z.

1.7 Coding in optical recording

We describe here the coding methods used in two optical-recording applications: the compact
disk (CD) [Imm91, Ch. 2] and digital versatile disk (DVD) [Imm95b]. We start by a very
brief and superficial description of the physical characterization of the stamped compact
disk. For a much more detailed information, see [Bouw85, Ch. 7], [Heem82], [Imm91, Ch. 2],
[IO85], and [Pohl92, Chapter 3].

1.7.1 The compact disk

The stamped disk consists of a round metal film that is coated by a transparent plastic
material. The latter serves as a magnifying glass for the laser light that is beamed at the
bottom side of the disk (i.e., the side without the label), and the reflection from the metal
surface is received during readback by a light detector. Data is recorded by imprinting on the
top side of the metal a sequence of pits along tracks, starting from the inner circumference
to the outer (so, from the bottom side of the film, the pits seem as bumps). The pits are
of varying lengths, and so are the gaps in between them. The lengths of the pits and the
gaps range between 3T and 11T , where T ≈ .2777µm. Figure 1.21 shows portions of three
adjacent tracks on the metal surface, with the lengths of the shortest and longest pits, the
width of the pits, the distance between tracks (the track pitch), and the diameter of the
laser spot (seen in the middle track). The lengths of the pits and gaps are determined by
a (2, 10)-RLL constrained sequence, which is shown for the upper track (“Track i”) at the

CHAPTER 1. CHANNELS AND CONSTRAINTS 26

top of the figure, along with a profile of the upper track as it would have appeared from the
thin side of the disk, had the disk been cut along that track.

010010000000100000100010000000000100000001000001000000

Track i:

Track i−1:

Track i−2:

❄
✻

✻

❄

❄

✻

.12µm

1.6µm

.5µm

✲✛ ✲ ✛ ✲✛

3.054µm .833µm 1.7µm

Figure 1.21: Tracks in the compact disk.

The height of the bumps (i.e, the depth of the pits) is approximately one-quarter of the
wavelength of the laser beam (as the beam passes through the transparent plastic material).
Therefore, a beam reflected from the bumps will destructively interfere with a reflection from
the surrounding ‘land.’ During readback, a laser beam is aimed at a particular track and
the light detector receives the reflection as the disk rotates. In this process, the bumps will
appear darker to the light detector, compared to the gaps.

The parameter T ≈ .2777µm has been selected so that different pit (or gap) lengths can
be distinguished in the received signal. The parameters d = 2 and k = 10 have been set
due to reasons akin to those that exist in magnetic recording. Specifically, pits or gaps are
constrained not to be shorter than (d+1)T = 3T , or else the detector might have missed
them (note that the diameter of the laser spot is still more than twice this shortest length).
The upper bound of (k+1)T = 11T is imposed to prevent any clock drift and allow clock
synchronization. This requirement is particularly important in optical recording: since the
linear density along a track (i.e., the parameter T) is fixed regardless of the location of the
track, the angular velocity of the disk needs to be adjusted so that the linear velocity remains
the same for all tracks. Such an adjustment is possible only if the clock can be extracted
from the readback signal.

1.7.2 EFM code at rate 8 : 16

We next describe a rate 8 : 16 encoder for the (2, 10)-RLL constraint. This rate has been
selected so that it matches the sub-division of the encoded bit stream into bytes.

CHAPTER 1. CHANNELS AND CONSTRAINTS 27

Consider words of length 14 that satisfy the (2, 10)-RLL constraint, with the additional
property that the first and last runlengths in each word are at most 8. It turns out that there
are exactly 257 words of length 14 in the (2, 10)-RLL constraint that satisfy this property.
We construct a table T that consists of 256 of those words.

A possible encoding strategy would be to encode each input byte s ∈ {0, 1}8 into the
respective entry, T[s], in the table T. Yet, the sequence obtained by the concatenation of
such words may violate the constraint. One possible solution is adding a fixed number of
merging bits in between the generated words. Those merging bits will be used to ‘glue’ the
words correctly.

A simple check shows that two merging bits are sufficient to guarantee that the sequence
of words satisfies the (2, 10)-RLL constraint. Table 1.2 shows an assignment of merging bits,
depending on (the range of values of) the last runlength of the previously-encoded 14-bit
word and (the range of values of) the first runlength of the 14-bit word that is currently
encoded.

Last Encoded First Runlength in T[s]
Runlength 0 1–7 8

0 00
1 00 01
2–8 00 10

Table 1.2: Merging bits for a (2, 10)-RLL encoder.

Table 1.2 thus suggests an encoding process which can be represented as a rate 8 : 16
encoder with three states. Those states are named 0, 1, and 2–8, with each name standing
for (the range of values that contains) the last runlength of the previously-encoded 16-bit
codeword. Given an input byte s ∈ {0, 1}8, the current codeword is obtained by preceding
the entry T[s] in T by two merging bits; those bits depend on the current encoder state and
the first runlength of T[s] according to Table 1.2. The next encoder state in then determined
by the last runlength in T[s].

We refer to the resulting encoder as a 3-state eight-to-fourteen modulation code at rate 8 :
16, where the numbers 8 and 14 refer to the lengths of the addresses and entries, respectively,
of T. This code will be denoted hereafter by 3-EFM(16), where 3 stands for the number of
states and 16 is the codeword length.

The 3-EFM(16) code has a very simple sliding-block decoder that reconstructs each
input byte from the corresponding 16-bit codeword, without requiring the knowledge of
any previous or future codewords. Specifically, the decoder deletes the first two bits of the
codeword, and the address in T of the resulting 14-bit word is the decoded input byte.

CHAPTER 1. CHANNELS AND CONSTRAINTS 28

1.7.3 Dc control

While Table 1.2 lists one possible pair of merging bits for each encoder state and word in T,
in certain cases there is a freedom of selection of those bits. Specifically, it can be verified
that among the 257 words that can be taken as entries in T, there are 113 words in which
the first runlength is between 2 and 7. When any of these words is generated from state 1 in
the 3-EFM(16) code, then we could select 01 as merging bits instead of 00. In other words,
we can invert the second bit of the generated codeword in this case without violating the
constraint.

This freedom of inserting a bit inversion allows to reduce the digital sum variation (DSV)
of the recorded sequence (see Section 1.5.4). We demonstrate this in the next example.

Example 1.11 Consider the (2, 10)-RLL constrained sequence

z1 = 010010000000100000100 ,

which is precoded into the signal w1(t), as shown in Figure 1.22 (refer to Section 1.5.5 to the
precoding rule (1.3), and also to Example 1.7 and Figure 1.18). The value of the integral∫ t
u=0w1(u)du ranges between −1 and +7 and, therefore, the DSV of the recorded signal
equals 8.

Suppose now that the eighth bit in z1 is inverted to form the sequence

z2 = 010010010000100000100 .

Denoting by w2(t) the respective recorded signal, the integral
∫ t
u=0w2(u)du now ranges be-

tween −3 and +3, thereby reducing to DSV to 6.

As explained earlier, the recording in optical media is based on changing the reflectivity
of the recording surface. During readback, the surface is illuminated by a laser beam and
the readback signal is obtained by measuring the amplitude of the reflection beam: high
reflection (‘bright surface’) means a value +1, while low reflection (‘dark surface’) stands for
−1. To determine whether the reflection is high or low, the detector needs to be calibrated
to the zero level (referred to as the ‘dc,’ or ‘direct current’ level) of the signal. To this end,
the recorded signal is constrained to have an average value close to zero over a given window
length. This, in turn, allows the required calibration simply by computing the average of
the amplitude of the reflected beam over a given period of time.

In Section 1.5.5, we introduced the combined charge-runlength constraints. If a B–(2, 10)-
CRLL encoder were used for some value B, then, certainly, we would have an average value
close to zero for every individual constrained sequence generated by the encoder. However,
a small value for B would force the encoding ratio to drop below 8/16 = .5, while a large
value of B would result in a too complex encoder.

CHAPTER 1. CHANNELS AND CONSTRAINTS 29

0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

✲ t

✻
w1(t)

−1

+1

0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0

✲ t

✻
w2(t)

−1

+1

✲ t

✻

−3
−2
−1
0

+1

+2

+3

+4

+5

+6

+7
∫ t
u=0w1(u)du

s

∫ t
u=0w2(u)du

✰

Figure 1.22: Effect of inverting a bit on DSV.

On the other hand, for the purpose of training on the zero level of the signal, it would
be possible to weaken the charge constraint so that the DSV would be bounded over a
sufficiently long sequence with very high probability (yet not necessarily for every individual
sequence), where the probability is computed assuming (say) a uniform distribution over the
sequences of input bytes. Indeed, the freedom of selecting the merging bits provides such
a dc (or DSV) control: we will show in Section 4.7 (Example 4.12) that under a uniform
distribution on the input bytes, once in approximately every ten input bytes (on average),
we will be at state 1 with the freedom of selecting either 00 and 01 as merging bits

The freedom of selecting the merging bits can be increased by refining the definition of
the states in the 3-EFM(16) code and designating a separate state for each possible value of
the last runlength in a codeword. That is, instead of having only three states, 0, 1, and 2–8,
we will have nine states that will be denoted 0 through 8; so, an input byte s will lead the
encoder to state i, where i is the last runlength of T[s]. The resulting encoder will be called

CHAPTER 1. CHANNELS AND CONSTRAINTS 30

a 9-EFM(16) code.

To see the advantage of the 9-EFM(16) code, consider the following example. Suppose
that while at state 2–8 in the 3-EFM(16) code, the input byte s is such that T[s] starts with
a runlength 1. By Table 1.2, the merging bits in this case are 10, and, since it is possible to
enter state 2–8 after generating a codeword that ends with a runlength 8, we cannot allow
any other values for the merging bits in this case. On the other hand, if each of the runlength
values 2 through 8 leads to a separate state, then, while at any of the states 2 through 7,
the merging bits 00 are also admissible for the mentioned byte s.

Clearly, the advantage of the 9-EFM(16) code comes with a price: this code is somewhat
more complex than the 3-EFM(16) code. Table 1.3 presents the possible selection of merging
bits for each state in the 9-EFM(16) code and each first runlength in T[s].

First Runlength in T[s]
State 0 1 2 3 4 5 6 7 8

0 00
1 00 00, 01 01
2 00 00, 10 00, 01, 10 01, 10
3 00 00, 10 00, 01, 10 01, 10
4 00 00, 10 00, 01, 10 01, 10
5 00 00, 10 00, 01, 10 01, 10
6 00 00, 10 00,01,10 01, 10
7 00 00, 10 01, 10
8 00 10 01, 10

Table 1.3: Admissible merging bits in the 9-EFM(16) code.

While the freedom of selecting the merging bits in the 9-EFM(16) code could be sufficient
for calibrating the zero level of the readback signal, charge constraints are required in optical
recording also for the suppression of the power spectral density of the recorded signal at the
low-frequency range. Such a suppression is necessary so that low-frequency control signals
and noise can be filtered out without distorting the recorded signal (see [Imm91, p. 27]).

It turns out that the dc control that is attainable by the 9-EFM(16) code does not
provide sufficient reduction of the power spectral density at the low-frequency range. This
was resolved in the compact disk by inserting three merging bits instead of two, resulting in
the (proper) EFM code , at rate 8 : 17, which we denote by EFM(17) [Imm99, Section 14.4.1].

The solution in the DVD was different. Here, the encoding is not based on merging
bits; instead, the encoder has four states, and each state has its own encoding table that
maps input bytes into 16-bits codewords. In addition, 88 out of the 256 input bytes can be

CHAPTER 1. CHANNELS AND CONSTRAINTS 31

encoded at each state into two possible codewords, thereby introducing freedom that allows
sufficient suppression of the low-frequency range of the power spectral density (see [Imm95b]
and [Imm99, Section 14.4.2]). The resulting encoder, called the EFMPlus code, has rate
8 : 16. Yet, the decoding of an input byte requires the knowledge of two consecutive 16-
bit codewords, compared to the EFM(16) and the EFM(17) codes where one codeword is
sufficient. Alternative coding schemes at rate 8 : 16 have been suggested where the desired
dc control can be achieved with a decoding window length of one codeword only; see [Roth00]
and [Imm99, Section 14.4.4].

1.8 Two-dimensional constraints

Constrained systems, as we have defined them so far, are sets of sequences; each sequence
can be viewed as a one-dimensional stream of symbols in a one-dimensional space. In an
analogous way, one can define constraints on two-dimensional (or even higher-dimensional)
arrays.

Example 1.12 Consider the set of all two-dimensional arrays that satisfy the following
condition: whenever one sees a 0 in the array, at least one of its four neighbors (up, down,
left or right) is also a 0; in other words, the pattern:

1
1 0 1

1
(1.5)

is forbidden.

One application of this kind of constraint occurs in holographic recoding systems, as
shown in Figure 1.23 [HBH94]. In such a system, a laser illuminates a programmable array
called a spatial light modulator (SLM). The SLM is an array of shutters, each of which can be
open or closed; the open shutters allow light to pass through, while the closed shutters prevent
light from passing through. So, if a two-dimensional array of 0’s and 1’s is programmed onto
the SLM, illumination of the SLM by the laser will create an optical representation, called
the object beam, of the array. The object beam is then focused through a lens. A reference
beam, which is a simple plane wave propagating at some angle with respect to the medium,
interferes with the focused object beam at a spot on the recording medium and writes a
pattern (the hologram).

The object beam can be reproduced at a later time by illuminating the medium with the
same reference beam that was used to record it; light from the reproduced object beam is
passed through a lens and then collected on a photosensitive array of detectors, known as a
charge coupled device (CCD). In this way, the original binary array of data can be recovered.

CHAPTER 1. CHANNELS AND CONSTRAINTS 32

CCD Array

Holographic Medium

SLM
Reference Angles

Figure 1.23: A holographic data storage system (figure taken from [HBH94]).

By varying the angle of propagation of the reference beam, several holograms can be
recorded in the same physical spot, in a scheme known as angular multiplexing. Since many
holograms can be recorded in one spot, holographic data storage holds the promise of very
high data density. Since an entire array of data can be retrieved all at once, it also holds the
promise of very high data rate.

Now, inter-pixel interference (IPI), the two-dimensional analog of inter-symbol interfer-
ence, tends to occur when a 0 is surrounded by 1’s; specifically, IPI may be provoked by the
pattern (1.5) above. Since IPI degrades the performance of a holographic recording system,
it may be desirable to forbid such a pattern. The collection of N × N arrays which do not
contain the pattern (1.5) is a two-dimensional constrained system of arrays. It then becomes
important to find methods of encoding arbitrary binary sequences into such a constrained
system.

Recently, there has been a great deal of interest in coding for two-dimensional constrained
systems. While some of this has been specifically geared towards applications such as holo-
graphic recording (e.g., [AM98], [BM99], [KN99]) a great deal of it has been focused on
efforts to extend the general one-dimensional theory of constrained systems, as presented
in this text, to two dimensions (e.g., [KZ98], [RSW00]). At this point, the two-dimensional
theory is still sketchy. For instance, while we will see in Chapter 3 that there is an explicit
formula for the capacity of any one-dimensional constrained system, there is nothing like
this known in two dimensions.

CHAPTER 1. CHANNELS AND CONSTRAINTS 33

Problems

Problem 1.1 Any sequence z that satisfies the (d, k)-RLL constraint begins with a certain number,
j, of 0’s, where 0 ≤ j ≤ k. As a function of j, identify the states in Figure 1.3 from which z can be
generated.

Problem 1.2 Show that a sequence satisfies the (0, 1)-RLL constraint if and only if the inverted
sequence (obtained by changing each 0 to 1 and each 1 to 0) satisfies the (1,∞)-RLL constraint.

Problem 1.3 For given d and k, exhibit a list of exactly d+1 words that constitute a forbidden
list for the (d, k)-RLL constraint. Is d+ 1 the minimal size of such a list?

Problem 1.4 A binary sequence satisfies the asymmetric (d0, k0, d1, k1)-RLL constraint if it con-
sists of alternating runs of 0’s and 1’s such that the runlengths of 0’s lie in between d0 and k0 and
the runlengths of 1’s lie in between d1 and k1. Draw a graph presentation of the (1, 3, 2, 5)-RLL
constraint.

Problem 1.5 Change the assignment of input tags on the encoder in Figure 1.8 so that it has a
corresponding sliding-block decoder.

Problem 1.6 For a given (d, k)-RLL constraint and a given integer N , identify the sequences of
length N that satisfy the constraint and have maximal duty cycle (i.e., maximal percentage of 1’s).

Problem 1.7 Verify that the transformations, precoding (1.3) and inverse precoding (1.2), are
inverses of one another in the following sense:

1. the inverse precoding of the precoding of z is z;

2. the precoding of the inverse precoding of w is either w or the sequence obtained from w by
interchanging 1’s and −1’s.

Problem 1.8 Let w = w0w1w2 · · · be a sequence over the alphabet {+1,−1}. Show that w can
be generated by the labeled graph in Figure 1.14 starting at state j if and only if

− min
−1≤r<ℓ

r∑

s=0

ws ≤ j ≤ B − max
−1≤r<ℓ

r∑

s=0

ws .

Deduce that w satisfies the B-charge constraint if and only if it can be generated by the labeled
graph in Figure 1.14.

Problem 1.9 Show that Figure 1.24 generates all the sequences obtained by precoding, given by
formula (1.3), of sequences that satisfy the (1, 3)-RLL constraint. Draw the corresponding picture
for arbitrary d and k.

CHAPTER 1. CHANNELS AND CONSTRAINTS 34

3− 2− 1− 0−

0+ 1+ 2+ 3+

❥

−

❘

−

❄

−

❨

+

■

+

✻

+

✲+ ✲+ ✲+

✛
−

✛
−

✛
−

Figure 1.24: Graph presentation of precoding of the (1, 3)-RLL constraint.

Problem 1.10 Show that a sequence satisfies the 6-charge constraint if and only if it can be
obtained by precoding of a sequence generated by the labeled graph in Figure 1.15.

Problem 1.11 Fill in the edges labeled by 1 in the graph presentation Figure 1.17.

Problem 1.12 Construct a (finite) graph presentation of the constraint described in Example 1.5.

Problem 1.13 Let ℓ be a positive integer and let Z2ℓ denote the set of all sequences of length
2ℓ that satisfy the (1,∞)-RLL constraint. Define the mapping f : Z2ℓ → {+,−}2ℓ as follows:
f(z0, z1, . . . , z2ℓ−1) = w0w1 . . . w2ℓ−1, where for each i = 0, 1, . . . , ℓ−1, the values of w2i and w2i+1

depend on the values of z2i−1, z2i, and z2i+1 according to Table 1.4 (we assume that z−1 = 0).

z2i−1 z2i z2i+1 w2i w2i+1

0 0 0 − +
0 0 1 + +
0 1 0 + −
1 0 0 − −
1 0 1 + −

Table 1.4: Mapping for Problem 1.13.

1. Show that the mapping f is one-to-one.

2. Let w0w1 . . . w2ℓ−1 be an image of z0z1 . . . z2ℓ−1 under f . Show that for each i = 0, 1, . . . , ℓ−1,
2i+1∑

s=0

ws = 2z2i+1 .

3. Show that the images of f satisfy the 2-charge constraint.

CHAPTER 1. CHANNELS AND CONSTRAINTS 35

4. Let w = w0w1 . . . w2ℓ−1 be a sequence that satisfies the 2-charge constraint. Show that w is
an image under f if one of the following conditions holds:

(a) w2i 6= w2i+1 for every 0 ≤ i < ℓ, or else —

(b) if i is the first index such that w2i = w2i+1, then w2i = w2i+1 = +.

5. Deduce that the number of sequences of length 2ℓ that satisfy the 2-charge constraint is at
least—but no more than twice—the size of Z2ℓ.

Problem 1.14 (Enumeration of (d, k)-RLL sequences) Fix d and k to be integers 0 ≤ d ≤ k <∞,
and denote by x(ℓ) the number of words of length ℓ that satisfy the (d, k)-RLL constraint. Also,
denote by x0(ℓ) the number of such words that do not contain any 1’s among their first d bits.
Define x(ℓ) = x0(ℓ) = 0 for ℓ < 0 and x(0) = x0(0) = 1.

1. Show that x0(ℓ) satisfies for ℓ ≥ 0 the recurrence

x0(ℓ) = u(k−ℓ) +
k+1∑

i=d+1

x0(ℓ−i) ,

where

u(t) =

{
0 if t < 0
1 if t ≥ 0

.

2. Show that for every ℓ,

x(ℓ) =
d∑

i=0

x0(ℓ−i) .

3. Conclude from parts 1 and 2 that x(ℓ) satisfies for ℓ > k the recurrence

x(ℓ) = r(k+d+1−ℓ) +
k+1∑

i=d+1

x(ℓ−i) ,

where

r(t) =

{
0 if t < 0
t if t ≥ 0

.

(Note that this recurrence becomes linear when ℓ > k+d.)

4. Show that the values of x(ℓ) for 0 ≤ ℓ ≤ k satisfy

x(ℓ) =

{
ℓ+1 for 0 ≤ ℓ ≤ d
x(ℓ−1) + x(ℓ−d−1) for d < ℓ ≤ k

.

5. Assume now that k =∞. Show that for ℓ > d,

x0(ℓ) = x0(ℓ−1) + x0(ℓ−d−1) ,

with the initial conditions
x0(ℓ) = 1 , 0 ≤ ℓ ≤ d .

CHAPTER 1. CHANNELS AND CONSTRAINTS 36

6. Show that when k =∞, the values x(ℓ) are related to x0(ℓ) by

x(ℓ) = x0(ℓ+d) ;

so, x(ℓ) satisfies for ℓ > d,
x(ℓ) = x(ℓ−1) + x(ℓ−d−1) ,

with the initial conditions
x(ℓ) = ℓ+1 , 0 ≤ ℓ ≤ d .

Chapter 2

Constrained Systems

2.1 Labeled graphs and constraints

First, we recall a convenient diagrammatic method used to present a constrained system of
sequences. An encoder, in turn, may generate sequences only from this set.

A labeled graph (or a finite labeled directed graph) G = (V,E, L) consists of —

• a finite set of states V = VG;

• a finite set of edges E = EG where each edge e has an initial state σG(e) and a terminal
state τG(e), both in V ;

• an edge labeling L = LG : E → Σ where Σ is a finite alphabet.

We will also use the notation u
a→ v to denote an edge labeled a from state u to state v in

G.

Figure 2.1 shows a “typical” labeled graph.

0

1

2
✲

a

✼b

✲d
✛

c

✇
a

✇

c

Figure 2.1: Typical labeled graph.

37

CHAPTER 2. CONSTRAINED SYSTEMS 38

While some of the properties of interest to us do not depend on the labeling L, most do.
We will omit the labeling qualifier from the term ‘graph’ in those cases where the labeling
is immaterial.

There are a few features worth highlighting. Since the graph is directed, each edge can
be traversed in only one direction, as indicated by the arrow. Self-loops, meaning edges
that start and terminate in the same state, are allowed. Also, there can be more than one
edge connecting a given state to another state; these are called parallel edges. However,
we assume that distinct edges that share the same initial and terminal states have distinct
labels. A graph is called essential if every state has at least one outgoing edge and at least
one incoming edge; we will sometimes need to assume that graphs are essential, but then we
will make this assumption explicitly. The out-degree of a state in a graph is the number of
edges outgoing from that state. The minimum out-degree of a graph is the smallest among
all out-degrees of the states in that graph.

A path γ in a graph G is a finite sequence of edges e1e2 . . . eℓ such that σG(ei+1) =
τG(ei) for i = 1, 2, . . . , ℓ−1. The length of a path γ is the number of edges along the path
and is denoted by ℓ(γ). The state sequence of a path e1e2 . . . eℓ is the sequence of states
σG(e1)σG(e2) . . . σG(eℓ)τG(eℓ). A cycle in a graph is a path e1e2 . . . eℓ where τG(eℓ) = σG(e1).
We will also use the term right-infinite path for an infinite sequence of edges e1e2 · · · in G
such that σG(ei+1) = τG(ei) for i ≥ 1. Similarly, a bi-infinite path is a bi-infinite sequence of
edges · · · e−1e0e1e2 · · · with σG(ei+1) = τG(ei) for all i.

A labeled graph can be used to generate finite symbol sequences by reading off the labels
along paths in the graph. A finite sequence of symbols over a given alphabet will be called
a word or a block. The length of a word w—which is the number of symbols in w—will be
denoted by ℓ(w). A word of length ℓ will be called an ℓ-block. If a path γ in a graph G is
labeled by a word w, we say that w is generated by γ (and G). For example, in Figure 2.1,
the 5-block abccd is generated by the path

0
a→ 0

b→ 1
c→ 2

c→ 0
d→ 2 .

We also define the empty word as a 0-block: it is generated by a zero-length path which
consists of one state and no edges. The empty word will be denoted by ǫ. A sub-word of
a word w = w1w2 . . . wℓ is either the empty word or any of the words wiwi+1 . . . wj, where
1 ≤ i ≤ j ≤ ℓ. Such a sub-word is proper if 1 < i ≤ j < ℓ. Observe that every word that is
generated by an essential graph is a proper sub-word of some other word that is generated
by that graph.

Let G1 = (V1, E1, L1) and G2 = (V2, E2, L2) be labeled graphs. We say that G1 and G2

are (labeled-graph) isomorphic if there is a one-to-one mapping ψ from V1 onto V2 such that
u

a→ v is an edge in G1 if and only if ψ(u)
a→ ψ(v) is an edge in G2.

The underlying finite directed graph of a labeled graph is conveniently described by a
matrix as follows. Let G be a graph. The adjacency matrix A = AG =

(
(AG)u,v

)
u,v∈VG

is

CHAPTER 2. CONSTRAINED SYSTEMS 39

the |VG| × |VG| matrix where the entry (AG)u,v is the number of edges from state u to state
v in G. For instance, the adjacency matrix of the graph in Figure 2.1 is

AG =

1 1 1
0 0 2
1 0 0

 .

The adjacency matrix of course has nonnegative, integer entries. It is a useful artifice; for
example, the number of paths of length ℓ from state u to state v is simply (Aℓ

G)u,v, and the
number of cycles of length ℓ is simply the trace of Aℓ

G.

The fundamental object considered in the theory of constrained coding is the set of words
generated by a labeled graph. A constrained system (or constraint), denoted S, is the set of
all words (i.e., finite sequences) obtained from reading the labels of paths in a labeled graph
G (although sometimes we will consider right-infinite sequences x0x1x2 · · · and sometimes
bi-infinite sequences · · ·x−2x−1x0x1x2 · · ·). We say that G presents S or is a presentation of
S, and we write S = S(G). The alphabet of S is the set of symbols that actually occur in
words of S and is denoted Σ = Σ(S).

As central examples of constrained systems, we have the (d, k)-RLL constrained systems,
which are presented by the labeled graph in Figures 1.3, and the B-charge constrained
systems, which are presented by the labeled graph in Figure 1.14.

A constrained system is equivalent in automata theory to a regular language which
is recognized by an automaton, the states of which are all accepting [Hopc79]. A con-
strained system is called a sofic system (or sofic shift) in symbolic dynamics [LM95]—except
that a sofic system usually refers to the bi-infinite symbol sequences generated by a la-
beled graph. Earlier expositions on various aspects of constrained systems can be found
in [Béal93a], [KN90], [LM95], and [MSW92].

A constrained system should not be confused with any particular labeled graph, because
a given constrained system can be presented by many different labeled graphs. For ex-
ample, the (0, 1)-RLL constrained system is presented by all labeled graphs in Figures 2.2
through 2.5, which are very different from one another. This is good: one presentation may
be preferable because it has a smaller number of states, while another presentation might be
preferable because it could be used as an encoder.

0 1
✲

1
✲0

✛
1

Figure 2.2: Labeled graph for (0, 1)-RLL constrained system.

It should be quite clear at this point why we assume that labeled graphs do not contain
parallel edges that are labeled the same: the set of words generated by a given graph would
not change if such parallel edges were added.

CHAPTER 2. CONSTRAINED SYSTEMS 40

0

1

2
✲

1

✼0

✛
1

♦

0 ✇

1

Figure 2.3: Another labeled graph for (0, 1)-RLL constrained system.

0

1

2
✲

1

✼1

✛
1

♦

1 ✇

0

Figure 2.4: Yet another labeled graph for (0, 1)-RLL constrained system.

2.2 Properties of labelings

2.2.1 Deterministic presentation

For purposes of encoder construction, it will be important to consider labelings with special
properties. The most fundamental special property is as follows.

A labeled graph is deterministic if at each state the outgoing edges are labeled distinctly.
In other words, at each state, any label generated from that state uniquely determines an
outgoing edge from that state. The labeled graphs in Figures 1.3, 1.14, 2.2, and 2.3 are
deterministic while the labeled graphs in Figures 2.4 and 2.5 are not. Constrained systems
in the engineering literature are usually presented by deterministic graphs. In fact, any

0

1

2 3 4

✴
1

✼
1

✇

0

✛
1

✲1
✛

0

✲1
✛

1

Figure 2.5: One more labeled graph for (0, 1)-RLL constrained system.

CHAPTER 2. CONSTRAINED SYSTEMS 41

constrained system can be presented in this way, as we show next.

Let G be a labeled graph. We define the determinizing graph H of G in the following
manner. For any word w and state v ∈ VG, let TG(w, v) denote the subset of states in G
which are accessible from v by paths in G that generate w. When w is the empty word
ǫ, define TG(ǫ, v) = {v}. The states of H are the distinct nonempty subsets {TG(w, v)}w,v

of VG. As for the edges of H , for any two states Z,Z ′ ∈ VH we draw an edge Z
b→ Z ′ in

H if and only if there exists a state v ∈ VG and a word w such that Z = TG(w, v) and
Z ′ = TG(wb, v). In other words, each state of G in Z ′ is accessible in G from some state in
Z by an edge labeled b. By construction, the determinizing graph H is deterministic. We
have also the following.

Lemma 2.1 Let H be the determinizing graph of a labeled graph G. Then S(H) = S(G).

Proof. If a word w = w1w2 . . . wℓ is generated by paths in G starting at state v, then w
is also generated by the path

{v} = TG(ǫ, v)
w1−→ TG(w1, v)

w2−→ TG(w1w2, v)
w3−→ · · · wℓ−→ TG(w1w2 . . . wℓ, v)

in H . Conversely, if w is generated by H starting at a state Z = TG(w
′, v), then, by the

construction of H , w′w is generated in G by a path that starts at state v.

By Lemma 2.1 we can conclude the next result.

Proposition 2.2 Any constrained system can be presented by some deterministic labeled
graph.

We also have the notion of co-deterministic, obtained by replacing “outgoing” with “in-
coming” in the definition.

‘Deterministic’ is called right-resolving in symbolic dynamics [LM95].

2.2.2 Finite anticipation

Encoder synthesis algorithms usually begin with a deterministic presentation and transform
it into a presentation which satisfies the following weaker version of the deterministic prop-
erty.

A labeled graph G has finite local anticipation (or, in short, finite anticipation) if there
is an integer N such that any two paths of length N+1 with the same initial state and
labeling must have the same initial edge. The (local) anticipation A(G) of G is the smallest
N for which this holds. Hence, knowledge of the initial state of a path and the first A(G)+1

CHAPTER 2. CONSTRAINED SYSTEMS 42

symbols that it generates is sufficient information to determine the initial edge of the path.
In case G does not have finite anticipation, we define A(G) =∞.

We also define the (local) co-anticipation of a labeled graph G as the anticipation of the
labeled graph obtained by reversing the directions of the edges in G.

Note that to say that a labeled graph is deterministic is to say that it has zero anticipation.
The labeled graph in Figure 2.4 is a presentation of the (0, 1)-RLL constrained system
with anticipation 1 but not 0. Figure 2.5 depicts a presentation that does not have finite
anticipation.

‘Finite anticipation’ is also called right-closing (in symbolic dynamics [LM95]) or lossless
of finite order [Huff59], [Even65].

2.2.3 Finite memory

A labeled graph G is said to have finite memory if there is an integer N such that the paths
in G of length N that generate the same word all terminate in the same state. The smallest
N for which this holds is called the memory of G and denotedM(G).

2.2.4 Definite graphs

A labeled graph is (m, a)-definite if, given any word w = w−mw−m+1 . . . w0 . . . wa, the set of
paths e−me−m+1 . . . e0 . . . ea that generate w all agree in the edge e0. We say that a labeled
graph is definite if it is (m, a)-definite for some finite nonnegative m and a. Definite graphs
are referred to in the literature also as graphs with finite memory-and-anticipation.

Note the difference between this concept and the concept of finite anticipation: we have
replaced knowledge of an initial state with knowledge of a finite amount of memory. Actually,
definiteness is a stronger condition, as we show in Proposition 2.3.

Figure 2.3 shows a labeled graph that is (2, 0)-definite, while Figure 2.6 shows a labeled
graph that has finite anticipation (in fact, is deterministic and co-deterministic) but is not
definite.

0 1 2
✲+

✛
−

✲+
✛
−

Figure 2.6: Labeled graph for a 2-charge constrained system

Note that, in contrast to the anticipation and the memory, we did not require a and m

to be minimal in any sense while talking about (m, a)-definiteness. It would be natural to

CHAPTER 2. CONSTRAINED SYSTEMS 43

require that m+a be minimal, but even that does not specify m and a uniquely; for instance,
the labeled graph in Figure 2.7 is (1, 0)-definite and also (0, 1)-definite.

0

1

2
✲

a

✼b

✛
c

✇

b

Figure 2.7: Labeled graph which is both (1, 0)-definite and (0, 1)-definite.

2.2.5 Lossless graphs

A labeled graph is lossless if any two distinct paths with the same initial state and terminal
state have different labelings. All of the pictures of labeled graphs that we have presented so
far are lossless. Figure 2.8 shows a presentation of the (0, 1)-RLL constrained system that
is not lossless.

0 1
✲

1 ✛ 1
✲0

✛
1

Figure 2.8: Graph which is not lossless.

2.2.6 Summary of terms

The following proposition summarizes the relationships among the labeling properties intro-
duced so far.

Proposition 2.3 For essential graphs,

Co-deterministic
⇓

Finite memory ⇒ Definite ⇒ Finite co-anticipation
⇓ ⇓ ⇓

Deterministic ⇒ Finite anticipation ⇒ Lossless

CHAPTER 2. CONSTRAINED SYSTEMS 44

Proof. Finite memory ⇒ Deterministic and Finite memory ⇒ Definite: Let G be a
labeled graph with finite memoryM. All paths, representing the same word, of lengthM+1
in G must agree in their last two states. Furthermore, since G does not contain parallel edges
with the same label, all these paths agree in their last edge. Hence, G is (M, 0)-definite.
This also implies that G is deterministic: For a state u in G, let γ be a path of length M
that terminates in u. Then for every edge e outgoing from u, the labeling of γe determines
e.

Definite ⇒ Finite anticipation: Suppose that G is (m, a)-definite for some m and a. Let
u be a state in G and let γ = e0e1 . . . ea and γ′ = e′0e

′
1 . . . e

′
a be paths of length a+1 which

start at u and generate the same word. We need to show that e0 = e′0. Let γ
′′ be any path

of length m which terminates in state u. Then, the concatenated paths γ′′γ and γ′′γ′ both
generate the same word. Since G is (m, a)-definite, we have e0 = e′0 as desired. A similar
proof yields the implication Definite ⇒ Finite co-anticipation.

Deterministic ⇒ Finite anticipation: As pointed out earlier, a labeled graph is deter-
ministic if and only if it has zero anticipation. The implication Co-deterministic ⇒ Finite
co-anticipation is similar.

Finite anticipation ⇒ Lossless: Let G have anticipation A. Given two paths, γ and γ′,
with the same initial state u, terminal state v, and the same labeling w, let γ′′ be a path of
length A which starts at v. Then γγ′′ and γ′γ′′ start at the same state and generate the same
word; so, γ = γ′, as desired. The implication Finite co-anticipation ⇒ Lossless is proved in
a similar way.

2.2.7 State labeling

In the graph presentations that we have seen so far, the labels are put on the edges. However,
in the literature, one can find graph presentations where the labels are put on the states,
and the respective constrained system is defined as the set of words that are obtained by
reading off the labels of states along the finite paths in the graph. It is straightforward to
see that every such constrained system can be presented by an (edge-)labeled graph, where
the incoming edges to each state all have the same label. In fact, every constrained system
can be presented by such a labeled graph, as we now show.

Let G be a labeled graph. The Moore form of G is a labeled graph H where VH = EG

and e1
a→ e2 is an edge in H if and only if τG(e1) = σG(e2) and LG(e2) = a. For example,

Figure 2.3 shows the Moore form of the labeled graph in Figure 2.2 that presents the (0, 1)-
RLL constrained system. It can be easily verified that S(H) = S(G) and that the edges
incoming to each state in H all have the same labeling. It thus follows that every constrained
system can be presented by a state-labeled graph. The anticipation of G is preserved in H
and the co-anticipation is increased by 1. In particular, if G is deterministic, so is its Moore
form. Also, by construction, there are no parallel edges in a Moore form, so its adjacency

CHAPTER 2. CONSTRAINED SYSTEMS 45

matrix is always a 0–1 matrix.

We have also the notion of a Moore co-form of a labeled graph G which is identical to
the Moore form except for the labeling: The edge e1

a→ e2 in a Moore co-form inherits the
labeling of e1 in G, rather than that of e2. For example, Figure 2.4 is the Moore co-form
of the labeled graph of Figure 2.2. If H is a Moore co-form of a labeled graph G, then
S(H) = S(G) and the edges outgoing from each state in H all have the same labeling. The
co-anticipation of G is preserved in H and the anticipation is increased by 1. Therefore, if
G is co-deterministic, so is H .

2.3 Finite-type constraints

In this section, we consider some special classes of constraints. The properties that define
these constraints will be useful for encoder construction.

A constrained system S is finite-type (in symbolic dynamics, shift of finite type [LM95])
if it can be presented by a definite graph. As an example, the (d, k)-RLL constraint is finite-
type: the labeled graph in Figure 1.3 is (k, 0)-definite—i.e., for any given word w of length
at least k+1, all paths that generate w end with the same edge.

It is important to recognize that there are “bad” presentations of finite-type constrained
systems, meaning labeled graphs that are not definite. For example, the labeled graph in
Figure 2.5 represents the (0, 1)-RLL constrained system, but it is not definite, as can be seen
by considering the paths that generate words consisting of all 1’s.

Given the existence of bad labeled graphs, one might begin to worry about potential
problems in determining whether or not a constrained system is finite-type. However, there
is an intrinsic characterization of finite-type constrained systems that resolves this difficulty.

A constrained system S is said to have finite memory if there is an integer N such that,
for any symbol b ∈ Σ(S) and any word w ∈ S of length at least N , we have wb ∈ S if and
only if w′b ∈ S where w′ is the suffix of w of length N . The smallest such integer N , if any,
is called the memory of S and is denoted byM(S).

It is can be readily verified that the (d, k)-RLL constrained system has memory k.

Lemma 2.4 A constrained system S has finite memory if and only if there is a presen-
tation G of S with finite memory. Furthermore, the memory of S is the smallest memory of
any presentation of S with finite memory.

Proof. Clearly, if a constrained system S has a presentation G with finite memory
M(G), thenM(S) ≤M(G).

CHAPTER 2. CONSTRAINED SYSTEMS 46

On the other hand, let S be a constrained system with finite memoryM(S) =M. Then
all presentations of S have memory which is bounded from below by M. We construct a
labeled graph H with M(H) = M as follows: For each word w of length M in S, we
associate a state uw in H . Given two words, w = w1w2 . . . wM and z = z1z2 . . . zM, in S, we

draw an edge uw
b→ uz in H if and only if the following three conditions hold:

(a) zj = wj+1 for j = 1, 2, . . . ,M−1;
(b) b = zM;

(c) wb ∈ S.
It is easy to verify that H is a presentation of S (and, so M(H) ≥ M). On the other

hand, the paths in H of length M that generate the word w all terminate in state uw.
Hence,M(H) ≤M.

Proposition 2.5 A constrained system is finite-type if and only if it has finite memory.

Proof. Suppose that S has finite memory and let G be a presentation of S with finite
memoryM. As such, G is also (M, 0)-definite and, so, S is finite-type.

Now, suppose that S is finite-type and let G be an (m, a)-definite presentation of S. If
a = 0, then G has memory ≤ m+1 and we are done. When a > 0, it suffices to find a
presentation of S which is (m+a, 0)-definite.

Such a presentation H can be obtained as follows: The states of H are pairs [u,w], where
u ∈ VG and w is a word of length a that can be generated by a path in G that starts at u.
Let u and v be states in G and w = w1w2 . . . wa and z = z1z2 . . . za be two words that can

be generated in G from u and v, respectively. We draw an edge [u,w]
b→ [v, z] in H if and

only if the following three conditions hold:

(a) zj = wj+1 for j = 1, 2, . . . , a−1;
(b) b = za;

(c) there is an edge u
w1→ v in G.

We now define a mapping from the set of all paths of length m+a+1 in G onto the set
of paths of length m+1 in H as follows. The path

γG = u0
b1−→ · · · bm−→ um

bm+1−→ um+1
bm+2−→ · · · bm+a−→ um+a

bm+a+1−→ um+a+1

in G is mapped to the path

γH = [u0, b1b2 . . . ba]
ba+1−→ · · · bm+a−→ [um, bm+1bm+2 . . . bm+a]

bm+a+1−→ [um+1, bm+2bm+3 . . . bm+a+1]

CHAPTER 2. CONSTRAINED SYSTEMS 47

in H . It is easy to verify that this mapping is indeed onto. Since G is (m, a)-definite, the

word b1b2 . . . bm+a+1 uniquely defines the edge um
bm+1−→ um+1 in the path γG in G. It thus

follows that the last two states in γH are uniquely defined, and so is the last edge of γH .
Hence, H is (m+a+1, 0)-definite.

The following result gives another equivalent formulation of the notion of finite-type
systems in terms of lists of forbidden words. This notion was alluded to at the end of
Section 1.2 and in Section 1.5.2.

Proposition 2.6 A constrained system S is finite-type if and only if there is a finite list
L of words such that w ∈ S if and only if w does not contain any word of L as a sub-word.

We leave the proof of Proposition 2.6 as an exercise for the reader (Problem 2.7).

Not every constrained system of interest is finite-type. For example, the 2-charge con-
strained system described by Figure 2.6 is not. This can be seen easily by considering the
condition above: the symbol ‘+’ can be appended to the word

−+−+−+ · · · −+

but not to the word
++−+−+−+ · · · −+ .

As a second example, consider the (0,∞, 2)-RLL constrained system, which is commonly
referred to as the even constraint. This constrained system consists of all binary words in
which the runs of 0’s between successive 1’s have even lengths. A graph presentation of this
constraint is shown in Figure 2.9. We leave it as an exercise to show that this constraint is

0 1
✲

1
✲0

✛
0

Figure 2.9: Shannon cover of the even constrained system.

not finite-type (Problem 2.26, part 1).

However, both the charge constraint and the even constraint fall into a natural broader
class of constrained systems, called almost-finite-type systems; these systems should be
thought of as “locally finite-type” (perhaps that would have been a better name). A con-
strained system is almost-finite-type if it can be presented by a labeled graph that has both
finite anticipation and finite co-anticipation.

By Proposition 2.3, we know that definiteness implies finite anticipation and finite co-
anticipation. Thus, every constrained system which is finite-type is also almost-finite-type,

CHAPTER 2. CONSTRAINED SYSTEMS 48

and so the almost-finite-type systems do indeed include the finite-type systems. From Fig-
ure 2.6, we see that the charge constrained systems are presented by labeled graphs with
zero anticipation (i.e., deterministic) and zero co-anticipation (i.e., co-deterministic); thus,
these systems are almost-finite-type, but not finite-type. Most constrained systems used in
practical applications are in fact almost-finite-type.

Recall that every constrained system has a deterministic presentation (and hence finite
anticipation); likewise, every constrained system has a co-deterministic presentation (and
hence finite co-anticipation). So, the essential feature of the almost-finite-type definition
is that there is a presentation that simultaneously has finite anticipation and finite co-
anticipation.

As with finite-type systems, we have the problem that a given constrained system may
have some presentation that satisfies the finite anticipation and co-anticipation conditions
and another presentation that does not. There is an intrinsic condition that defines almost-
finite-type, but it is a bit harder to state [Will88]. We will give an example of a constrained
system which is not almost-finite-type at the end of Section 2.6.

2.4 Some operations on graphs

In this section, we introduce three graph constructions that create new constraints from old.

2.4.1 Power of a graph

As mentioned in Chapter 1, a rate p : q finite-state encoder will generate a word, composed of
q-codewords (q-blocks) that when hooked together belong to the desired constrained system
S. For a constrained system S presented by a labeled graph G, it will be very useful to have
an explicit description of the words in S, decomposed into such non-overlapping “chunks”
of length q.

Let G be a labeled graph. The qth power of G, denoted Gq, is the labeled graph with the
same set of states as G, but one edge for each path of length q in G, labeled by the q-block
generated by that path. For a constrained system S presented by a labeled graph G, the qth
power of S, denoted Sq, is the constrained system presented by Gq. So, Sq is the constrained
system obtained from S by grouping the symbols in each word into non-overlapping “chunks”
of length q (in particular, the definition of Sq does not depend on which presentation G of
S is used).

For example, Figure 2.10 shows the third power G3 of the labeled graph G in Figure 2.2
that presents the (0, 1)-RLL constrained system.

CHAPTER 2. CONSTRAINED SYSTEMS 49

0 1
✲

111
✲

101
✲

011

010
❄❲110

❖ 101✻
111

✛ 110

Figure 2.10: Third power of labeled graph in Figure 2.2.

2.4.2 Higher edge graph

The qth higher edge graph G[q] is the labeled graph whose states are paths in G of length q−1
with an edge for each path of length q in G: the edge e1e2 . . . eq has initial state e1e2 . . . eq−1,
terminal state e2 . . . eq, and inherits the labeling of e1e2 . . . eq. For a constrained system
S presented by a labeled graph G, the qth higher order system of S, denoted S [q], is the
constrained system presented by G[q].

Observe that S [q] is the constrained system whose alphabet is the set of q-blocks of S,
obtained from S by replacing each word w1w2 . . . wℓ by the word

(w1w2 . . . wq)(w2w3 . . . wq+1) . . . (wℓ−q+1wℓ−q+2 . . . wℓ) .

Note how Sq differs from S [q]: the former divides words into non-overlapping blocks; the
latter divides words into blocks which overlap by q−1 symbols.

Figure 2.11 shows the edge graph G[2] for the (0, 1)-RLL labeled graph G in Figure 2.2,
and G[3] is shown in Figure 2.12. The reader should contrast this with the third power G3

in Figure 2.10.

0

1

2
✲

11

✼10

✛
11

♦

10 ✇

01

Figure 2.11: Second higher edge graph of labeled graph in Figure 2.2.

The Moore form and co-form of G which were introduced in Section 2.2.7 are almost
identical to G[2]: To obtain the Moore form (respectively, the Moore co-form), just delete
the first (respectively, the second) symbol in each edge label of G[2].

CHAPTER 2. CONSTRAINED SYSTEMS 50

0

1 2 3

4
✲

111

✻
110

❄
011

✲101 ✲010

✛
111

✛
101⑥

110

Figure 2.12: Third higher edge graph of labeled graph in Figure 2.2.

2.4.3 Fiber product of graphs

Let G and H be two labeled graphs. We define the fiber product of G and H as the labeled
graph G ∗H , where

VG∗H = VG × VH = {〈u, u′〉 | u ∈ VG, u′ ∈ VH} ,

and 〈u, u′〉 a→ 〈v, v′〉 is in EG∗H if and only if u
a→ v ∈ EG and u′

a→ v′ ∈ EH . It is easy to
verify that the fiber product presents the intersection of the constraints defined by G and
H , namely, S(G ∗H) = S(G) ∩ S(H).

Finally, we state a result which asserts that the operations introduced in this section all
preserve the properties of labelings introduced in Section 2.2. We leave the proof to the
reader.

Proposition 2.7 The power of a graph, higher edge graph, and fiber product graph all
preserve the deterministic, finite anticipation (co-anticipation), and definiteness properties.

2.5 Irreducibility

2.5.1 Irreducible graphs

A graph G is irreducible (or strongly-connected) if, for any ordered pair of states u, v, there
is a path from u to v in G. A graph is reducible if it is not irreducible. Note our use of the
term ‘ordered’: for a given pair of states u, v, we must be able to travel from u to v and from
v to u.

All of the graphs in Figures 2.2 through 2.5 are irreducible, while Figure 2.13 shows a
reducible graph which presents the system of unconstrained binary words.

Observe that the property of being irreducible does not depend on the labeling and can

CHAPTER 2. CONSTRAINED SYSTEMS 51

0 1 2
✲

0

❄
1

✲1 ✲0
✛

1
✛ 0

Figure 2.13: Reducible labeled graph for unconstrained binary words.

be described in terms of the adjacency matrix: namely, for every (ordered) pair of states
u, v, there exists some ℓ such that (Aℓ

G)u,v > 0.

It will be useful later to know that any reducible graph can, in some sense, be broken
down into “maximal” irreducible pieces. To make this more precise we introduce the concept
of an irreducible component. An irreducible component of a graph G is a maximal (with
respect to inclusion) irreducible subgraph of G. The irreducible components of a graph are
simply the subgraphs consisting of all edges whose initial and terminal states both belong
to an equivalence class of the following relation: u ∼ v if there is a path from u to v and a
path from v to u (we allow paths to be empty so that u ∼ u).

An irreducible sink is an irreducible component H such that any edge which originates
in H must also terminate in H . An irreducible source is an irreducible component H such
that any edge which terminates in H must also originate in H .

Any graph can be broken down into irreducible components with ‘transient’ connections
between the components. The irreducible sinks can have transient connections entering
but not exiting. Every graph has at least one irreducible sink (and, similarly, at least one
irreducible source). To see this, we argue as follows. Pick an irreducible component and
check if it is an irreducible sink. If so, stop. If not, there must be a path leading to another
irreducible component. Repeat the procedure on the latter component. The process must
eventually terminate in an irreducible sink H ; otherwise, the original decomposition into
irreducible components would be contradicted. The picture of the irreducible components
and their connections is perhaps best illustrated via the adjacency matrix: by reordering the
states, A = AG can be written in block upper triangular form with the adjacency matrices
of the irreducible components as block diagonals, as shown in Figure 2.14.

A =

A1 B1,2 B1,3 · · · B1,k

A2 B2,3 · · · B2,k

A3
. . .

...
. . . Bk−1,k

Ak

.

Figure 2.14: Writing matrix in upper triangular form.

Figure 2.15 shows the irreducible components of the graph in Figure 2.13; one is an

CHAPTER 2. CONSTRAINED SYSTEMS 52

irreducible sink and the other is an irreducible source.

0 1 2
✲

0

❄
1

✲0
✛

1
✛ 0

Figure 2.15: Irreducible components of labeled graph in Figure 2.13.

From the point-of-view of finite-state encoder construction, it turns out that, by passing to
irreducible components, we can concern ourselves primarily with irreducible labeled graphs;
we explain why in Section 4.1.

There are times when the qth power of a graph G will not be irreducible, even when G
is. For example, Figure 2.6 shows a labeled graph describing a 2-charge constrained system.
Its second power G2, shown in Figure 2.16, has two irreducible components, G0 and G1

(note that in these graphs, the label +− is different from −+). This example illustrates the
general situation: it can be shown that, if G is an irreducible graph, then any power Gq is
either irreducible or decomposes into isolated, irreducible components (see also Figures 2.2
and 2.10). We elaborate upon this in Section 3.3.2.

0 2

G0

1

G1

✲
+− ✲++

✛
−− ✛ −+ ✲−+ ✛ +−

Figure 2.16: Second power of labeled graph in Figure 2.6.

2.5.2 Irreducible constrained systems

A constrained system S is irreducible, if for every pair of words w,w′ in S, there is a word
z such that wzw′ is in S. A constrained system that is not irreducible is called reducible.

The following shows that irreducibility of a constrained system can be reformulated in
terms of irreducible labeled graphs.

Lemma 2.8 Let S be a constrained system. The following are equivalent:

(a) S is irreducible;

(b) S is presented by some irreducible (and in fact, deterministic) labeled graph.

CHAPTER 2. CONSTRAINED SYSTEMS 53

Proof. For (b) ⇒ (a), simply connect the terminal state of a path that generates w to
the initial state of a path that generates w′. For (a) ⇒ (b), replace inclusion with equality
in the stronger statement of the next lemma.

Lemma 2.9 Let S be an irreducible constrained system and let G be a labeled graph such
that S ⊆ S(G). Then for some irreducible component G′ of G, S ⊆ S(G′).

Proof. Let G1, G2, . . . , Gk denote the irreducible components of G. We prove the lemma
by contradiction. Suppose that for each i = 1, 2, . . . , k, there is a word wi in S but not in
S(Gi). Since S is irreducible, there is a word w that contains a copy of each wi; moreover,
there is a word z that contains |VG|+1 non-overlapping copies of w. Let γ be a path in G
that generates z. Then γ can be written as γ = γ1γ2 . . . γ|VG|+1, where each γj has a sub-path
which generates w. For some r < t, the initial states of γr and γt coincide and, therefore,
γrγr+1 . . . γt−1 is a cycle and has a sub-path that generates w. Now, by definition, any cycle
in a graph must belong to some irreducible component, say Gi, and thus wi is in S(Gi),
contrary to the definition of wi.

All of the constrained systems that we have considered so far are irreducible, while
Figure 2.17 presents a reducible constrained system.

0 1 2
✲

0

❄
1

✲1 ✲0
✛

1

Figure 2.17: Reducible constrained system.

2.6 Minimal presentations

When treating constrained systems, it is useful to present them in a standard manner.
Among the various possible presentations of a given constrained system S, the Shannon
cover is usually chosen as the canonical presentation of S.

A Shannon cover of a constrained system S is a deterministic presentation of S with a
smallest number of states.

In general, the Shannon cover is not unique [Jon95], [LM95, Section 3.3]. However, it is
unique, up to labeled graph isomorphism, for irreducible constrained systems. We show this
in Theorem 2.12 below.

CHAPTER 2. CONSTRAINED SYSTEMS 54

2.6.1 Follower sets and reduced labeled graphs

Let u be a state in a labeled graph G. The follower set of u in G, denoted FG(u), is the set
of all (finite) words that can be generated from u in G. Two states u and u′ in a labeled
graph G are said to be follower-set equivalent, denoted u ≃ u′, if they have the same follower
set. It is easy to verify that follower-set equivalence satisfies the properties of an equivalence
relation.

A labeled graph G is called reduced if no two states in G are follower-set equivalent. If a
labeled graph G presents a constrained system S, we can construct a reduced labeled graph
H from G that presents the same constrained system S by merging states in G which are
follower-set equivalent. More precisely, each equivalence class C of follower-set equivalent
states becomes a state in H , and we draw an edge C

a→ C ′ in H if and only if there exists
an edge u

a→ u′ in G for states u ∈ C and u′ ∈ C ′. It is easy to verify that, indeed,
S(H) = S(G), and, if G is deterministic, so is H ; see [LM95].

2.6.2 The Moore algorithm

The Moore algorithm is an efficient procedure for finding the equivalence classes of the
follower-set equivalence relation of states in a deterministic graph. The algorithm is described
in [Huff54], [Koh78, Ch. 10], [Moore56].

Let G be a deterministic graph. For a state u in G, let F ℓ
G(u) denote the set of all

words of length ℓ that can generated from u in G. Two states u and v in G are said to be
ℓ-(follower-set-)equivalent in G, if Fm

G (u) = Fm
G (v) for m = 1, 2, . . . , ℓ. Indeed, ℓ-equivalence

is an equivalence relation, and we denote by Πℓ the partition of VG which is induced by the
classes of this relation. Also, we denote by |Πℓ| the number of classes in Πℓ.

The Moore algorithm iteratively finds the partitions Πℓ for increasing values of ℓ, until
we reach the partition induced by the follower-set equivalence relation. The partition Π0

contains one class, namely, VG. As for 1-equivalence, two states u and v belong to the same
equivalence class if and only if the sets of labels of the edges outgoing from state u and from
state v are the same. Therefore, the partition Π1 is easily found from G.

The following is a typical iteration of the Moore algorithm. Assume we have found Πℓ for
some ℓ ≥ 1. Now, every two (ℓ+1)-equivalent states in G must also be ℓ-equivalent. Hence,
Πℓ+1 is a refinement of Πℓ (and so |Πℓ+1| ≥ |Πℓ|). More specifically, we put two states u and
v in the same class in Πℓ+1 if and only if (i) u and v belong to the same class in Πℓ, and
(ii) for each pair of edges, u

a→ u′ and v
a→ v′, in G (with the same label a), the states u′

and v′ belong to the same class in Πℓ.

Example 2.1 Consider the deterministic graph G in Figure 2.18. We start with the

CHAPTER 2. CONSTRAINED SYSTEMS 55

B

A

C

E

D

G

F

❄

1

✻

0

❄

1

✲0
✛

1
✛

0

✲0 ✲0

❂
1⑥ 0

Figure 2.18: Graph G for Example 2.1.

trivial partition, Π0, which consists of one equivalence class that contains all states, namely,

Π0 = {A,B,C,D,E, F,G} .

The partition Π1 is obtained by looking at the set of labels of the outgoing edges from each
state. That set is {0} for states B, C, and G; it is {1} for state F ; and it is {0, 1} for states
A, D, and E. Hence,

Π1 = {B,C,G}{F}{A,D,E} .
To obtain the partition Π2, we see that the outgoing edges (labeled 0) from states B, C,
and G terminate in E, A, and E, respectively, and these terminal states belong to the same
equivalence class in Π1. Hence, {B,C,G} will form an equivalence class also in the partition
Π2. On the other hand, the outgoing edges labeled 0 from A, D, and E terminate in D,
F , and D, respectively, thus implying that state D should be separated from states A and
E in Π2. Since the outgoing edges labeled 1 from A and E both terminate in state B, we
conclude that A and E are 2-equivalent and, so,

Π2 = {B,C,G}{F}{A,E}{D} .

The next iteration will generate no refinement i.e., we end up with Π3 = Π2.

In general, the algorithm finds the partitions Πℓ for increasing values of ℓ until Πℓ+1 = Πℓ.
Denote by ℓmax the smallest ℓ for which this equality is met. For ℓ > ℓmax we will have
Πℓ = Πℓmax and, so, the follower-set equivalence relation is identical to the ℓmax-equivalence
relation. Furthermore,

1 = |Π0| < |Π1| < · · · < |Πℓmax−1| < |Πℓmax | = |Πℓmax+1| ≤ |VG| .

Therefore, ℓmax ≤ |VG|−1, which thus bounds from above the number of iterations in the
Moore algorithm. In fact, we have also the following.

CHAPTER 2. CONSTRAINED SYSTEMS 56

Proposition 2.10 Let G be a deterministic essential graph. Then, for every pair of
states u and v in G,

FG(u) = FG(v) if and only if F |VG|−1
G (u) = F |VG|−1

G (v) .

.

Having found the partition Πℓmax induced by the follower-set equivalence relation, we
can construct a reduced deterministic graph H from G that presents the same constrained
system S(G), as was described in Section 2.6.1.

If we apply the reduction to the deterministic graph in Example 2.1, we obtain the
graph presentation of the (1, 3)-RLL constraint as shown in Figure 1.16, with the following
equivalence relation between the states in that figure and the partition elements of Π2:

0←→ {B,C,G} , 1←→ {A,E} , 2←→ {D} , and 3←→ {F} .

2.6.3 Homing words

A homing word for a state v in a labeled graph G is a word w such that all paths in G that
generate w terminate in v.

We will make use of the following lemma.

Lemma 2.11 Let G be a reduced deterministic graph. Then there is a homing word for
at least one state in G. Furthermore, if G is also irreducible, then there is a homing word
for every state in G.

Proof. Since G is reduced, for any two distinct states u, v ∈ VG, there is a distinguishing
word w that can be generated in G from one of these states but not from the other. Start
with the set V0 = VG and assume that |V0| > 1. Let w1 be a distinguishing word for some
pair of states in V0. Clearly, w1 can be generated in G by at most |V0| − 1 paths starting
in V0. Let V1 denote the set of terminal states of these paths. We can now apply the same
argument on V1 with a distinguishing word w2 for two states in V1 and continue this way
until we end up with a set Vm = {v}. The word w1w2 . . .wm is a homing word for v in G.

If G is also irreducible, then we can extend the homing word for v to a homing word for
every state in G.

We can use the notion of homing words to obtain the following equivalent definition for
labeled graphs with finite memory: a labeled graph G has finite memory if there is an integer
N such that all words of length N in S(G) are homing (and the memory of G is then the
smallest such N).

CHAPTER 2. CONSTRAINED SYSTEMS 57

2.6.4 Shannon cover of irreducible constrained systems

The following result summarizes the main properties of the Shannon cover of irreducible
constrained systems. See [Fi75a], [Fi75b], [KN90].

Theorem 2.12 Let S be an irreducible constrained system.

(a) The Shannon cover of S is unique, up to labeled graph isomorphism. In fact, the
Shannon cover is the unique presentation of S which is irreducible, deterministic, and re-
duced.

(b) For any irreducible deterministic presentation G of S, the follower sets of G coincide
with the follower sets of the Shannon cover.

Proof. First, note that any minimal deterministic presentation of S must be reduced.
Otherwise we could merge all states with the same follower sets, as was described in Sec-
tion 2.6.1. Furthermore, by Lemma 2.9, any minimal deterministic presentation must be
irreducible.

For the proof of (a), suppose that H and H ′ are irreducible reduced deterministic graphs
that present S. Let u be an arbitrary state in H . By Lemma 2.11, there is a homing word
w for u in H and a homing word w′ for some state in H ′. Since S is irreducible, there exists
a word z such that w′′ = w′zw ∈ S. Clearly, w′′ is a homing word for the state u in H
and for some state u′ in H ′. Since S(H) = S(H ′) = S, we must have FH(u) = FH′(u′).
Furthermore, since both H and H ′ are deterministic, the ‘outgoing picture’ from state u in
H must be the same as that from state u′ in H ′. Hence, if u

a→ v ∈ EH , then we must have
u′

a→ v′ ∈ EH′ and FH(v) = FH′(v′). Continuing this way, it follows that for every state
u ∈ VH there is a state u′ ∈ VH′ with the same follower set, and vice versa. Since both H
and H ′ are reduced, we must have H = H ′, up to labeled graph isomorphism.

For the proof of (b), we form a new graph H from G by merging all states of the latter
with the same follower sets. It is not hard to see that H is irreducible, deterministic, and
reduced. Then, apply part (a) to see that H is isomorphic to the Shannon cover. Clearly, G
and H have the same follower sets.

The following lemma generalizes part (b) of Theorem 2.12 to the situation where H
presents a subsystem of S(G).

Lemma 2.13 Let G and H be two irreducible deterministic graphs. Then S(H) ⊆ S(G)
if and only if for every v ∈ VH there exists u ∈ VG such that FH(v) ⊆ FG(u).

Proof. The sufficiency is immediate. As for the necessity, by Lemma 2.8, S(H) is
irreducible. Thus, by Lemma 2.9, there is an irreducible component G′ of the fiber product

CHAPTER 2. CONSTRAINED SYSTEMS 58

G ∗H such that S(G′) = S(G ∗H) = S(G) ∩ S(H) = S(H). By Theorem 2.12 (part (b)),
for every state v ∈ VH there exists a state 〈u, u′〉 ∈ VG′ ⊆ VG∗H such that

FH(v) = FG′

(
〈u, u′〉

)
⊆ FG∗H

(
〈u, u′〉

)
⊆ FG(u),

as desired.

Given some presentation of an irreducible constrained system S, the Shannon cover can
be constructed as follows: First, use the determinizing construction of Section 2.2.1 to find
a deterministic presentation G of S. By Lemma 2.9, S is presented by one of the irreducible
components, say H , of G. Using Lemma 2.13, we can identify H among the irreducible
components of G: for every other irreducible component H ′ of G, we must have S(H ′) ⊆
S(H). Next, use the Moore algorithm of Section 2.6.2 (in particular, Proposition 2.10)
to merge follower-set equivalent states in H to obtain an irreducible reduced deterministic
graph. The latter is, by Theorem 2.12(a), the Shannon cover of S.

As an example, the labeled graph in Figure 2.3 is a deterministic presentation of the
(0, 1)-RLL constrained system, but it is not the Shannon cover because states 0 and 2 have
the same follower set. Indeed, the labeled graph in Figure 2.2 is the Shannon cover of the
(0, 1)-RLL constrained system because it is deterministic, irreducible, and 0 is the label of
an outgoing edge from state 0, but not from state 1. Note that if we merge states 0 and 2
in the labeled graph of Figure 2.3, we get the Shannon cover in Figure 2.2. The reader can
verify that the Shannon cover of an RLL constrained system is the labeled graph depicted
in Figure 1.3 in Chapter 1 and that Figure 1.14 displays the Shannon cover of a charge
constrained system.

We end this section by pointing out the intrinsic nature of the follower sets of the states
in the Shannon cover of an irreducible constrained system.

For a constrained system S and a word w ∈ S, the tail set FS(w) is the set of all words
z such that wz ∈ S. A word w ∈ S is a magic word if, whenever zw and wz′ are in S, so is
zwz′.

Proposition 2.14 Let S be an irreducible constrained system. The homing words of the
Shannon cover of S coincide with the magic words of S, and the follower sets of the states
of the Shannon cover coincide with the tail sets of the magic words of S.

The proof of this proposition is left to the reader (Problem 2.22).

2.6.5 Shannon cover of finite-type constrained systems

The Shannon cover can be used to detect the finite-type and almost-finite-type properties.

CHAPTER 2. CONSTRAINED SYSTEMS 59

Proposition 2.15 An irreducible constrained system is finite-type (respectively, almost-
finite-type) if and only if its Shannon cover has finite memory (respectively, finite co-
anticipation).

Proof. We first prove this for finite-type systems. Let S be an irreducible finite-type
constrained system. By Proposition 2.5 and Lemma 2.4, there is a presentation G of S
with finite memory. Also, by Lemma 2.9, there is an irreducible component G′ of G such
that S = S(G′). Since G′ is an irreducible graph with finite memory, then it must be
deterministic. By merging states in G′, we obtain the Shannon cover of S. Therefore, the
Shannon cover of an irreducible finite-type constrained system S must have finite memory.

Now, assume that S is an irreducible almost-finite-type constrained system. There is a
presentation H of S which has finite co-anticipation and finite anticipation. It is not hard
to see that the determinizing construction, introduced in Section 2.2.1, preserves finite co-
anticipation. Thus, by Lemma 2.1, we may assume that H is actually deterministic. By
Lemma 2.9, we may assume that H is irreducible. Then, by Theorem 2.12, the reduced
labeled graph obtained from H is the Shannon cover G of S. In particular, this gives a
graph homomorphism from H to G; that is, there is a mapping f ∗ from states of H to states
of G and a mapping f from edges of H to edges of GS such that f is label-preserving and
the initial (respectively, terminal) state of f(e) is f ∗(σH(e)) (respectively, f

∗(τH(e))).

Suppose, for the moment, that H is also co-deterministic. Create a new labeled graph H̄
from H by replacing the edge label of an edge e by f(e). Then H̄ presents the constrained
system S̄ defined by labeling the edges of G distinctly. Moreover, H̄ is co-deterministic since
H is. When we merge H to form G, we are also merging H̄ to form the Shannon cover Ḡ
of S̄, and by reversing the arrows, we see that any two states in H̄ that are merged via f ∗

have the exact same set of incoming f -labels. So, whenever f ∗(v′) = v, the set of f -labels of
the incoming edges to v′ is precisely the set of incoming edges to v.

We claim that G is co-deterministic. If not, then there are two edges e1 and e2 in G with
the same terminal state v and label. Let v′ be any state of H̄ such that f ∗(v′) = v. Then
there are edges e′1 and e

′
2 in H̄ with terminal state v′ and labels e1 and e2. The edges e

′
1 and

e′2, viewed as edges in H , then have the same labels, contradicting the co-determinism of H .
Thus, G is co-deterministic and in particular has finite co-anticipation.

Now, the general case can be reduced to the special case where H is co-deterministic by a
backwards determinizing procedure. This procedure shows that, in fact, the co-anticipation
of G is at most the co-anticipation of H . We leave the details of this to the reader.

From the previous result, we see that the constrained system presented by the labeled
graph in Figure 2.19 is not almost-finite-type. Specifically, one can easily verify that the
labeled graph in Figure 2.19 is the Shannon cover of the constrained system it presents.
However, it does not have finite co-anticipation, as can be confirmed by looking at the paths
that generate words of the form · · ·aaaab.

CHAPTER 2. CONSTRAINED SYSTEMS 60

0

1

2

✴

b

✲a
✛

b

♦ c

✛ a

❄
a

Figure 2.19: Constrained system which is not almost-finite-type.

2.7 Testing algorithms

In this section, we outline efficient algorithms for testing losslessness, finite anticipation,
finite memory, and definiteness of a given labeled graph.

2.7.1 Testing for losslessness

The algorithm for testing losslessness of a given labeled graph is due to Even [Even65] and
is based on the following proposition (see also [Huff59] and [Koh78, Ch. 14]).

Proposition 2.16 A labeled graph G is lossless if and only if for every u, u′ ∈ VG, there
is no path in the fiber product G ∗ G from state 〈u, u〉 to state 〈u′, u′〉 that passes through a
state of the form 〈v, v′〉, v 6= v′.

(Recall that we assume that labeled graphs do not contain parallel edges that are labeled
the same; such graphs would necessarily be lossy and Proposition 2.16 would not apply to
them.)

Proposition 2.16 implies the following algorithm for testing the losslessness of a given
labeled graph G. We start by constructing the fiber product G ∗G. Let U denote the states
in G∗G of the form 〈u, u〉 for some u ∈ VG, and let W be the set of all states 〈v, v′〉 in G∗G,
v 6= v′, with an incoming edge from a state in U . To verify that no path which starts in W
terminates in U , we proceed as follows: For ℓ = 0, 1, . . . , |VG|2−1, we mark iteratively the
states in G ∗ G that can be reached from W by a path of length ≤ ℓ (this is known as the
breadth-first-search (BFS) procedure [Even79]). Then check whether any of the states in U
has been marked.

CHAPTER 2. CONSTRAINED SYSTEMS 61

2.7.2 Testing for finite anticipation

A similar algorithm, also due to Even [Even65], allows us to find the anticipation of a given
labeled graph. The algorithm is based on the following.

Proposition 2.17 Let G be a labeled graph and denote by W the set of all states 〈v, v′〉
in G ∗G, v 6= v′, with an incoming edge from a state of the form 〈u, u〉. Then, G has finite
anticipation if and only if no path in G ∗ G that starts at any state in W contains a cycle.
If W is empty, then G is deterministic and A(G) = 0. Otherwise, the length of the longest
path from W equals A(G)− 1.

The anticipation of G can therefore be efficiently computed by constructing a sequence
of graphs H0, H1, H2, . . . , Ht, where H0 = G∗G and Hi is obtained from Hi−1 by deleting all
states in Hi−1 with no outgoing edges. The procedure terminates when Hi−1 = Hi or when
Hi contains no states that belong to the set W . In the latter case, the number of iterations,
t, equals the anticipation of G. Otherwise, if Ht does contain states ofW , then G has infinite
anticipation.

Noting that 〈v, v′〉 and 〈v′, v〉 are follower-set equivalent states in G∗G, we can construct
a reduced labeled graph G′ out of G∗G, where each such pair of states merges into one state
of G′. The labeled graph G′ will contain at most |VG| states of the form 〈u, u〉, u ∈ V , and
at most |VG|(|VG|−1)/2 states of the form 〈v, v′〉, v 6= v′. Now, Proposition 2.17 applies also
to the paths in G′. The longest path in G′ that neither visits the same state twice, nor visits
states of the form 〈u, u〉, is of length |VG|(|VG|−1)/2− 1. Hence, we have the following.

Corollary 2.18 Let G be a labeled graph. If G has finite anticipation, then A(G) ≤
|VG|(|VG|−1)/2.

There are constructions of labeled graphs G that attain the bound of Corollary 2.18 for
every value of |VG| [Koh78, Appendix 14.1].

2.7.3 Testing for finite memory

The following is basically contained in [PRS63] and [Koh78, Ch. 14] (see Problem 2.24).

Proposition 2.19 Let G be a labeled graph. Then, G has finite memory if and only if
there exists an integer N such that all paths in G ∗G of length N terminate in states of the
form 〈u, u〉, u ∈ VG. The smallest such N , if any, equalsM(G).

CHAPTER 2. CONSTRAINED SYSTEMS 62

In particular, in view of Proposition 2.15, given an irreducible constrained system S, we
can apply Proposition 2.19 to the Shannon cover of S to check whether S has finite memory.

The following corollary is the counterpart of Corollary 2.18 for the memory of a labeled
graph.

Corollary 2.20 Let G be a labeled graph. If G has finite memory, then M(G) ≤
|VG|(|VG|−1)/2.

The bound of Corollary 2.20 is tight [Koh78, Ch. 14, Problems].

2.7.4 Testing for definiteness

Next we outline an efficient test for determining whether a given labeled graph G is (m, a)-
definite. (Note that we could use a test for definiteness also for testing finite memory.
However, to this end, Proposition 2.19 provides a faster algorithm.)

Let G be a labeled graph and let AG∗G be the adjacency matrix of G∗G. Denote by BG∗G
the |VG|2× |VG|2 matrix whose rows and columns are indexed by the states of G ∗G and for
every u, u′, v, v′ ∈ VG, the entry (BG∗G)〈u,u′〉,〈v,v′〉 equals the number of pairs of distinct edges
u→ v and u′ → v′ in G that have the same label. In other words,

(BG∗G)〈u,u′〉,〈v,v′〉 =

{
(AG∗G)〈u,u′〉,〈v,v′〉 if u 6= u′ or v 6= v′

(AG∗G)〈u,u′〉,〈v,v′〉 − (AG)u,v if u = u′ and v = v′
.

Proposition 2.21 A labeled graph G is (m, a)-definite if and only if

Am
G∗GBG∗GA

a
G∗G = 0 .

The proof is left as an exercise (Problem 2.25).

Problems

Problem 2.1 Let G be a labeled graph.

1. Show that G has a unique maximal essential subgraph H.

2. Let S be the constrained system defined by G, and let S′ be the subset of S consisting of
all words w such that for any integer ℓ there are words z and z′ of length ℓ such that zwz′

belongs to S. Show that S′ is the constrained system presented by H.

CHAPTER 2. CONSTRAINED SYSTEMS 63

Problem 2.2 Let G be a graph and let G′ and G′′ be the Moore form and Moore co-form of G,
respectively. Prove the following claims:

1. Edges with the same terminal state in G′ have the same labels, and edges with the same
initial state in G′ have the same labels.

2. If the out-degrees of the states in G are all equal to n, then so are the out-degrees of the
states in G′ and G′′.

3. A(G′) = A(G).

4. A(G′′) ≤ A(G) + 1. When is this inequality strict?

Problem 2.3 Let G be the graph in Figure 2.20 with labels over the alphabet Σ = {a, b, c}. Show

B F

A E

C D

✲a
✛

b

✛ a

❄

c

❄

c

✻

a ✲a

✒

a

✯
a

❘

a
❨

b

❘

c

Figure 2.20: Graph G for Problem 2.3.

that the anticipation of G is 3.

Problem 2.4 Let G be the graph in Figure 2.21 with labels over the alphabet Σ = {a, b, c}. Show
that the anticipation of G is 4.

Problem 2.5 Find the memory of the graph G in Figure 2.22.

Problem 2.6 Let S be a constrained system with finite memoryM≥ 1 over an alphabet Σ.

1. Show that for every constrained system S′ over Σ,

S′ ⊆ S if and only if (S′ ∩ Σi) ⊆ (S ∩ Σi) for every i = 1, 2, . . . ,M+1 .

2. Show that there exists a constrained system S′ that is not contained in S, yet satisfies the
containment

(S′ ∩ Σi) ⊆ (S ∩Σi) for every i = 1, 2, . . . ,M .

CHAPTER 2. CONSTRAINED SYSTEMS 64

B

A

C

E

D

❄

b

✛ c

❄

a

✲a
✛

c

✯

a

❥

b❨
a

✯
a

❨

c

Figure 2.21: Graph G for Problem 2.4.

A

B

✲a C

❄
c

✼
b

♦
e

✇
a

✇

b

✛
f

✛
g

✛ d

Figure 2.22: Graph G for Problem 2.5.

Problem 2.7 Prove Proposition 2.6.

Problem 2.8 Show that if S1 and S2 are constrained systems that are almost-finite-type, then so
is S1 ∩ S2.

Problem 2.9 Let G1 and G2 be graphs and G1 ∗G2 be the fiber product of G1 and G2.

1. Show that S(G1 ∗G2) = S(G1) ∩ S(G2).

2. Prove or disprove the following:

(a) If G1 and G2 are both lossless, then so is G1 ∗G2.

(b) If G1 ∗G2 is lossless, then so are both G1 and G2.

Problem 2.10 Let G1 and G2 be graphs with finite memory. Show that

M(G1 ∗G2) ≤ max{M(G1),M(G2)} .

Problem 2.11 Let G be the graph presentation of a 4-charge constrained system in Figure 2.23.

CHAPTER 2. CONSTRAINED SYSTEMS 65

0 1 2 3 4
✲+1

✛
−1

✲+1
✛
−1

✲+1
✛
−1

✲+1
✛
−1

Figure 2.23: Graph G for Problem 2.11.

1. Find a shortest homing word for every state in G.

2. What can be said about the memory of G?

Problem 2.12 Let G be the graph in Figure 2.24.

u1 u2 u3 u4

u8 u7 u6 u5

❄

1

❄

1

❄

1

❄

1

✲
0

✲
0

✲
0

✛ 0 ✛ 0 ✛ 0

✲

0

✛

0

Figure 2.24: Graph G for Problem 2.12.

1. Find a shortest homing word in G.

2. What can be said about the memory of G?

Problem 2.13 Let S be the constrained system presented by the graph G in Figure 2.25.

A B C D E
✲a

✛
b

✲a
✛

a
✲b

✛
a

✲b
✛

b
❖

c
✻

a

Figure 2.25: Graph G for Problem 2.13.

1. Find a shortest homing word for every state in G.

2. Construct the graph G2.

CHAPTER 2. CONSTRAINED SYSTEMS 66

3. Find the memory of each irreducible component of G2.

4. What can be said about the memory of G2?

Problem 2.14 Let G1 and G2 be graphs. Show that w is a homing word of G1 ∗ G2 if and only
if w is a homing word of both G1 and G2.

Problem 2.15 Let G be an irreducible graph and let G′ and G′′ be the Moore form and Moore
co-form of G, respectively. Show that both G′ and G′′ are irreducible.

Problem 2.16 Let G be the fiber product of the graphs in Figure 1.15 and Figure 1.16; note that
G presents the 6–(1, 3)-CRLL constrained system.

1. Draw the graph G.

2. Show that one of the irreducible components of G2 can be reduced to the graph H in Fig-
ure 2.26.

〈4, 0〉 〈0, 0〉 〈4, 1〉
〈4, 2〉 〈2, 1〉

〈2, 2〉 〈2, 0〉

〈4, 3〉

❄
01

✲
01

✛ 01 ✛
01

✲10
✛

10

✲00
✛

10

✲01

✼
00

♦
01

✴
00

✇
10

Figure 2.26: Graph H for Problem 2.16.

Problem 2.17 Let S0 be an irreducible constrained system and let G be a graph such that S0 ⊆
S(G). Show that there is an irreducible component H of G such that S0 ⊆ S(H).

Problem 2.18 Let S1 and S2 be irreducible constrained systems such that S1 ⊆ S2.

1. Show that there is an irreducible deterministic presentation H1 of S1 that is a subgraph of
an irreducible deterministic presentation H2 of S2.

Hint: Let G1 and G2 be the Shannon covers of S1 and S2, respectively, and, as in the proof
of Lemma 2.13, consider an irreducible component H1 of G1 ∗ G2 that presents S1. Show
how H1 can be extended to an irreducible deterministic graph H2 such that S(H2) = S2.

CHAPTER 2. CONSTRAINED SYSTEMS 67

2. Show by example that not always can H1 be taken as the Shannon cover of S1; that is, for the
provided example, the Shannon cover of S1 is not a subgraph of any irreducible deterministic
presentation of S2.

3. Show by example that not always can H2 be taken as the Shannon cover of S2.

Problem 2.19 Let G and H be deterministic graphs where H is irreducible. Suggest an efficient
algorithm for determining whether S(H) ⊆ S(G).

Problem 2.20 Let G be a deterministic graph that presents an irreducible constrained system
S (but G is not necessarily irreducible). It follows from Lemmas 2.8 and 2.9 that G contains an
irreducible component G′ such that S(G) = S(G′). Suggest an efficient algorithm for finding G′.

Hint: See Problem 2.19

Problem 2.21 Let S be an irreducible constrained system with finite memory. Show that the
memory of S equals the memory of the Shannon cover of S.

Problem 2.22 Prove Proposition 2.14.

Problem 2.23 Let G be a labeled graph and let W be the subset of states of G ∗ G as defined
in Proposition 2.17. Denote by x = (x〈v,v′〉)〈v,v′〉 the characteristic vector of W as a subset of the
states of G ∗G; that is, the entries of x are indexed by the states of G ∗G, and

x〈v,v′〉 =

{
1 if 〈v, v′〉 ∈W
0 otherwise

.

1. Show that G has finite anticipation if and only if there is a nonnegative integer ℓ such that

xAℓ
G∗G = 0 .

2. Show that if G has finite anticipation, then its anticipation is the smallest nonnegative integer
ℓ that satisfies the equality in 1.

Problem 2.24 Let G = (V,E,L) be a deterministic graph and let H be the graph obtained from
G ∗G by deleting the set of states {〈v, v〉 : v ∈ V }, with their incident edges.

1. Show that G has finite memory if and only if H has no cycles.

2. Show that if G has finite memory, then the memory is bounded from above by |V |(|V |−1)/2.

Problem 2.25 Prove Proposition 2.21.

CHAPTER 2. CONSTRAINED SYSTEMS 68

Problem 2.26 Let U be a set of positive integers (U may be either finite or infinite). The U-gap
system is defined as the set of all sub-words of all binary words in which each runlength of 0’s
belongs to U .

1. Let U be the set of even integers. Show that the U -gap system is a constrained system but
has no finite memory.

2. Let U be the set of prime integers. Show that the U -gap system is not a constrained system.

3. Formulate complete necessary and sufficient conditions on U for the U -gap system to be—

(a) a constrained system;

(b) a constrained system with finite memory.

Chapter 3

Capacity

In this chapter we introduce and study the notion of capacity, which is one of the most im-
portant parameters related to constrained systems. In the context of coding, the significance
of capacity will be made apparent in Chapter 4, where we show that it sets an (attainable)
upper bound on the rate of any finite-state encoder for a given constrained system.

The definition of capacity is given in Section 3.1. We then provide two other characteriza-
tions of capacity—an algebraic and a probabilistic one. The algebraic characterization leads
to a method for computing capacity from any lossless graph presentation of the constrained
system (see Theorem 3.4 below).

3.1 Combinatorial characterization of capacity

Let S be a constrained system over an alphabet Σ and denote by N(ℓ;S) the number of
words of length ℓ in S. The base-2 Shannon capacity, or simply capacity of S, is defined by

cap(S) = lim sup
ℓ→∞

1

ℓ
logN(ℓ;S) .

Hereafter, if the base of the logarithms is omitted then it is assumed to be 2.

The Shannon capacity cap(S) of S measures the growth rate of the number of words of
length ℓ in S, in the sense that the N(ℓ;S) is well-approximated by 2ℓ cap(S) for large enough
ℓ.

If |S| = ∞ then 0 ≤ cap(S) ≤ log |Σ|. Otherwise, if S is finite, then cap(S) = −∞. In
the latter case, there are no cycles in any presentation G of S; so each irreducible component
of G is a trivial graph with one state and no edges.

Example 3.1 Let S be the (0, 1)-RLL constrained system which is presented by the

69

CHAPTER 3. CAPACITY 70

graph G shown in Figure 3.1. For u ∈ {0, 1}, denote by xu(ℓ) the number of words of length

0 1
✲

1
✲0

✛
1

Figure 3.1: Shannon cover of the (0, 1)-RLL constrained system.

ℓ that can be generated from state u in G. Then for ℓ ≥ 1,

x0(ℓ) = x0(ℓ−1) + x1(ℓ−1) ,
x1(ℓ) = x0(ℓ−1) ,

and the initial conditions are obtained for ℓ = 0 (the empty word) by

x0(0) = x1(0) = 1 .

So, for ℓ ≥ 2,
x0(ℓ) = x0(ℓ−1) + x0(ℓ−2)

with the initial conditions x0(0) = 1, x0(1) = 2. Hence, x0(ℓ) are Fibonacci numbers and
can be written as

x0(ℓ) = c1λ
ℓ + c2(−λ)−ℓ ,

where λ = (1+
√
5)/2 (the golden mean ratio) and c1 > 0. Since FG(1) ⊆ FG(0) we have

FG(0) = S and
N(ℓ;S) = x0(ℓ) .

Therefore,

cap(S) = log
1+
√
5

2
≈ .6942 .

The ‘lim sup’ in the definition of capacity can be replaced by a proper limit, and
this can be shown in two ways. The most direct method is as follows: first, one
shows that logN(ℓ;S) is a subadditive function—i.e., for all ℓ and m, (logN(ℓ+m;S)) ≤
(logN(ℓ;S)) + (logN(m;S)); then one shows that for any subadditive function f(ℓ), the
limit limℓ→∞(f(ℓ)/ℓ) exists (see [LM95, Lemma 4.1.7]). An alternative method is provided
by Theorem 3.4 below.

The following theorem shows that the capacity of a constrained system S is determined
by the irreducible components of a graph presentation of S.

Theorem 3.1 Let S = S(G) be a constrained system and let G1, G2, . . . , Gk be the irre-
ducible components of G, presenting the irreducible systems Si = S(Gi). Then,

cap(S) = max
1≤i≤k

cap(Si) .

CHAPTER 3. CAPACITY 71

Proof. Clearly, cap(S) ≥ cap(Si) for all i = 1, 2, . . . , k. We now prove the inequality in
the other direction. Any word w ∈ S ∩ Σℓ can be decomposed into sub-words in the form

w = w1z1w2z2 . . . zr−1wr ,

where each wj (possibly the empty word) is generated wholly within one of the irreducible
components of G and each zj is a label of an edge that links two irreducible components. Due
to the partial ordering on the irreducible components of G, once we leave such a component
we will not visit it again in the course of generating w. Hence, r ≤ k and

N(ℓ;S) = |S ∩ Σℓ| ≤ 2k · |Σ|k−1 ·
∑

(ℓ1,ℓ2,...,ℓk)

k∏

i=1

N(ℓi;Si) , (3.1)

where (ℓ1, ℓ2, . . . , ℓk) ranges over all nonnegative integer k-tuples such that ℓ1+ℓ2+. . .+ℓk ≤ ℓ.
In (3.1), the term 2k stands for the number of combinations of the traversed irreducible
components; the term |Σ|k−1 bounds from above the number of possible linking symbols zj ;
and ℓi stands for the length of the sub-word of w ∈ S∩Σℓ that is generated in the irreducible
component Gi.

Without loss of generality we assume that cap(Si) is nonincreasing with i and that h
is the largest index i, if any, for which cap(Si) ≥ 0; namely, Gh+1, Gh+2, . . . , Gk are the
irreducible components of G with one state and no edges. Note that when no such h exists
then cap(S) = −∞ and the theorem holds trivially.

By the definition of capacity, it follows that for every i ≤ h and m ∈ IN we have

N(m;Si) ≤ exp
{
m(cap(Si) + ε(m))

}
≤ exp

{
m(cap(S1) + ε(m))

}
,

where exponents are taken to base 2 and limm→∞ ε(m) = 0. Plugging this with m = ℓi
into (3.1) we obtain

N(ℓ;S) ≤ (2|Σ|)k ·
∑

(ℓ1,ℓ2,...,ℓh)

exp
{(h∑

i=1

ℓi
)
cap(S1)

}
· exp

{ h∑

i=1

ℓiε(ℓi)
}

≤ (2|Σ|)k · (ℓ+ 1)h · exp
{
ℓ cap(S1)

}
·
(

max
(ℓ1,ℓ2,...,ℓh)

exp
{ h∑

i=1

ℓiε(ℓi)
})

,

where (ℓ1, ℓ2, . . . , ℓh) ranges over all nonnegative integer h-tuples such that ℓ1+ℓ2+ . . .+ℓh ≤
ℓ. Defining

δ(ℓ) =
1

ℓ
max

(ℓ1,ℓ2,...,ℓh)

h∑

i=1

ℓiε(ℓi) ,

we obtain
1

ℓ
logN(ℓ;S) ≤ cap(S1) +

k log(2|Σ|(ℓ+ 1))

ℓ
+ δ(ℓ) .

CHAPTER 3. CAPACITY 72

Hence, in order to complete the proof, it suffices to show that limℓ→∞ δ(ℓ) = 0. We leave
this as an exercise (Problem 3.2).

The following useful fact is a straightforward consequence of the definition of capacity.
The proof is left as an exercise (see Problem 3.1).

Proposition 3.2 For any constrained system S and positive integer ℓ,

cap(Sℓ) = ℓ · cap(S) .

3.2 Algebraic characterization of capacity

In this section, we present an algebraic method for computing the capacity of a given con-
strained system. This method is based on Perron-Frobenius theory of nonnegative matrices.
Our full treatment of Perron-Frobenius theory is deferred to Section 3.3. Still, we will pro-
vide here a simplified version of the theorem so that we can demonstrate how it is applied
to the computation of capacity. We start with the following definition.

A nonnegative real square matrix A is called irreducible if for every row index u and
column index v there exists a nonnegative integer ℓu,v such that (Aℓu,v)u,v > 0.

For a square real matrix A, we denote by λ(A) the spectral radius of A—i.e., the largest
of the absolute values of the eigenvalues of A.

The following is a short version of Perron-Frobenius theorem for irreducible matrices.

Theorem 3.3 Let A be an irreducible matrix. Then λ(A) is an eigenvalue of A and
there are right and left eigenvectors associated with λ(A) that are strictly positive; that is,
each of their components is strictly positive.

The following theorem expresses the capacity of an irreducible constrained system S in
terms of the adjacency matrix of a lossless presentation of S.

Theorem 3.4 Let S be an irreducible constrained system and let G be an irreducible
lossless (in particular, deterministic) presentation of S. Then,

cap(S) = log λ(AG) .

We break the proof of Theorem 3.4 into two lemmas.

CHAPTER 3. CAPACITY 73

Lemma 3.5 Let A be an irreducible matrix. Then, for every row index u,

lim
ℓ→∞

1

ℓ
log

(∑

v

(Aℓ)u,v
)
= log λ(A) .

Furthermore,

lim
ℓ→∞

1

ℓ
log

(∑

u,v

(Aℓ)u,v
)
= log λ(A) .

Proof. We make use of a positive right eigenvector x associated with the eigenvalue
λ = λ(A). Let xmax and xmin denote the maximal and minimal components of x, respectively.
Both xmax and xmin are strictly positive. For each row index u we have

xmin

∑

v

(Aℓ)u,v ≤
∑

v

(Aℓ)u,vxv = λℓxu .

Thus, ∑

v

(Aℓ)u,v ≤
xu
xmin

· λℓ .

Replacing xmin by xmax and reversing the direction of the inequalities, we get
∑

v

(Aℓ)u,v ≥
xu
xmax

· λℓ .

It thus follows that the ratio of
∑

v(A
ℓ)u,v to λℓ is bounded above and below by positive

constants and, so, these two quantities grow at the same rate. The same holds with respect
to
∑

u,v(A
ℓ)u,v.

Lemma 3.6 Let S be an irreducible constrained system and let G be an irreducible loss-
less presentation of S. Then,

cap(S) = lim
ℓ→∞

1

ℓ
log

(∑

u,v

(Aℓ
G)u,v

)
.

Proof. Recall that
∑

u,v(A
ℓ
G)u,v is the number of paths of length ℓ in G. Now, every word

of length ℓ in S can be generated by at least one path in G. On the other hand, since G is
lossless, every word in S can be generated by at most |VG|2 paths in G. Hence, the number,
N(ℓ;S), of words of length ℓ in S is bounded from below and above by

1

|VG|2
·
∑

u,v

(Aℓ
G)u,v ≤ N(ℓ;S) ≤

∑

u,v

(Aℓ
G)u,v .

Therefore,

cap(S) = lim
ℓ→∞

1

ℓ
logN(ℓ;S) = lim

ℓ→∞
1

ℓ
log

(∑

v

(Aℓ)u,v
)
= log λ(A) .

Note that we have established here that ‘lim sup’ can indeed be replaced by a proper limit.

CHAPTER 3. CAPACITY 74

Example 3.2 For the (0, 1)-RLL constrained system presented by the deterministic
graph in Figure 3.1, the adjacency matrix is

AG =

(
1 1
1 0

)
,

with largest eigenvalue λ = (1+
√
5)/2 and capacity log λ ≈ .6942.

Example 3.3 For 0 ≤ d ≤ k < ∞, let G(d, k) denote the Shannon cover in Figure 1.3
of the (d, k)-RLL constrained system. It can be shown that λ(AG(d,k)) is the largest positive
solution of the equation

zk+2 − zk+1 − zk−d+1 + 1 = 0

(see Problem 3.19). This in turn, allows to compute the capacity of any (d, k)-RLL con-
strained system. Table 3.1 (taken from [Imm91]) contains the capacity values of several
(d, k)-RLL constrained systems.

k\d 0 1 2 3 4 5 6

1 .6942
2 .8791 .4057
3 .9468 .5515 .2878
4 .9752 .6174 .4057 .2232
5 .9881 .6509 .4650 .3218 .1823
6 .9942 .6690 .4979 .3746 .2669 .1542
7 .9971 .6793 .5174 .4057 .3142 .2281 .1335
8 .9986 .6853 .5293 .4251 .3432 .2709 .1993
9 .9993 .6888 .5369 .4376 .3630 .2979 .2382
10 .9996 .6909 .5418 .4460 .3746 .3158 .2633
11 .9998 .6922 .5450 .4516 .3833 .3282 .2804
12 .9999 .6930 .5471 .4555 .3894 .3369 .2924
13 .9999 .6935 .5485 .4583 .3937 .3432 .3011
14 .9999 .6938 .5495 .4602 .3968 .3478 .3074
15 .9999 .6939 .5501 .4615 .3991 .3513 .3122
∞ 1.0000 .6942 .5515 .4650 .4057 .3620 .3282

Table 3.1: Capacity values of several (d, k)-RLL constrained systems.

Example 3.4 Consider the 2-charge constrained system whose Shannon cover is given
by the graph G in Figure 3.2. The adjacency matrix of G is given by

AG =

0 1 0
1 0 1
0 1 0

 ,

CHAPTER 3. CAPACITY 75

0 1 2
✲+

✛
−

✲+
✛
−

Figure 3.2: Shannon cover of the 2-charge constrained system.

with eigenvalues ±
√
2 and 0. Hence, the capacity of the 2-charge constrained system is

log
√
2 = 1/2.

More generally, if GB is the Shannon cover in Figure 1.14 of the B-charge constrained
system, then it can be shown that

λ(AGB
) = 2 cos

(
π

B+2

)

(see Problem 3.20). Table 3.2 lists the values of log λ(AGB
) for several values of B.

B 1 2 3 4 5 6 7 8 9 10 11 12

.0000 .5000 .6942 .7925 .8495 .8858 .9103 .9276 .9403 .9500 .9575 .9634

Table 3.2: Capacity values of several B-charge constrained systems.

It turns out that Theorem 3.4 and Lemma 3.6 hold for any constrained system S and
lossless graph G, irreducible or reducible. We show this next.

Theorem 3.7 Let S be a constrained system and let G be a lossless presentation of S.
Then, there is an irreducible constrained system S ′ ⊆ S such that

cap(S ′) = cap(S) = log λ(AG) .

Proof. Let G1, G2, . . . , Gk be the irreducible components of G and denote by Ai the
adjacency matrix of Gi. By reordering the states, we can assume that the adjacency matrix
A of G has the block-triangular form of Figure 3.3. Since the set of eigenvalues of A is the
union of the set of eigenvalues of the matrices Ai, we obtain

λ(A) =
k

max
i=1

λ(Ai) .

The result now follows from Theorem 3.1.

CHAPTER 3. CAPACITY 76

A =

A1 B1,2 B1,3 · · · B1,k

A2 B2,3 · · · B2,k

A3
. . .

...
. . . Bk−1,k

Ak

.

Figure 3.3: Block-triangular form.

3.3 Perron-Frobenius theory

In this section, we present a more extensive treatment of Perron-Frobenius theory. We have
already exhibited one application of this theory—namely, providing a means for computing
capacity. In fact, as we show in Chapters 5 and 7, this theory also serves as a major tool for
constructing and analyzing constrained systems.

3.3.1 Irreducible matrices

Recall that a nonnegative real square matrix A is called irreducible if for every row index
u and column index v there exists a nonnegative integer ℓu,v such that (Aℓu,v)u,v > 0. A
nonnegative real square matrix that is not irreducible is called reducible .

The 1 × 1 matrix A =
(
0
)
will be referred to as the trivial irreducible matrix. The

trivial irreducible matrix is the adjacency matrix of the trivial irreducible graph (which has
one state and no edges).

Irreducibility of a nonnegative real square matrix A depends on the locations (row and
column indexes) of the nonzero entries in A, and not on their specific values. For example,
irreducibility would be preserved if we changed each nonzero entry in A to 1. Therefore, the
following definition is useful.

Let A be a nonnegative real square matrix. The support graph of A is a graph G with
a state for each row in A and an edge u → v if and only if (A)u,v > 0. Note that A is
irreducible if and only if its support graph G is irreducible, and G is irreducible if and only
if its adjacency matrix AG is irreducible.

In analogy with graphs, we can now define an irreducible component of a nonnegative
real square matrix A as an irreducible submatrix of A whose support graph is an irreducible
component of the support graph of A. The term irreducible sink extends to matrices in a
straightforward manner. By applying the same permutation on both the rows and columns
of A, we can obtain a matrix in upper block-triangular form with its irreducible components,
A1, A2, . . . , Ak, as the block diagonals, as shown in Figure 3.3.

CHAPTER 3. CAPACITY 77

We will use in the sequel the following notations. Let A and B be real matrices (in
particular, vectors) of the same order. We write A ≥ B (respectively, A > B) if the weak
(respectively, strict) inequality holds component by component. We say that A is strictly
positive if A > 0.

3.3.2 Primitivity and periodicity

Let G be a nontrivial irreducible graph. We say that G is primitive if there exists a (strictly)
positive integer ℓ such that for every ordered pair of states (u, v) of G there is a path of
length ℓ from u to v. Equivalently, Aℓ

G is strictly positive; note that this implies that Am
G is

strictly positive for every m > ℓ, since the adjacency matrix of a nontrivial irreducible graph
cannot have all-zero rows or columns. Observe that the trivial matrix is not a primitive
matrix.

Let G be a nontrivial irreducible graph. The period of G is the greatest common divisor
of the lengths of all cycles in G. We say that G is aperiodic if its period is 1.

It is not difficult to check that the graph in Figure 3.1 (which presents the (0, 1)-RLL
constrained system) is aperiodic and the graph in Figure 3.2 (which presents the 2-charge
constrained system) has period 2.

Proposition 3.8 A nontrivial irreducible graph is aperiodic if and only if it is primitive.

Proof. Let G be a primitive graph. Then there exists a positive integer ℓ such that Aℓ
G

is strictly positive, and therefore so is Aℓ+1
G . In particular, there exist cycles in G of lengths

ℓ and ℓ+1. Hence, G is aperiodic.

Conversely, assume that G = (V,E, L) is aperiodic and let Γ1,Γ2, . . . ,Γk be cycles in G of
lengths t1, t2, . . . , tk, respectively, such that gcd(t1, t2, . . . , tk) = 1. By the extended Euclidean
algorithm, there exist integers b1, b2, . . . , bk such that

∑k
i=1 biti = gcd(t1, t2, . . . , tk) = 1.

Define the constants
M = (2|V | − 1)

k
max
i=1
|bi|

and
ai,j =M − jbi , i = 1, 2, . . . , k , j = 0, 1, . . . , 2|V | − 2 .

Note that each ai,j is a positive integer.

For i = 1, 2, . . . , k, let ui be the initial (and terminal) state of the cycle Γi and let πi be a
path from ui to ui+1 in G (see Figure 3.4). For j = 0, 1, . . . , 2|V | − 2, define the path γj by

γj = Γ
a1,j
1 π1Γ

a2,j
2 π2 . . . πk−1Γ

ak,j
k .

That is, γj starts at state u1, then circles a1,j times along Γ1, then follows the edges of π1 to
reach u2, next circles a2,j times along Γ2, and so on, until it terminates in uk. Denote by r

CHAPTER 3. CAPACITY 78

u1

Γ1 ❄
✲
π1 u2

Γ2 ❄
✲
π2 u3

. . .
uk−1

✲
πk−1 uk

Γk ❄

Figure 3.4: Paths for the proof of Proposition 3.8.

the length of the path π1π2 . . . πk−1. For each j = 0, 1, . . . , 2|V | − 2, the length of γj is given
by

r +
k∑

i=1

ai,jti = r +
k∑

i=1

(M − jbi)ti = (r +M ·
k∑

i=1

ti
)
− j

k∑

i=1

biti = ℓ− j ,

where ℓ = r +M ·∑k
i=1 ti is independent of j.

Now, let u and v be states in G and let π0 and πk be the shortest paths in G from u to
u1 and from uk to v, respectively. Since π0 and πk each has length smaller than |V |, there
exists one path γj such that the length of π0γjπk is exactly ℓ. Hence, (Aℓ

G)u,v > 0.

Lemma 3.9 Let u and v be two states in a nontrivial irreducible graph G with period p.
Then all paths in G from state u to state v have congruent lengths modulo p.

Proof. Let γ1 and γ2 be two paths from u to v in G of lengths ℓ1 and ℓ2, respectively.
Also, let γ3 be a path of length ℓ3 from v to u. Since γ1γ3 and γ2γ3 are cycles, their lengths
must be divisible by p. Therefore,

ℓ1 + ℓ3 ≡ ℓ2 + ℓ3 ≡ 0 (mod p) .

Hence the result.

Let G be a nontrivial irreducible graph with period p. Two states u and v in G are called
congruent, denoted u ≡ v, if there is a path in G from u to v of length divisible by p. It can
be readily verified that congruence is an equivalence relation that induces a partition on the
states into equivalence classes.

Let C0 be such an equivalence class, and for r = 1, 2, . . . , p−1, let Cr be the set of terminal
states of edges in G whose initial states are in Cr−1, thus forming the sequence

C0 → C1 → . . .→ Cp−1 .

The sets C0, C1, . . . , Cp−1 are necessarily all distinct, or else we would have a cycle in G whose
length is less than p. The outgoing edges from Cp−1 end path of length p that originate in
C0 and, so, their terminal states belong to C0. It follows that the sets Cr form a partition of
the set of states of G. In fact, each Cr is an equivalence of the congruence relation. Indeed,
consider two states u, v ∈ Cr. There are paths in G,

u→ ur+1 → ur+2 → . . .→ up−1 → u0 ,

CHAPTER 3. CAPACITY 79

and
v0 → v1 → v2 → . . .→ vr−1 → v ,

of lengths p−r and r, respectively, where ur, vr ∈ Cr; and since u0 and v0 are congruent,
then so are u and v.

Example 3.5 The graph in Figure 3.2 has period 2, and the equivalence classes of the
congruence relation are given by C0 = {0, 2} and C1 = {1}.

The definitions of period and primitivity extend to irreducible matrices through their
support graphs as follows. Let A be a nontrivial irreducible matrix. The period p = p(A)
of A is the period of the support graph of A. A nontrivial irreducible matrix A is called
primitive if the support graph of A is primitive.

Theorem 3.10 Let A be a nontrivial irreducible matrix with period p and let

C0, C1, . . . , Cp−1

be the equivalence classes of the congruence relation defined on the states of the support graph
of A, where edges that start in Cr terminate in Cr+1 (C0 if r = p−1).

(a) The nonzero entries of A all belong to p submatrices B0, B1, . . . , Bp−1 of A, where
each Br has order |Cr| × |Cr+1| (|Cp−1| × |C0| if r = p−1).

(b) Ap decomposes into p irreducible components A0, A1, . . . , Ap−1, where

Ar = BrBr+1 · · ·Bp−1B0 · · ·Br−1 .

Furthermore, the entries of Ap that do not belong to any of the irreducible components are
all zero (i.e., the irreducible components of the support graph of Ap are isolated).

(c) Each irreducible component Ar of Ap is primitive.

(d) The irreducible components of Ap all have the same set of nonzero eigenvalues, with
the same multiplicity.

We present below a (partial) proof of the theorem. The statement of the theorem can be
seen more clearly if we apply the same permutation on the rows and columns of A so that
for r = 1, 2, . . . , p−1, the states of Cr follow those of Cr−1. In such a case, A and Ap take

CHAPTER 3. CAPACITY 80

the form

B0

B1

. . .

Bp−2

Bp−1

and

A0

A1

. . .

Ap−2

Ap−1

,

respectively. Note that the classes Cr need not necessarily be of the same size and the
irreducible components Ar thus do not necessarily have the same order: different orders
indicate different multiplicity of the zero eigenvalue.

Example 3.6 Continuing Example 3.5, consider again the graph G in Figure 3.2, which
has period 2 and the equivalence classes of the congruence relation are C0 = {0, 2} and
C1 = {1}. As mentioned in Example 3.4, the adjacency matrix of G is given by

AG =

0 1 0
1 0 1
0 1 0

 ,

and after permuting the rows and columns of AG so that the element(s) of C1 follow those
of C0, we obtain the matrix

A =

0 0 1
0 0 1
1 1 0

 =

0 B0

B1 0

 ,

where

B0 =

(
1
1

)
and B1 =

(
1 1

)
.

The second power of A is given by

A2 =

B0B1 0

0 B1B0

 =

1 1 0
1 1 0
0 0 2

 .

CHAPTER 3. CAPACITY 81

The irreducible components G0 and G1 of G
2 are shown in Figure 2.16, and their adjacency

matrices are

A0 = B0B1 =

(
1 1
1 1

)
and A1 = B1B0 =

(
2
)
,

respectively. The eigenvalues of A0 are 2 and 0, out of which only 2 is an eigenvalue of A1.

Proof of Theorem 3.10. (a) follows from the definition of Cr, and the expression
for Ar in (b) follows from the rules of matrix multiplication. It is left as an exercise (see
Problem 3.10) to show that each Ar is irreducible and primitive and that the nonzero entries
in Ap all belong to the submatrices Ar.

As for (d), let µ be a nonzero eigenvalue of Ar; that is, there exists a nonzero vector x
such that

Arx = µx .

Multiplying both sides by Br−1 we obtain

Br−1Arx = µBr−1x .

Now, Br−1Ar = Ar−1Br−1; so,

Ar−1(Br−1x) = µ(Br−1x) .

Furthermore, the vector Br−1x is nonzero, or else we would have Arx = BrBr+1 . . . Br−1x =
0, contrary to our assumption that µ 6= 0. Hence, it follows that µ is an eigenvalue of Ar−1.
By perturbation it can be shown that µ has the same algebraic multiplicity as an eigenvalue
of Ar and Ar−1.

3.3.3 Perron-Frobenius Theorem

Theorem 3.11 (Perron-Frobenius Theorem for irreducible matrices) [Gant60, Ch. XIII],
[Minc88, Ch. 1], [Sen80, Ch. 1], [Var62, Ch. 2]) Let A be a nontrivial irreducible matrix. Then
there exists an eigenvalue λ of A such that the following holds.

(a) λ is real and λ > 0.

(b) There are right and left eigenvectors associated with λ that are strictly positive; that
is, each of their components is strictly positive.

(c) λ ≥ |µ| for any other eigenvalue µ of A.

(d) The geometric multiplicity of λ is 1; that is, the right and left eigenvectors associated
with λ are unique up to scaling.

CHAPTER 3. CAPACITY 82

Proof. Parts (a) and (b). Let A be of order m×m and define the set

B = {y ∈ IRm : y ≥ 0} .

For y = (yu)u ∈ B, let ρ(y) be defined by

ρ(y) = min
u : yu>0

(Ay)u
yu

.

Denoting by umax the index u for which yu is maximal, we have

0 ≤ ρ(y) ≤ (Ay)umax

yumax

≤
∑

v

Aumax,v ≤ max
u

∑

v

Au,v .

Therefore, the values ρ(y) are uniformly bounded for every y ∈ B. Define

λ = sup
y∈B∗

ρ(y) = sup
y∈B

ρ(y) ,

where B∗ = {(yu)u ∈ B :
∑

u yu = 1}. Since the function y 7→ ρ(y) is continuous over the
compact set B∗, there is some x ∈ B∗ for which ρ(x) = λ. Observing that Ay ≥ ρ(y) · y for
every y ∈ B, it follows that

Ax ≥ λx . (3.2)

Next we show that the latter inequality holds with equality.

Suppose to the contrary that Ax − λx is nonzero (and nonnegative). Define B = (A +
I)m−1, where I is the identity matrix; the matrix B is strictly positive (see Problem 3.14)
and, therefore,

B(Ax− λx) > 0 .

Letting z = (zu)u denote the vector Bx and noting that B commutes with A, we have

Az > λz ,

and, so,

ρ(z) = min
u

(Az)u
zu

> λ = sup
y∈B

ρ(y) ,

thereby reaching a contradiction. We thus conclude that Ax = λx, i.e., λ is an eigenvalue
of A with an associated nonnegative right eigenvector x = (xu)u.

Next we show that both λ and x are strictly positive. Let the index v be such that
xv > 0, and for any index u 6= v, let ℓu,v be a positive integer for which (Aℓu,v)u,v > 0. Then,
from Aℓu,vx = λℓu,vx we obtain

λℓu,vxu = (λℓu,vx)u = (Aℓu,vx)u ≥ (Aℓu,v)u,vxv > 0 .

CHAPTER 3. CAPACITY 83

Hence, λ > 0 and x > 0. This completes the proof of part (a) and the first half of part (b):
we still need to show that there is a strictly positive left eigenvector associated with λ.
However, the existence of such a vector will follow from having, by (c), the same value of λ
for the transpose of A.

Part (c). Let µ be a complex eigenvalue of A with an associated complex right eigenvector
y = (yu)u and define the vector ξ = (ξu)u by ξu = |yu|. Taking the absolute value of both
sides of ∑

v

(A)u,vyv = µ yu ,

we obtain, by the triangle inequality,

(Aξ)u =
∑

v

(A)u,v|yv| ≥
∣∣∣
∑

v

(A)u,vyv
∣∣∣ = |µ|ξu ,

i.e.,
Aξ ≥ |µ|ξ .

Therefore,
|µ| ≤ ρ(ξ) ≤ λ . (3.3)

Part (d). Let x = (xu)u be a strictly positive right eigenvector associated with the
eigenvalue λ. Since λ is real, the linear space of the eigenvectors associated with λ is spanned
by real eigenvectors. Let y = (yu)u be a real right eigenvector associated with λ and suppose
to the contrary that y is linearly independent of x. Then, for α = maxu{yu/xu}, the vector
z = (zu)u = αx − y is a nonnegative (nonzero) right eigenvector associated with λ and
zu = 0 for some index u. From Az = λz we obtain that zv = 0 for every index v such that
(A)u,v > 0. Iterating inductively with each such v, we reach by the irreducibility of A the
contradiction z = 0. The respective proof for left eigenvectors is similar.

Hereafter, we denote the transpose of a vector y by y⊤.

Proposition 3.12 Let A and B be nonnegative real square submatrices of the same
order such that A ≥ B and A is irreducible. Then, λ(A) ≥ λ(B), with equality if and only
if A = B.

Proof. Let z = (zu)u be a right eigenvector of B associated with an eigenvalue µ such
that |µ| = λB = λ(B) and let x = (xu)u be defined by xu = |zu|; from Bz = µz and the
triangle inequality we have

Ax ≥ Bx ≥ λBx , (3.4)

where the first inequality follows from A ≥ B. Let y⊤ be a strictly positive left eigenvector
of A associated with λA = λ(A). Multiplying by y⊤ yields

λAy
⊤x = y⊤Ax ≥ y⊤Bx ≥ λBy

⊤ , (3.5)

CHAPTER 3. CAPACITY 84

and dividing by the positive constant y⊤x, we obtain λA ≥ λB.

Now, if λA = λB, then the inequalities in (3.5) must hold with equality. In fact, this is
also true for the inequalities in (3.4), since y⊤ is strictly positive; that is,

Ax = Bx = λBx = λAx .

It follows that x is a nonnegative right eigenvector of A associated with λA; as such, it must
be strictly positive. Combining this with Bx = Ax and A ≥ B yields A = B.

Proposition 3.13 Let A be an irreducible matrix. Then the algebraic multiplicity of the
eigenvalue λ = λ(A) is 1; that is, λ is a simple root of the characteristic polynomial of A.

Proof. The result is obvious for 1× 1 matrices, so we exclude this case hereafter in the
proof.

It is known that for every square matrix M ,

M · Adj(M) = det(M) · I ,

where Adj(M) is the adjoint of M and I is the identity matrix. In particular,

(zI − A) · Adj(zI − A) = χA(z) · I ,

where χA(z) = det(zI−A) is the characteristic polynomial of A. Differentiating with respect
to z we obtain

Adj(zI −A) + (zI − A) · d
dz

(
Adj(zI − A)

)
= χ′

A(z) · I .

We now substitute z = λ and multiply each term by a strictly positive left eigenvector y⊤

associated with λ; since y⊤(λI −A) = 0⊤, we end up with

y⊤Adj(λI − A) = χ′
A(λ)y

⊤ .

Now, λ is a simple root of χA(z) if and only if χ′
A(λ) 6= 0. Hence, to complete the proof, it

suffices to show that the matrix Adj(λI − A) is not all-zero. We do this next.

Let the matrix B be obtained from A by replacing the first row with the all-zero row.
Denoting by χB(z) the characteristic polynomial of B, it is easy to see that the upper-left
entry in Adj(λI − A) is given by

λ−1χB(λ) .

However, from Proposition 3.12 it follows that λ is not an eigenvalue of B and, thus, cannot
be a root of χB(z).

CHAPTER 3. CAPACITY 85

Proposition 3.14 Let A be an irreducible matrix. Then,

min
u

∑

v

(A)u,v ≤ λ(A) ≤ max
u

∑

v

(A)u,v ,

where equality in one side implies equality in the other.

Proof. Let y⊤ = (yv)v be a strictly positive left eigenvector associated with λ = λ(A).
Then

∑
u yu(A)u,v = λyv for every index v. Summing over v, we obtain,

∑

u

yu
∑

v

(A)u,v = λ
∑

v

yv ,

or

λ =

∑
u yu

∑
v(A)u,v∑

v yv
.

That is, λ is a weighted average (over v) of the values
∑

v(A)u,v.

Theorem 3.15 (Perron-Frobenius Theorem for nonnegative matrices.) Let A be a non-
negative real square matrix. Then, the following holds.

(a) The set of eigenvalues of A is the union (with multiplicity) of the sets of eigenvalues
of the irreducible components of A.

(b) λ(A) is an eigenvalue of A and there are nonnegative right and left eigenvectors
associated with λ(A).

Proof. Part (a) follows from the block-triangular form of Figure 3.3 (see the proof of
Theorem 3.7). Part (b) is left as an exercise (see Problem 3.21).

Since λ(A) is actually an eigenvalue of A, we will refer to λ(A) as the largest eigenvalue
of A or the Perron eigenvalue of A.

When all the irreducible components of a nonnegative real m ×m matrix A are trivial,
then all the eigenvalues of A are zero. In this case, the characteristic polynomial of A is
given by χA(z) = zm. Such a matrix is called nilpotent. Notice that the support graph of a
nilpotent matrix A does not contain cycles and, so, there is no path in that graph of lengthm.
Therefore, Am = 0, consistently with Caley-Hamilton Theorem that states that the all-zero
matrix is obtained when a square matrix is substituted in its characteristic polynomial.

3.3.4 Stronger properties in the primitive case

The following proposition says that in the primitive case, the inequality in Theorem 3.11(c)
is strict.

CHAPTER 3. CAPACITY 86

Proposition 3.16 Let A be a primitive matrix with λ(A) = λ. Then |µ| < λ for every
eigenvalue µ 6= λ of A.

Proof. We use the notations y = (yu)u, ξ = (|yu|)u, and ρ(·) as in the proof of Theo-
rem 3.11(c). If |µ| = λ then it follows from (3.3) that ρ(ξ) = λ, i.e.,

Aξ ≥ λξ .

Re-iterating the arguments in the proof of parts (a) and (b) of Theorem 3.11 (see (3.2)), we
conclude that ξ is a right eigenvector associated with the eigenvalue λ. Therefore, for every
positive integer ℓ and every index u,

∣∣∣
∑

v

(Aℓ)u,vyv
∣∣∣ = |µ|ℓ|yu| =

∑

v

(Aℓ)u,v|yv| ,

i.e., the triangle inequality holds with equality. In such a case we have for every v,

(Aℓ)u,vyv = (Aℓ)u,v|yv| · β ,

where β = β(u, ℓ) is such that |β| = 1. Taking ℓ so that Aℓ > 0, we obtain that y is a scalar
multiple of ξ and µ = λ.

Theorem 3.17 Let A be a primitive matrix and x and y⊤ be strictly positive right and
left eigenvectors of A associated with the eigenvalue λ = λ(A), normalized so that y⊤x = 1.
Then,

lim
ℓ→∞

(λ−1A)ℓ = xy⊤ .

Proof. The 1× 1 case is immediate, so we exclude it from now on. Let µ be the largest
absolute value of any eigenvalue of A other than λ; by Proposition 3.16 we have µ < λ. Also,
let h be the algebraic multiplicity of any eigenvalue of A whose absolute value equals µ. We
show that

Aℓ = λℓxy⊤ + E(ℓ) ,

where E(ℓ) is a matrix of the same order of A whose entries satisfy

|E(ℓ)
u,v| = O(ℓh−1µℓ) (3.6)

for every u and v.

Write A = PΛP−1, where Λ is a matrix in Jordan canonical form; that is, Λ is a block-
diagonal matrix where each block, Λi, is a square matrix that corresponds to an eigenvalue

CHAPTER 3. CAPACITY 87

λi and takes the elementary Jordan form: the entries on the main diagonal equal λi, and
the other nonzero entries in the matrix are 1’s below the main diagonal, as follows:

Λi =

λi
1 λi

1 λi
. . .

. . .

1 λi

.

Each eigenvalue of A appears in the main diagonal of Λ a number of times which equals its
algebraic multiplicity. We assume that the upper-left block Λ1 corresponds to the largest
eigenvalue λ; that is, Λ1 =

(
λ
)
(by Proposition 3.13, this block has order 1 × 1). The

first column of P and the first row of P−1 are, respectively, a right eigenvector x and a left
eigenvector y⊤ associated with λ, and P · P−1 = I implies that x and y⊤ are normalized so
that y⊤x = 1.

Now, Aℓ = PΛℓP−1, where Λℓ is a block-diagonal matrix with blocks Λℓ
i. It is easy to

see that a each block Λℓ
i is a lower-triangular matrix of the form

Λℓ
i =

aℓ
aℓ−1 aℓ
aℓ−2 aℓ−1 aℓ
...

. . .
. . .

. . .

aℓ−s+1 . . . aℓ−2 aℓ−1 aℓ

,

where s in the order of Λi and aj =
(
ℓ
j

)
λji . Hence, the absolute value of each entry in Λℓ

i is

bounded from above by ℓs−1|λi|ℓ. Noting that s ≤ h, it follows that the upper-left entry of
Λℓ equals λℓ, whereas the absolute values of the other entries of Λℓ are bounded from above
by ℓh−1µℓ for sufficiently large ℓ. Therefore,

Aℓ = PΛℓP−1 = λℓxy⊤ + E(ℓ) ,

where E(ℓ) satisfies (3.6).

When A is not primitive, there are eigenvalues of A other than λ for which Theo-
rem 3.11(c) holds with equality. Those eigenvalues are identified in the next theorem, which
is quoted here without proof.

Theorem 3.18 Let A be a nontrivial irreducible matrix with period p and let λ = λ(A).
Then there are exactly p eigenvalues µ of A for which |µ| = λ: those eigenvalues have the
form λωi, where ω is a root of order p of unity, and each of those eigenvalues has algebraic
multiplicity 1.

CHAPTER 3. CAPACITY 88

3.4 Markov chains

In Section 3.1, we defined the capacity of a constrained system S combinatorially as the
growth rate of the number of words in S. Then, in Section 3.2, we showed how the capacity
of S was related to the largest eigenvalue of a lossless presentation of S. In Section 3.5 below,
we present yet another characterization of capacity, now through probabilistic means.

The following concept plays a major role in our discussion.

Let G = (V,E) be a graph. A Markov chain on G is a probability distribution P on the
edges of G; namely, the mapping

e 7→ P(e)
takes nonnegative values and

∑
e∈E P(e) = 1.

For a state u ∈ V , let Eu denote the set of outgoing edges from u in G, i.e.,

Eu = {e ∈ E : σ(e) = u} ,

where σ(e) = σG(e) is the initial state of e in G. The state probability vector π⊤ = (πu)u∈V
of a Markov chain P on G is defined by

πu =
∑

e∈Eu

P(e) .

The conditional probability of an edge e ∈ E is defined by

qe =

{
P(e)/πσ(e) if πσ(e) > 0

0 otherwise
.

A Markov chain P on G induces the following probability distribution on paths of G: given
a path γ = e1e2 . . . eℓ in G, its probability is given by

P(γ) = πσ(e1)qe1qe2 · · · qeℓ . (3.7)

The transition matrix associated with P is a nonnegative real |V | × |V | matrix Q where for
every u, v ∈ V ,

(Q)u,v =
∑

e∈Eu : τ(e)=v

qe ;

that is, (Q)u,v is the sum of the conditional probabilities of all edges from u to v in G. Note
that Q is stochastic: the sum of entries in each row is 1.

A Markov chain P on G is called stationary if for every u ∈ V ,

∑

e∈E : τ(e)=u

P(e) = πu ;

CHAPTER 3. CAPACITY 89

that is, the sum of the probabilities of the incoming edges to state u equals the respective
sum of the outgoing edges from u. Equivalently,

π⊤Q = π⊤ .

A stationary Markov chain P on G is called irreducible (or ergodic) if the associated
transition matrix Q is irreducible. Similarly, P is called primitive (or mixing) if Q is a
primitive matrix. Clearly, Q is irreducible (respectively, primitive) only if G is. Hereafter,
when we say an irreducible (respectively, primitive) Markov chain, we mean an irreducible
(respectively, primitive) stationary Markov chain.

Proposition 3.19 Let Q be an irreducible stochastic |V | × |V | matrix. Then there is a
unique positive vector π⊤ = (πu)u∈V such that

∑
u πu = 1 and

π⊤Q = π⊤ .

Proof. The matrix Q is irreducible and the sum of elements in each row is 1. By
Proposition 3.14 we thus have λ(Q) = 1. The existence and uniqueness of π⊤ now follow
from parts (b) and (d) of Theorem 3.11.

It follows from Proposition 3.19 that an irreducible Markov chain on G = (V,E) is
uniquely determined by its conditional edge probabilities (qe)e∈E . That is, these conditional
probabilities determine the state probability vector. We refer to the state probability vector
of an irreducible Markov chain as the stationary probability vector .

The entropy (or entropy rate) of a Markov chain P on G = (V,E) is defined as the
expected value—with respect to the probability measure P on the edges of G—of the random
variable log (1/qe); i.e.,

H(P) = EP {log (1/qe)} = −
∑

u∈V
πu

∑

e∈Eu

qe log qe .

Example 3.7 LetG be the Shannon cover of the (0, 1)-RLL constrained system as shown
in Figure 3.1, and consider the following stochastic matrix (whose support graph is G):

Q =

(
1
2

1
2

1 0

)
.

One can verify that
π⊤ = (2

3
1
3
)

is a left eigenvector of Q associated with the Perron eigenvalue 1. The vector π⊤ is the
stationary probability vector of the (unique) stationary Markov chain on G whose transition
matrix is Q. The entropy of this Markov chain is −∑u πu

∑
e∈Eu

qe log qe = 2/3.

CHAPTER 3. CAPACITY 90

Proposition 3.20 Let Q be a primitive stochastic |V |×|V | matrix and let ξ⊤ = (ξu)u∈V
be such that

∑
u∈V ξu = 1. Then,

lim
ℓ→∞

ξ⊤Qℓ = π⊤ ,

where π⊤ is the vector as in Proposition 3.19.

Proof. Since Q is stochastic we have Q1 = 1, where 1 is the all-one column vector;
that is, 1 is a right eigenvector associated with the Perron eigenvalue λ(Q) = 1. Hence, by
Theorem 3.17 we have

lim
ℓ→∞

ξ⊤Qℓ = ξ⊤ 1π⊤ = π⊤ ,

as claimed.

Suppose that P is a (not necessarily stationary) Markov chain on G with an associated
primitive transition matrix Q and a state probability vector ξ⊤. Also, let π⊤ = (πu)u be
a left positive eigenvector of Q associated with the Perron eigenvalue 1, normalized so that∑

u πu = 1. It follows from Proposition 3.20 that as the lengths of paths go to infinity, the
probability of terminating in state u of G converges to πu.

Theorem 3.21 (Law of large numbers for irreducible Markov chains) Let P be an ir-
reducible Markov chain on a labeled graph G = (V,E, L) where L : E → IR (i.e., the labels
are over the real field). For a positive integer ℓ, define the random variable Zℓ on paths
γ = e1e2 . . . eℓ of length ℓ in G by

Zℓ = Zℓ(γ) =
1

ℓ

ℓ∑

i=1

L(ei) .

Then, for every ǫ > 0,
lim
ℓ→∞

Prob
{
|Zℓ − L | ≤ ǫ

}
= 1 ,

where L = EP {L(e)} =
∑

e∈E P(e)L(e).

The proof of Theorem 3.21 is left as a guided exercise (see Problems 3.35 and 3.36).
Observe that since P is stationary, we have in fact L = EP {Zℓ}.

Let P be a Markov chain on G. A path γ in G of length ℓ is called (P, ǫ)-typical if the
probability P(γ), as defined by (3.7), satisfies

∣∣∣∣H(P) +
1

ℓ
logP(γ)

∣∣∣∣ ≤ ǫ ,

or, equivalently,
2−ℓ(H(P)+ǫ) ≤ P(γ) ≤ 2−ℓ(H(P)−ǫ) .

The set of (P, ǫ)-typical paths of length ℓ in G will be denoted by Tℓ(P, ǫ) (the dependency
of this set on G is implied by the dependency on P).

CHAPTER 3. CAPACITY 91

Theorem 3.22 (Asymptotic Equipartition Property, in short AEP) Let P be an irre-
ducible Markov chain on a graph G. Then, for every ǫ > 0,

lim
ℓ→∞

∑

γ∈Tℓ(P,ǫ)

P(γ) = 1 .

Proof. We apply Theorem 3.21 to the graph G and the labeling L(e) = log (1/qe), where
qe is the conditional probability of an edge e; we assume that qe > 0, or else we delete the
edge e from G. Here,

L = EP {log (1/qe)} = H(P)
and, therefore,

lim
ℓ→∞

Prob { |Zℓ − H(P) | ≤ ǫ } = 1 . (3.8)

On the other hand, letting (πu)u be the stationary probability vector of P, we have for every
path γ = e1e2 . . . eℓ in G,

−1
ℓ
logP(γ) =

∑ℓ
i=1 log (1/qei)

ℓ
+

log (1/πσ(e1))

ℓ
= Zℓ(γ) + o(1) ,

where o(1) stands for an expression that goes to zero as ℓ goes to infinity. Hence, by (3.8)
we obtain

lim
ℓ→∞

∑

γ∈Tℓ(P,ǫ)

P(γ) = lim
ℓ→∞

Prob

{ ∣∣∣H(P) + 1

ℓ
logP(γ)

∣∣∣ ≤ ǫ
}
= 1 ,

as claimed.

The AEP thus states that for large ℓ, ‘most’ paths of length ℓ in G have probability
roughly 2−ℓH(P); here, the quantifier ‘most’ does not refer to the actual count of the paths,
but rather to their measure as induced by the probability distribution P.

We remark that Theorem 3.22 holds also for the following stronger property of paths.
Let P be a Markov chain on G. A path γ in G of length ℓ is called (P, ǫ)-strongly-typical if
for every edge e in G, the number of times that e is traversed in γ is bounded from below
by ℓ(P(e)−ǫ) and from above by ℓ(P(e)+ǫ). It can shown that if P is irreducible, then this
property implies that γ is typical (see Problem 3.37). The re-statement of Theorem 3.22 for
strongly-typical paths is left as an exercise (Problem 3.38).

3.5 Probabilistic characterization of capacity

Theorem 3.23 Let S be a constrained system which is presented by an irreducible loss-
less graph G. Then,

sup
P

H(P) = log λ(AG) = cap(S) ,

where the supremum is taken over all stationary Markov chains on G.

CHAPTER 3. CAPACITY 92

Proof. By continuity, every stationary Markov chain P on G can be expressed as a limit
of irreducible Markov chains P1,P2, · · · on G, and limi→∞H(Pi) = H(P). Hence, it suffices
to prove the theorem for irreducible Markov chains on G.

By Theorem 3.22, for every ǫ, δ > 0 there is a positive integer N such that for every
ℓ ≥ N , ∑

γ∈Tℓ(P,ǫ)

P(γ) ≥ 1− δ .

On the other hand, for every γ ∈ Tℓ(P, ǫ) we have

P(γ) ≤ 2−ℓ(H(P)−ǫ) .

Summing over γ ∈ Tℓ(P, ǫ) yields

1− δ ≤
∑

γ∈Tℓ(P,ǫ)

P(γ) ≤ |Tℓ(P, ǫ)| · 2−ℓ(H(P)−ǫ) ,

or
|Tℓ(P, ǫ)| ≥ (1− δ) · 2ℓ(H(P)−ǫ) .

Assuming that δ < 1, by Lemma 3.5 we obtain

H(P)− ǫ ≤ log λ(AG)

for every ǫ > 0. Hence, H(P) ≤ log λ(AG). To complete the proof, it suffices to exhibit a
stationary Markov chain P on G = (V,E) for which H(P) = log λ(AG).

Let x = (xu)u∈V and y⊤ = (yu)u∈V be positive right and left eigenvectors of AG associated
with the eigenvalue λ = λ(AG) and normalized so that y⊤x = 1. Define a stationary Markov
chain P through the conditional probabilities

qe =
xτ(e)
λxσ(e)

.

The entries of the transition matrix Q are given by

(Q)u,v =
∑

e∈Eu : τ(e)=v

qe =
(AG)u,vxv
λxu

, (3.9)

and it is easy to verify that Q is, indeed, a stochastic matrix on G. A simple computation
shows that the vector π⊤ = (xuyu)u∈V satisfies π⊤Q = π⊤ and, so, it is the stationary
probability vector of P.

Now,

H(P) = −
∑

u∈V
πu

∑

e∈Eu

qe log qe

CHAPTER 3. CAPACITY 93

=
∑

u∈V
πu

∑

e∈Eu

qe
(
(log λ) + (log xu)− (log xτ(e))

)

= (log λ)
∑

u∈V
πu

∑

e∈Eu

qe

︸ ︷︷ ︸
1︸ ︷︷ ︸

1

+
(∑

u∈V
(πu log xu)

∑

e∈Eu

qe

︸ ︷︷ ︸
1

)
−
(∑

u∈V
πu
∑

v∈V
(log xv)

∑

e∈Eu : τ(e)=v

qe

︸ ︷︷ ︸
(Q)u,v

)

= (log λ) +
∑

u∈V
(πu log xu)−

∑

v∈V
(log xv)

∑

u∈V
πu(Q)u,v

︸ ︷︷ ︸
πv

= log λ .

See also [Imm91, p. 48].

A stationary Markov chain P on G for which H(P) = log λ(AG) is called a maxentropic
Markov chain on G. We have shown in the proof of Theorem 3.23 that a maxentropic Markov
chain exists for every irreducible graph. In fact, it can be shown that such a stationary
Markov chain is unique [Par64] (see also [PT82]). It follows from Theorem 3.23 that if P
is a maxentropic Markov chain on an irreducible graph G, then for every ǫ > 0, the growth
rate of the (P, ǫ)-typical paths in G is essentially the same as the number of paths in G.
We can thus say that the (P, ǫ)-typical paths form a ‘substantial subset’ within the set of
all paths in G. The same can be said about the (P, ǫ)-strongly-typical paths in G and, as
such, a maxentropic Markov chain defines the frequency with which a symbol appears in
a ‘substantial subset’ of words of S(G). For the analysis of such frequency in (d, k)-RLL
constrained systems, see [How89].

Example 3.8 Let G be the Shannon cover of the (0, 1)-RLL constrained system, as
shown in Figure 3.1. The adjacency matrix of G is

AG =

(
1 1
1 0

)
,

with Perron eigenvalue λ = (1+
√
5)/2 ≈ 1.618 and an associated right eigenvector

x =

(
λ
1

)
.

By (3.9), the transition matrix Q of the maxentropic Markov chain on G is given by

Q =

(
1/λ 1/λ2

1 0

)
≈
(
.618 .382
1 0

)

and the respective stationary probability vector is

π⊤ = (λ+1
λ+2

1
λ+2

) ≈ (.724 .276) .

CHAPTER 3. CAPACITY 94

This means that in a ‘substantial subset’ of words of the (0, 1)-RLL constrained system,
approximately 27.6% of the symbols are 0.

The entropy of the maxentropic Markov chain is log λ ≈ .6942. Note that the stationary
Markov chain in Example 3.7 has smaller entropy.

3.6 Approaching capacity by finite-type constraints

The next two propositions exhibit an important feature of finite-type constrained systems.

Proposition 3.24 Let S be a constrained system. Then, there is a sequence of finite-type
constrained systems {Sm}∞m=1 such that S ⊆ Sm for every m and limm→∞ cap(Sm) = cap(S).

Proof. Given a positive integer m, we let Sm be the constrained system which is pre-
sented by the following deterministic graph Gm: For each word w of length m in S, we
associate a state uw in Gm. Given two words of length m in S, w = w1w2 . . . wm and

z = z1z2 . . . zm, we draw an edge uw
b→ uz in Gm if and only if b = zm and zj = wj+1 for

j = 1, 2, . . . , m−1.
It is easy to verify that all paths in Gm that generate a word w terminate in uw. Hence,

Gm has memory ≤ m. To show that S ⊆ Sm, let z = z1z2 . . . zℓ be a word of length ℓ ≥ m
in S. Then, by construction, the word z is generated in Gm by a path

uw1w2...wm

z1−→ uw2w3...wmz1
z2−→ uw3w4...zmz1z2

z3−→ · · · zℓ−→ uzℓ−m+1zℓ−m+2...zℓ .

Hence, z is a word in Sm. Furthermore, we also have Sm+1 ⊆ Sm and, so, the values of
cap(Sm) are nonincreasing with m. Therefore, the limit limm→∞ cap(Sm) exists and it is at
least cap(S). It remains to show that it is actually equal to cap(S).

Let N(m;S) be the number of words of length m in S. Every word of length tm in Sm

can be written as a concatenation of t words of length m in S. Therefore, the number of
words of length tm in Sm is at most (N(m;S))t. Thus, cap(Sm) ≤ (logN(m;S))/m and, so,

cap(S) ≤ lim
m→∞ cap(Sm) ≤ lim

m→∞(logN(m;S))/m = cap(S) ,

as desired.

The following dual result is proved in [Mar85].

Proposition 3.25 Let S be a constrained system. Then, there is a sequence of finite-type
constrained systems {Sm}∞m=1 such that Sm ⊆ S for every m and limm→∞ cap(Sm) = cap(S).

CHAPTER 3. CAPACITY 95

Sketch of proof (in the irreducible case): Let Sm be the constrained system which is
presented by the following deterministic graph Gm: For every magic word w of length m in
S (see Section 2.6.4), we associate a state uw in Gm. Given two magic words of length m in

S, w = w1w2 . . . wm and z = z1z2 . . . zm, we draw an edge uw
b→ uz in Gm if and only if the

following three conditions hold:

(a) zj = wj+1 for j = 1, 2, . . . , m−1;
(b) b = zm;

(c) wb ∈ S.
It is easy to verify that Gm has memory ≤ m and that Sm ⊆ S. The approach of cap(Sm)

to cap(S) follows from the fact that most long enough words in S are magic words. The
precise proof is given in [Mar85].

Problems

Problem 3.1 Let S be a constrained system and ℓ a positive integer. Based on the definition of
capacity, show that

cap(Sℓ) = ℓ · cap(S) .

The following is a skeleton of a proof for the inequality cap(Sℓ) ≥ ℓ · cap(S). Justify each step.

Denote by Σ the alphabet of S and let ℓ1 < ℓ2 < · · · < ℓi < · · · be such that

lim
i→∞

1

ℓi
logN(ℓi;S) = cap(S)

(why do such ℓi’s exist?). Define mi = ⌊ℓi/ℓ⌋. Then

cap(Sℓ) ≥ lim sup
i→∞

1

mi
logN(miℓ;S)

≥ lim sup
i→∞

1

mi
logN(ℓi;S)

≥ ℓ · lim
i→∞

ℓi
miℓ

lim
i→∞

1

ℓi
logN(ℓi, S)

= ℓ · cap(S) .

Problem 3.2 Let ε : IN → IR+ be a function such that limm→∞ ε(m) = 0 and for a positive
integer h define

δ(ℓ) =
1

ℓ
max

(ℓ1,ℓ2,...,ℓh)

h∑

i=1

ℓiε(ℓi) ,

where (ℓ1, ℓ2, . . . , ℓh) ranges over all nonnegative integer h-tuples such that ℓ1 + ℓ2 + . . . + ℓh ≤ ℓ.
Complete the proof of Theorem 3.1 by showing that limℓ→∞ δ(ℓ) = 0.

CHAPTER 3. CAPACITY 96

Hint: Let β be a finite upper bound on the values of ε(m). Justify each of the following steps:

δ(ℓ) = max
(ℓ1,ℓ2,...,ℓh)

h∑

i=1

ℓi
ℓ
ε(ℓi)

= max
(ℓ1,ℓ2,...,ℓh)

 ∑

i : ℓi≤
√
ℓ

ℓi
ℓ
ε(ℓi)

+

 ∑

i : ℓi>
√
ℓ

ℓi
ℓ
ε(ℓi)

≤ β · h√
ℓ

+ max
(ℓ1,ℓ2,...,ℓh)

∑

i : ℓi>
√
ℓ

ε(ℓi)

 ,

and then deduce that limℓ→∞ δ(ℓ) = 0.

Problem 3.3 Let Sd,∞ denote the (d,∞)-RLL constrained system.

1. Show that

cap(Sd,∞) ≤ log (d+2)

d+ 1
.

Hint: Show that when a word in Sd,∞ is divided into nonoverlapping blocks of length d+ 1,
then each such block may contain at most one 1.

2. Show that for every positive integer m,

cap(Sd,∞) ≥ log (m+1)

d+m
.

Hint: Consider the concatenation of binary blocks of length m+ d, each containing at most
one 1 which is located in one of the first m positions of the block.

3. Show that

lim
d→∞

cap(Sd,∞) · d

log d
= 1 .

Hint: Substitute m = εd in 2 and let d→∞ for every fixed small ε.

Problem 3.4 Compute the capacity of the (d,∞, 2)-RLL constraint for d = 0, 1; recall that this
constraint consist of all binary words in which the runlengths of 0’s between consecutive 1’s are
even when d = 0 and odd when d = 1.

Problem 3.5 Identify the values of d and k for which the Shannon cover in Figure 1.3 is periodic.

Problem 3.6 Let G be a nontrivial irreducible graph and let G′ and G′′ be the Moore form and
Moore co-form of G, respectively. Show that the periods of G, G′, and G′′ are equal.

CHAPTER 3. CAPACITY 97

Problem 3.7 Let G1 and G2 be nontrivial irreducible graphs with periods p1 and p2, respectively.
Show that the period of each nontrivial irreducible component of G1 ∗ G2 is divisible by the least
common multiplier (l.c.m.) of p1 and p2.

Problem 3.8 A path
u0 → u1 → u2 → · · · → uℓ

in a graph is called a simple cycle if u0 = uℓ and ui 6= uj for 0 ≤ i < j < ℓ. Let G be a nontrivial
irreducible graph with period p. Show that p is the greatest common divisor of the lengths of all
the simple cycles in G.

Problem 3.9 Let G be a nontrivial irreducible graph with period p and let v be a state in G.
Show that p is the greatest common divisor of the lengths of all cycles in G that pass through v.

Problem 3.10 Let G be a nontrivial irreducible graph with period p.

1. Show that for every pair of states u and v in G there exist nonnegative integers mu,v and ru,v,
such that for every integer m ≥ mu,v there is a path in G of length m · p+ ru,v originating in
state u and terminating in v.

2. Show that Gp has p irreducible components which are primitive and isolated from each other.

3. Let ℓ be a positive integer relatively prime to p (i.e., gcd(p, ℓ) = 1). Show that Gℓ is
irreducible.

Hint: Make use of 1 and the fact that there is a positive integer b such that b ·p ≡ 1 (mod ℓ).

4. Generalize 2 and 3 as follows. Let ℓ be a positive integer and d = gcd(p, ℓ). Show that Gℓ

composes of d isolated irreducible components, each with period p/d.

Problem 3.11 Let G be a nontrivial irreducible (not necessarily lossless) graph with period p and
let G0, G1, . . . , Gp−1 be the irreducible components of Gp. Show from the definition of capacity
that

cap(S(Gi)) = p · cap(S(G))

for every irreducible component Gi.

Problem 3.12 Let A be a nonnegative real square matrix and let ℓ be a positive integer. Show
that the irreducible components of Aℓ all have the same set of nonzero eigenvalues, with the same
multiplicity.

Problem 3.13 Let A be the matrix given by

A =

2 5 0
0 1 6
1 3 3

 .

CHAPTER 3. CAPACITY 98

1. Compute the eigenvalues of A and respective left and right integer eigenvectors.

2. Find a diagonal matrix Λ and an invertible matrix P such that A = PΛP−1.

3. Compute the limit

B = lim
ℓ→∞

1

7ℓ
·Aℓ .

4. Find integer vectors that span the row space and column space, respectively, of B.

Problem 3.14 Let A be a nonnegative real square matrix of order m × m. Show that A is
irreducible if and only if (A+ I)m−1 > 0.

Problem 3.15 Let G be a graph with an adjacency matrix

AG =

0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

,

1. What is the period p of AG?

2. Write the matrix Ap
G.

3. Compute the absolute values of the eigenvalues of AG.

Problem 3.16 Let G be the graph in Figure 2.24.

1. What is the period p of G?

2. Find the irreducible components Gi of G
p.

3. For every component Gi found in 2, compute the value of λ(AGi
).

4. Compute λ(AG).

5. For every component Gi found in 2, compute a positive integer eigenvector associated with
λ(AGi

), such that the largest entry in the vector is the smallest possible.

6. Compute an eigenvector x = (xui
)8i=1 of AG associated with λ(AG) such that xu1 = 1. How

many such vectors exist?

7. Is there an integer eigenvector of AG associated with λ(AG)?

8. Repeat 6 except that now x is an eigenvector of AG2 associated with λ(AG2).

9. Compute a nonnegative integer eigenvector of AG2 associated with λ(AG2) where the largest
entry in that eigenvector is the smallest possible.

CHAPTER 3. CAPACITY 99

Problem 3.17 Let G1 = (V1, E1, L1) and G2 = (V2, E2, L2) be two labeled graphs with labeling
L1 : E1 → Σ1 and L2 : E2 → Σ2. The Kronecker product of G1 and G2 is the labeled graph

G = G1 ⊗G2 = (V1 × V2, E, L) ,

where the set of edges E and the labeling L : E → Σ1 × Σ2 are defined as follows:

(u1, u2)
(a1,a2)−→ (v1, v2)

is an edge in E if and only if
u1

a1→ v1 and u2
a2→ v2

are edges in G1 and G2, respectively.

Let S1, S2, and S be the constrained systems that are generated by G1, G2, and G, respectively.

Hereafter assume that G1 and G2 are nontrivial irreducible graphs and let p1 and p2 denote
their periods, respectively.

1. Show that
cap(S) = cap(S1) + cap(S2)

(do not assume that G1 and G2 are lossless).

2. Show that the anticipation of G is given by

A(G) = max
{
A(G1),A(G2)

}
.

3. Show that if G1 and G2 are deterministic and have finite memory, then the memory of G is
given by

M(G) = max{M(G1),M(G2)} .

4. Show that G has gcd(p1, p2) irreducible components, which are isolated from each other.

5. Show that the period of each irreducible component of G is the least common multiplier
(lcm) of p1 and p2.

6. Show that the adjacency matrix AG is the Kronecker (or direct) product of AG1 and AG2 ,
namely, for every (u1, u2) and (v1, v2) in V ,

(AG)(u1,u2),(v1,v2) = (AG1)u1,v1 · (AG2)u2,v2 .

7. Show that
λ(AG) = λ(AG1) · λ(AG2)

(this is a known property of Kronecker product of matrices, but it can be proved also by
counting paths in G1, G2, and G).

CHAPTER 3. CAPACITY 100

Problem 3.18 Let G = (V,E,L) be a primitive graph and let λ = λ(AG). Denote by µ the largest
absolute value of any eigenvalue of AG other than λ (let µ = 0 if |V | = 1). Show that the number,
ΦG(ℓ), of cycles of length ℓ in G satisfies

|ΦG(ℓ)− λℓ| ≤ (|V | − 1)µℓ .

Hint: Recall that the trace of a square matrix B, which is the sum of the entries along the main
diagonal of B, is preserved in the Jordan form of B (as well as in any other matrix that is similar
to B).

Problem 3.19 For 0 ≤ d ≤ k < ∞, let G(d, k) be the Shannon cover in Figure 1.3 of the (d, k)-
RLL constrained system and let χd,k(z) = det(zI − AG(d,k)) be the characteristic polynomial of
AG(d,k).

1. Show that

χd,k(z) = zk+1 −
k−d∑

j=0

zj .

2. Show that λ(AG(d,k)) is the largest positive solution of the equation

zk+2 − zk+1 − zk−d+1 + 1 = 0 .

3. Show that for d = 0,

λ(AG(0,k)) ≤ 2− 1

2k+1
.

4. Extending the definition of G(d, k) to k = ∞, show that λ(AG(d,∞)) is the largest positive
solution of the equation

zd+1 − zd − 1 = 0 .

5. [AS87] Show that for d ≥ 1,

λ(AG(d,∞)) = λ(AG(d−1,2d−1)) .

6. [ForsB88] Show that for d ≥ 0,

λ(AG(d,2d)) = λ(AG(d+1,3d+1)) .

Problem 3.20 [C70] For a nonnegative integer B, let GB be the Shannon cover in Figure 1.14 of
the B-charge constraint and let χB(z) = det(zI −AGB

) be the characteristic polynomial of AGB
.

1. Show that χ0(z) = z and χ1(z) = z2 − 1.

2. Show that for B ≥ 2,
χB(z) = z · χB−1(z)− χB−2(z) .

CHAPTER 3. CAPACITY 101

3. Show that

χB(2 cos x) =
sin (B+2)x

sinx

and, so, for |z| ≤ 2,

χB(z) =
sin ((B+2) cos−1(z/2))

sin (cos−1(z/2))
.

Hint: Make use of the trigonometric identity

sin (Bx) + sin (B+2)x = 2cos x · sin (B+1)x .

The polynomials χB(2z) are known as Chebyshev polynomials of the second kind. See [AbS65,
pp. 774–776].

4. Show that the eigenvalues of AGB
are given by

λi = 2cos

(
πi

B+2

)
, i = 1, 2, . . . , B+1 .

5. Let the graph HB be obtained from GB by adding an edge from state 0 (the leftmost state
in Figure 1.14) to state B (the rightmost state), and another edge from state B to state 0.
Denote by χB(z) the characteristic polynomial of HB. Show that

χB(2 cos x) = 2 cos (B+1)x − 2

and, so, for |z| ≤ 2,
χB(z) = 2 cos ((B+1) cos−1(z/2)) − 2 .

The polynomials χB(2z) + 2 are known as Chebyshev polynomials of the first kind.

6. Show that the eigenvalues of AHB
are given by

λi = 2cos

(
πi

B+1

)
, i = 1, 2, . . . , B+1 .

Problem 3.21 [Sen80] Let A be a nonnegative square matrix, not necessarily irreducible.

1. Show that there always exists a nonnegative real eigenvector associated with the largest
eigenvalue λ(A).

Hint: Present A as a limit of an infinite sequence of irreducible matrices Ai. Show that the
largest eigenvalues λ(Ai) converge to λ(A), and a respective eigenvector of A can be presented
as a limit of eigenvectors of (a subsequence of) the Ai’s.

2. Does there always exist such an eigenvector that is strictly positive?

Problem 3.22 Let A be a nonnegative irreducible matrix and let µ be an eigenvalue of A. Show
that there exists a nonnegative real eigenvector associated with µ only if µ = λ(A).

CHAPTER 3. CAPACITY 102

Problem 3.23 Let H be the graph in Figure 2.26. Show that λ(AH) = 2 by finding a strictly
positive vector x such that AHx = 2x.

Problem 3.24 Let A be a nonnegative irreducible matrix.

1. Show that (A)u,u ≤ λ(A) for every row index u. When does the inequality hold with equality?

2. Two rows in A indexed by u and u′ are called twin rows if the following two conditions hold:

(a) (A)u,v = (A)u′,v for every column index v /∈ {u, u′};
(b) (A)u,u + (A)u,u′ = (A)u′,u + (A)u′,u′ .

Let x = (xv)v be an eigenvector of A associated with an eigenvalue µ. Show that if u and
u′ index twin rows and (A)u,u − (A)u′,u 6= µ, then xu = xu′ . Provide an example where
(A)u,u − (A)u′,u = µ and xu 6= xu′ .

3. Show that if x = (xv)v is an eigenvector of A associated with λ(A) and u and u′ index twin
rows, then xu = xu′ .

4. Suppose that A is the adjacency matrix of a deterministic graph G and let the states u
and u′ index twin rows in A (note that the sets of outgoing edges of u and u′ in G do not
necessarily have the same sets of labels). Let the graph H be obtained from G by redirecting
the incoming edges of u in G into u′ and deleting state u with its outgoing edges. Show that
H is irreducible and that cap(S(G)) = cap(S(H)).

Problem 3.25 Let A be a nonnegative integer irreducible matrix of order m and let x = (xv)v be
a positive real eigenvector associated with λ(A). Denote by xmax and xmin the largest and smallest
entries in x, respectively. Show that

xmax

xmin
≤ (λ(A))m−1 .

Hint: Think of A as the adjacency matrix of a graph G, and show that if there is an edge from
u to v in G, then xv = λ(A)xu.

Problem 3.26 Let G be a nontrivial irreducible lossless graph and let G′ be obtained from G by
deleting an edge from G. Show that

cap(S(G′)) < cap(S(G)) .

Hint: Use Proposition 3.12.

Problem 3.27 Let G be a nontrivial irreducible graph. It follows from Proposition 3.12 that if
G′ is obtained from G by deleting any edge from G, then λ(AG′) < λ(AG). Show that there exists
at least one edge in G, the deletion of which produces a graph G′ for which

λ(AG)− 1 ≤ λ(AG′) ≤ λ(AG) .

CHAPTER 3. CAPACITY 103

Problem 3.28 Let S1 and S2 be irreducible constrained systems with the same capacity. Show
that if S1 ⊆ S2 then S1 = S2.

Hint: Assume to the contrary that there is a word in S2 \S1 whose length, ℓ, is relatively prime
to the period of the Shannon cover of S2; then consider the constrained systems Sℓ

1 and Sℓ
2.

Problem 3.29 Let S0 be an irreducible constrained system and let G be a graph such that S0 ⊆
S(G) and cap(S0) = cap(S(G)). Show that there is an irreducible component H of G such that
S0 = S(H).

Problem 3.30 Let S be the constrained system over the alphabet Σ = {a, b, c, d, e, f, g} generated
by the graph G in Figure 2.22.

1. Obtain the matrices AG and AG2 .

2. Show that λ(AG) = 3 and find a nonnegative integer right eigenvector and a nonnegative
integer left eigenvector associated with the eigenvalue 3.

3. Compute the other eigenvalues of AG.

4. Compute the eigenvalues of AG2 .

5. Compute the capacity of S.

Problem 3.31 Let G be an irreducible lossy graph. Show that cap(S(G)) < log λ(AG).

Problem 3.32 (Graphs with extremal eigenvalues [LM95])

1. Among all irreducible graphs with m states, find an irreducible graph Gm for which λ(AGm)
is minimal.

2. Among all primitive graphs with three states, find a primitive graph Hm for which λ(AH3)
is minimal.

3. Find a primitive graph Hm with m states for which λ(AHm) is minimal.

Problem 3.33 Show by example that there are nonstationary Markov chains P on irreducible
graphs G such that H(P) > log λ(AG).

Problem 3.34 Let Q be an irreducible stochastic |V | × V | matrix and let π⊤ = (πu)u∈V be
the vector as in Proposition 3.19. Denote by p the period of Q and let C0, C1, . . . , Cp−1 be the
equivalence classes of the congruence relation defined on the states of the support graph of Q.
Assume that rows in Q that are indexed by Cr precede those that are indexed by Cr+1.

CHAPTER 3. CAPACITY 104

1. Show that for r = 0, 1, . . . , p−1, ∑

u∈Cr

πu = 1/p .

2. Denote by πr the subvector of π that is indexed by Cr; that is, πr = (πu)u∈Cr . Also, let 1r
be an all-one vector of length |Cr|. Define the |V | × |V | matrix ΠQ by

ΠQ =
1

p

10π
⊤
0

11π
⊤
1 0

0 . . .

1p−1π
⊤
p−1

.

Show that for every t ≥ 0,
Qpt = ΠQ + E(t) ,

where E(t) satisfies ∑

u,v∈V
|(E(t))u,v| ≤ β · αt

for some 0 ≤ α < 1 and β > 0 and every t ≥ 0.

Hint: Apply Theorems 3.10 and 3.17 and make use of the rate of convergence of the limit in
Theorem 3.17, as stated in (3.6).

Problem 3.35 (Autocorrelation and power spectral density) Let P be an irreducible Markov chain
with period p on a labeled graph G = (V,E,L) where L : E → IR. Denote by C0, C1, . . . , Cp−1 the
equivalence classes of the congruence relation defined on the states of G, and for r = 0, 1, . . . , p−1,
let Lr be the conditional expectation

Lr = EP {L(e) |σ(e) ∈ Cr} ,

where σ(e) = σG(e) is the initial state of the edge e in G. Define the random sequence

X = X−ℓX−ℓ+1 . . . X0X1 . . . Xℓ

on paths
e−ℓe−ℓ+1e0e1 . . . eℓ

of length 2ℓ+1 in G by
Xi = L(ei)− Lr(ei) ,

where r(ei) is the index r such that σ(ei) ∈ Cr. The autocorrelation of X is defined by

RX(t, i) = EP {XiXi+t}

for every −ℓ ≤ i, i+t ≤ ℓ.

Denote by Q the transition matrix associated with P and by π⊤ the state probability vector of
P.

CHAPTER 3. CAPACITY 105

1. Let ei and ei+t be the ith and (i+t)th edge, respectively, along a random path on G. Show
that for every t > 0,

Prob
{
ei = e and ei+t = e′

}
= P(e) · (Qt−1)τ(e),σ(e′) · qe′ ,

where the probability is taken with respect to P and qe′ is the conditional probability of the
edge e′.

2. Let B be the |V | × |V | matrix whose entries are defined for every u, v ∈ V by

(B)u,v =
∑

e∈Eu : τ(e)=v

(L(e) − Lr(e)) · qe .

Show that for every t > 0,
RX(t, i) = π

⊤BQt−1B1 .

In particular, RX(t, i) does not depend on i (provided that ℓ ≤ i, i+t ≤ ℓ) and will therefore
be denoted hereafter by RX(t).

3. Let ΠQ be the matrix defined in part 2 of Problem 3.34. Show that π⊤BΠQ = ΠQB1 = 0.

4. Show that there exist 0 ≤ α < 1 and β > 0 such that for every t > 0,

|RX(t)| ≤ β · αt−1 .

Hint: Apply Problem 3.34.

5. Show that the semi-infinite series ∞∑

t=1

RX(t)z−t

converges for all complex values z with |z| ≥ 1.

6. Show that ∞∑

t=1

RX(t)z
−t = π⊤B(zI −Q)−1B1

for all |z| ≥ 1, except when zp = 1 (in particular, verify that the matrix zI−Q is nonsingular
in this range of convergence). Extend the result also to the limit z → e2πr/p, where =

√
−1

and r = 0, 1, . . . , p−1.

7. The power spectral density of the random sequence X is defined as the two-sided Fourier
transform of RX(t); namely, it is the function ΨX(f) : [0, 1]→ C| which is given by

ΨX(f) =
∞∑

t=−∞
RX(t)e−2πtf

(note that RX(−t) = RX(t) and that by part 5 the bi-infinite sum indeed converges). Show
that for every f ∈ [0, 1] \ {r/p}p−1

r=0 ,

ΨX(f) = RX(0) + 2 ·Re
{
π⊤B(e2πfI −Q)−1B1

}
,

CHAPTER 3. CAPACITY 106

where Re{·} stands for the real value and

RX(0) =
∑

e∈E
P(e)(L(e) − Lr(e))

2 .

8. Let f 7→ ΦX(f) be the (two-sided) Fourier transform of X, namely,

ΦX(f) =
ℓ∑

i=−ℓ

Xie
−2πif .

Show that

ΨX(f) = lim
ℓ→∞

1

2ℓ+1
EP
{
|ΦX(f)|2

}
.

9. Let G be the Shannon cover of the 2-charge constrained system, as shown in Figure 3.2.
Consider the irreducible Markov chain P on G that is defined by the transition matrix

Q =

0 1 0
1
2 0 1

2
0 1 0

 .

Show that P is a maxentropic Markov chain and that

ΨX(f) = 1− cos 2πf .

Problem 3.36 The purpose of this problem is proving Theorem 3.21 for every irreducible Markov
chain P on G. As with the case of independent random variables, the proof is based upon Chebyshev
inequality, which states that for every random variable Y with zero expected value,

Prob {|Y | ≥ ǫ} = Prob

{
Y 2

ǫ2
≥ 1

}
≤ E

{
Y 2

ǫ2

}
=

E
{
Y 2
}

ǫ2
.

Letting p be the period of G, we use the notations Cr and Lr as in Problem 3.35.

For a positive integer ℓ, define the random variable Yℓ(γ) on a path γ = e1e2 . . . eℓ by

Yℓ(γ) = Yℓ =
1

ℓ

ℓ∑

i=1

Xi ,

where
Xi = L(ei)− Lr(e)

and r(e) is the index r such that σG(e) ∈ Cr. Hereafter, all the expectations are taken with respect
to P.

1. Show that

L =
1

p

p−1∑

r=0

Lr .

Hint: Apply part 1 of Problem 3.34.

CHAPTER 3. CAPACITY 107

2. Show that E {Yℓ} = E {Xi} = 0.

3. Let Zℓ and L be defined as in the statement of Theorem 3.21. Show that Yℓ = Zℓ − L.

4. Show that there is a real constant η such that

E
{
Y 2
ℓ

}
≤ 1

ℓ

(
E
{
X2

1

}
+ η

)
.

Hint: Write

E

{(∑ℓ
i=1 Xi

)2}
=

ℓ∑

i=1

(
E
{
X2

i

}
+ 2

ℓ−i∑

t=1

E {XiXi+t}
)

.

Then use part 4 in Problem 3.35.

5. Complete the proof of Theorem 3.21 by applying Chebyshev inequality to Yℓ.

Problem 3.37 Let P be an irreducible Markov chain on G. Show that for every δ > 0 there exist
ǫ and N such that every (P, ǫ)-strongly-typical path γ of length ℓ ≥ N in G is (P, δ)-typical.

Hint: Let π = (πu)u be the stationary probability vector of P and let qe denote the conditional
probability of an edge e in G. Consider a (P, ǫ)-strongly-typical path of length ℓ in G that starts
at state u0. First argue that

πu0

∏

e : qe>0

q
ℓ(πσ(e)qe+ǫ)
e ≤ P(γ) ≤ πu0

∏

e : qe>0

q
ℓ(πσ(e)qe−ǫ)
e .

Then deduce that ∣∣∣∣H(P) +
logP(γ)

ℓ
− log πu0

ℓ

∣∣∣∣ ≤ −ǫ
∑

e : qe>0

log qe .

Finally, given δ, pick ǫ and N so that

δ ≥ − log (minu πu)

N
− ǫ

∑

e : qe>0

log qe .

Problem 3.38 Show that Theorem 3.22 holds also when γ ranges over all (P, ǫ)-strongly-typical
paths of length ℓ.

Hint: Apply Theorem 3.21 with L : E → IR being the indicator function Ie of an edge e ∈ E;
i.e., Ie(e′) takes the value 1 if e′ = e and is zero for e′ ∈ E \ {e}.

Chapter 4

Finite-State Encoders

As described in Section 1.4, an encoder takes the form of a finite-state-machine (see Fig-
ure 1.6). In this chapter, we make the definition of finite-state encoders more precise and
then discuss special types of finite-state encoders and various levels of decoding capabilities.

4.1 Definition of finite-state encoders

Let S be a constrained system and n be a positive integer. An (S, n)-encoder is a labeled
graph E such that —

• each state of E has out-degree n;

• S(E) ⊆ S;

• E is lossless.

A tagged (S, n)-encoder is an (S, n)-encoder E where the outgoing edges from each state

in E are assigned distinct input tags from an alphabet of size n. The notation u
s/a→ v stands

for an edge in E from state u to state v which is labeled a and tagged by s. The tag s is
supposed to represent an input and the label a is supposed to represent an output. We will
sometimes use the same symbol E to denote both a tagged (S, n)-encoder and the underlying
(S, n)-encoder.

A rate p : q finite-state encoder for S is a tagged (Sq, 2p)-encoder, where we assume that
the input tags are the binary p-blocks.

A tagged (S, n)-encoder (or a rate p : q finite-state encoder for S) is deterministic or has
finite anticipation or is definite according to whether the (S, n)-encoder (or (Sq, 2p)-encoder)

108

CHAPTER 4. FINITE-STATE ENCODERS 109

satisfies these conditions. In particular, only the (output) labels (and not the input tags)
play a role in these properties.

As mentioned in Section 1.4, we sometimes use the term rate to mean the ratio p/q,
instead of the pair of block sizes p : q. It will be clear from the context which version of the
term rate we mean.

Example 4.1 Figure 4.1 depicts a rate 1 : 2 two-state encoder for the (1, 3)-RLL con-
strained system. The input tag assigned to each edge is written before the slash, followed by

0 1
✲

0/10
✲1/01

✛
0/00

✛ 1/01

Figure 4.1: Rate 1 : 2 two-state encoder for (1, 3)-RLL constrained system.

the label of the edge. The encoder in the figure is known as the Modified Frequency Modu-
lation (MFM) code and is due to Miller [Mill63]. This encoder is actually deterministic.

Given a rate p : q finite-state encoder E for S, encoding is accomplished as follows.

1. Select an arbitrary initial state u0 in E .

2. If the current state is u and the input data is the p-block s, find the outgoing edge e
from state u in E with input tag s. The codeword generated is the q-block that labels
the edge e. The next encoder state is τE(e).

3. Repeat Step 2 as long as input is provided.

With only the losslessness assumption, decoding can be implemented, but it is terribly
impractical because one cannot decode any symbols at all until an entire codeword sequence
(i.e., sequence of q-blocks) is received; also, one can decode only those codeword sequences
that are labels of paths that start at u0 and terminate in a particular state. However, if
an encoder E has finite anticipation A = A(E), then we can decode in a state-dependent
manner as follows (this kind of decoding was discussed briefly in Section 1.4).

1. Use the initial state u0 of E as the initial state of the decoder.

2. If the current state is u, then the current codeword to be decoded, together with the
A upcoming codewords, constitute a word of length A+1 (measured in q-blocks) that
is generated by a path that starts at u; by definition of anticipation, the initial edge e
of such a path is uniquely determined; the reconstructed (decoded) data is the input
tag of e; the next decoder state is τE(e).

CHAPTER 4. FINITE-STATE ENCODERS 110

3. Repeat Step 2 as long as codewords are provided.

The anticipation of an encoder E measures the decoding delay of the corresponding state-
dependent decoder. Note that the decoder will recover all but the last A encoded q-blocks.

The encoder in Example 4.1 is deterministic (equivalently, finite anticipation withA = 0),
and so can be decoded by a state-dependent decoder with no decoding delay at all. To
illustrate non-trivial decoding delay, we revisit Example 1.1 of Section 1.4.

Example 4.2 Figure 4.2, which is the same as Figure 1.7, depicts a rate 2 : 3 two-state
encoder for the (0, 1)-RLL constrained system [Sie85a]. This encoder is not deterministic,

A B
✲

00/011

❄

01/011

❄
10/110

❲11/010

❖ 00/101✻
01/111

✛ 10/101✛ 11/111

Figure 4.2: Rate 2 : 3 two-state encoder for (0, 1)-RLL constrained system.

but has anticipation 1: for any path, the initial state and the first two 3-bit output labels
uniquely determine the initial edge. So, this encoder can be decoded with delay equal to one
block.

Perhaps the simplest class of encoders is that of block encoders. A block (S, n)-encoder
E is an (S, n)-encoder with only one state. Such an encoder can be viewed as simply a
dictionary L, consisting of n symbols. Denote by L∗ the set of words that are obtained by
concatenation of words in L. Clearly, L∗ = S(E) ⊆ S, which means that the codewords of
the dictionary L are freely-concatenable: every concatenation of the codewords in L produces
a word in S.

As with the more general class of finite-state encoders, we can speak of a tagged block
encoder and therefore also a rate p : q block encoder. Such an encoder amounts to a one-to-
one mapping from the set of all 2p binary words of length p to the q-blocks in the dictionary.
Note that the inverse of this mapping serves as a decoder.

Shannon [Sha48] showed that whenever there is a rate kp : kq block encoder, for some k,
we must have p/q ≤ cap(S) (we will give a stronger version of this in Theorem 4.2 below).
Conversely, he proved (nonconstructively) that whenever p/q < cap(S), there is an integer
k and a rate kp : kq block encoder (see Theorem 4.3 below). The following result improves
upon this.

CHAPTER 4. FINITE-STATE ENCODERS 111

Theorem 4.1 (Finite-state coding theorem) Let S be a constrained system. If p/q ≤
cap(S), then there exists a rate p : q finite-state encoder for S with finite anticipation.

Theorem 4.1 is proved in Chapter 5; it guarantees encoders which are state-dependent
decodable at any rate up to capacity. It can be derived as a weaker version of the main
theorem of [ACH83]. It improves upon the earlier coding results, in particular Shannon’s
result mentioned above, in three important ways:

• It is fairly constructive: it effectively provides encoders whose number of states is close
to the smallest possible (see also Section 7.2).

• It proves the existence of finite-state encoders that achieve rate equal to the capacity
cap(S), when cap(S) is rational.

• For any positive integers p and q satisfying the inequality p/q ≤ cap(S), there is a rate
p : q finite-state encoder for S that operates at rate p : q. In particular, choosing p
and q relatively prime, one can design an encoder/decoder using the smallest possible
codeword length (namely, q) compatible with the chosen rate p/q.

For the purposes of constructing (S, n)-encoders, we could restrict our attention to irre-
ducible components of a labeled graph presenting S. We do not pay any price in terms of
achievable rate in doing so, because we can always choose an irreducible component with a
maximum largest eigenvalue (see Theorem 3.7).

Moreover, when G is irreducible, but Gq decomposes into irreducible components, then,
as in Theorem 3.10, the components are isolated and all have the same largest eigenvalue. So,
for encoding purposes, we are free to use any such component, although some components
may result in simpler encoders than others (see [How89], [WW91]).

Example 4.3 Let G be the Shannon cover in Figure 2.6 of the 2-charge constrained
system and consider the two irreducible components in Figure 2.16, G0 and G1, of G

2. The
edges of the component G1 can be tagged so as to give a rate 1 : 2 block encoder for the
2-charge constrained system.

The following is the converse to Theorem 4.1.

Theorem 4.2 (Finite-state converse-to-coding theorem) Let S be a constrained system.
If there exists a rate p : q finite-state encoder for S, then p/q ≤ cap(S).

Proof. Let E be a rate p : q finite-state encoder for S. We may assume that E is
irreducible; for otherwise, replace E by one of its irreducible sinks (recall the notion of sink
from Section 2.5.1). By Theorem 3.4, since E is lossless,

log λ(AE) = cap(S(E)). (4.1)

CHAPTER 4. FINITE-STATE ENCODERS 112

But since each state of E has exactly 2p outgoing edges, we have

AE1 = 2p1 ,

where 1 is the column vector of all 1’s. Thus, by the Perron-Frobenius Theorem (Theo-
rem 3.11), we have,

λ(AE) = 2p .

Putting this together with (4.1), and observing that S(E) ⊆ Sq, we obtain

p = cap(S(E)) ≤ cap(Sq) ,

and so p/q ≤ cap(S).

In Example 4.1, we exhibited a rate 1 : 2 finite-state encoder for the (1, 3)-RLL con-
strained system. So, the capacity of this system must be at least 1/2. Indeed, from Table 3.1
we see that the capacity is approximately .5515. Similarly, from Example 4.2 it follows that
the capacity of the (0, 1)-RLL constrained system must be at least 2/3, and we know already

that this capacity equals log
(
(1+
√
5)/2

)
≈ .6942.

Recall from our discussion in Section 1.4 that if encoded data is corrupted by noise,
then a state-dependent decoder may lose track of the correct state information and therefore
propagate errors indefinitely without recovering. Since state-dependence is not involved in
decoding a block encoder, such encoders will limit error propagation (in fact, error propa-
gation will be confined to a single block). For this reason, we will first spend some time
discussing block encoders before we pass to the more general framework of encoders which
limit error propagation (in Section 4.3).

4.2 Block encoders

Let S be a constrained system presented by a deterministic graph G and let q be a positive
integer. We can obtain a rate p : q block encoder for S as follows. We pick an arbitrary state
u in G and find the largest integer p such that (Aq

G)u,u ≥ 2p. Then, we construct the encoder
dictionary by taking 2p words of length q that are generated by cycles in G that start and
terminate in u. In fact, if we choose these words in consecutive lexicographic order, then a
codeword can be reconstructed efficiently from its index in the dictionary. This technique
is known as enumerative coding (see [Cov73], [Imm91, p. 117], [TB70], and Problem 4.2).
The question is whether the attainable rate p/q can be made large enough so that we can
approach capacity. The answer turns out to be positive, as summarized in the following
theorem.

Theorem 4.3 (Block coding theorem [Sha48]) Let S be a constrained system. There
exists a sequence of rate pm : qm block encoders for S such that limm→∞ pm/qm = cap(S).

CHAPTER 4. FINITE-STATE ENCODERS 113

Proof. Let G be an irreducible deterministic graph such that cap(S(G)) = cap(S); by
Theorem 3.7, such a graph indeed exists. We will further assume that G is in fact primitive;
the general irreducible case can be deduced by appealing to Theorem 3.10.

By Theorem 3.17, it follows that for every state u in G we have

lim
ℓ→∞

1

ℓ
log(Aℓ

G)u,u = log λ(AG) = cap(S) .

Hence, for every state u in G and ǫ > 0, there exist integers q and p = ⌊q(cap(S)− ǫ)⌋ such
that

(Aq
G)u,u ≥ 2q(cap(S)−ǫ) ≥ 2p .

Hence, our block encoder construction approaches capacity when q →∞.

The following result provides a characterization of the existence of block encoders for a
given constrained system.

Proposition 4.4 Let S be a constrained system with a deterministic presentation G and
let n be a positive integer. Then there exists a block (S, n)-encoder if and only if there exists
a subgraph H of G and a dictionary L with n symbols of Σ(S), such that L is the set of
labels of the outgoing edges in H from each state in H.

Proof. If there is such a subgraph H and a dictionary L, then any concatenation of
words of L yields a word in S. Hence, L is a dictionary of a block encoder.

Conversely, suppose there exists a block (S, n)-encoder E with a dictionary L. By
Lemma 2.9, there is an irreducible component G′ of G such that L∗ = S(E) ⊆ S(G′).
Hence, by Lemma 2.13, there is a state u in G′ such that L∗ ⊆ FG′(u). In particular, there
must be an edge u

w→ uw in G′ for every w ∈ L. Continuing from the terminal states of these
edges, there must be edges uw

z→ uwz in G′ for every w, z ∈ L. Iterating this process, we
end up traversing a subgraph of G′, where each state in the subgraph has |L| = n outgoing
edges labeled by L.

For a given constrained system S, and a given choice of p and q, Proposition 4.4 gives a
decision procedure for determining if there is rate p : q block encoder for S (and if so how
to construct one) as follows. Let G be a deterministic presentation of S and, for two states
u and v in G, let F q

G(u, v) denote the set of all words of length q that can generated in G by
paths that start at u and terminate in v. Searching for the states of the subgraph H of Gq

in Proposition 4.4, we look for a set P of states in G for which
∣∣∣
⋂

u∈P

(⋃

v∈P
F q

G(u, v)
) ∣∣∣ ≥ 2p .

We call such a set P of states a (p, q)-block set, and the set on the left-hand side of this
inequality the corresponding dictionary.

CHAPTER 4. FINITE-STATE ENCODERS 114

While there are exponentially many (as a function of the number of states of G) subsets to
search over, the following result of Freiman and Wyner [FW64, Lemma 2] (see also [MSW92,
Section V and Appendix B]) simplifies the procedure in many cases.

Proposition 4.5 Let S be a constrained system with a finite memory essential presen-
tation G (in particular, G is deterministic). Let p and q be positive integers, and assume
that q is at least as large as the memory of G. If there is a (p, q)-block set of vertices in
G, then there is a (p, q)-block set P with the following property: whenever u is in P and
FG(u) ⊆ FG(u

′), then u′ is also in P .

A set of states that satisfies the property, stated in the conclusion of Proposition 4.5, is
called a complete set of states.

Proof of Proposition 4.5. Let u and u′ be states in G such that FG(u) ⊆ FG(u
′).

Since q is at least as large as the memory of G, it follows that any word of length q generated
by a path from state u to some state v can also be generated by a path from state u′ to v.
Thus, if P is a (p, q)-block set, u ∈ P , and u′ ∈ VG, then the set P ′ = P ∪ {u′} is also a
(p, q)-block set. So, any (p, q)-block set can be iteratively enlarged until it is complete.

We show how this method works in the next example.

Example 4.4 Let S be the (0,2)-RLL constrained system, presented by the deterministic
graph G in Figure 4.3. Note G has memoryM = 2. From Table 3.1, we see that cap(S) ≈
.8791, and so it makes sense to ask if there is a rate p : q block encoder for S with p = 4 and
q = 5. For this, first observe that the follower sets of states in G satisfy

FG(2) ⊂ FG(1) ⊂ FG(0) ,

and so the only complete sets are P0 = {0}, P1 = {0, 1}, and P2 = {0, 1, 2}. Now, the
adjacency matrix for G and its fifth power are

AG =

1 1 0
1 0 1
1 0 0

and

A5
G =

13 7 4
11 6 3
7 4 2

 .

For P0, the corresponding dictionary is the set of labels of the self-loops in G5 at state 0.
The number of such self-loops is (A5

G)1,1 = 13 < 16 = 24; so, P0 is not a (p, q)-block set.

CHAPTER 4. FINITE-STATE ENCODERS 115

0 1 2✲0 ✲0

✻ ❄1❄1

✲
1

Figure 4.3: Presentation G of (0, 2)-RLL constrained system.

For P1, since F(1) ⊂ F(0) and q = 5 > 2 =M, the corresponding dictionary is the set of
labels of paths that start at state 1 and end at either state 0 or 1. The size of this dictionary
is the sum of the (2, 1) and (2, 2) entries of A5

G, and this is 17 > 16 = 24. Thus, P1 is a (4, 5)-
block set and defines a rate 4 : 5 block encoder for S by deleting one word from the dictionary
and then assigning 4-bit tags to the remaining codewords. A particular assignment for such
a code, that was actually used in practice, is shown in [MSW92, Table III].

For P2 the corresponding dictionary is the set of labels of paths that start at state 2 and
end at any of the states 0, 1, or 2. Thus, the size of the dictionary is the sum of the entries
in the third row of A5

G. Since this is only 13, P2 fails to be a (4, 5)-block set. So, of the three
complete sets, only one of them, P1, yields a rate 4:5 block encoder.

The same method can also be applied to give a rate 8 : 9 block encoder for the (0, 3)-RLL
constrained system. with capacity approximately .9468; see [MSW92, p. 25]. Yet, in both
of these examples the rates of the codes (4/5 = .8 for (0, 2)-RLL and 8/9 ≈ .8889 for (0, 3)-
RLL) are quite far from capacity (.8791 for (0, 2)-RLL and .9468 for (0, 3)-RLL). In order
to get code rates much closer to capacity, it typically requires much longer block lengths.

The problem with longer block lengths is twofold. First, one must deal with the problem
of designing a practically implementable assignment of a very large number of user words.
Secondly, while errors can not propagate beyond a block boundary, if the block length is
large, then a large number of bits may be corrupted by a single channel error.

For these reasons, finite-state encoders based on relatively short block lengths can offer
an attractive alternative to block encoders based on long block lengths—provided that error
propagation can still be controlled satisfactorily. Indeed, this is the role of sliding-block
decodability: a sliding-block decoder with small window size will control error propagation.
For instance, in Example 4.2, we gave a rather simple rate 2 : 3 two-state encoder for the
(0, 1)-RLL constrained system; this rate is relatively close to capacity (≈ .6942), and we
saw in Section 1.4 that there is a corresponding sliding-block decoder with a very small
window. In contrast, to obtain a rate p : q block encoder for this system with p/q = 2/3 ≈
.6667, the procedure outlined above reveals that it requires block lengths of size p = 12 and
q = 18. As another example, consider the (1, 7)-RLL constrained system, whose capacity
is approximately .6793. In Section 4.3, we will exhibit a relatively simple rate 2 : 3 six-
state encoder with a sliding-block decoder with small window. In contrast, using a result by

CHAPTER 4. FINITE-STATE ENCODERS 116

Lee [Lee88] (see also [LW89]), one can show that the smallest block lengths for a rate 2/3
block encoder for this system are p = 42 and q = 63.

4.3 Sliding-block decodable encoders

Let S be a constrained system over an alphabet Σ and let m and a be integers such that
m+a ≥ 0. A tagged (S, n)-encoder is (m, a)-sliding-block decodable, if the following holds: for
any two paths e−me−m+1 . . . e0 . . . ea and e′−me

′
−m+1 . . . e

′
0 . . . e

′
a that generate the same word,

the edges e0 and e′0 have the same (input) tag. We will use the shorter term sliding-block
decodable encoder to denote a tagged encoder which is (m, a)-sliding-block decodable for some
m and a.

A sliding-block decoder for a tagged (S, n)-encoder E is a mapping D from the set S(E)∩
Σm+a+1 to the set of input tags, such that, if w = w0w1w2 · · · is any symbol sequence
generated by the encoder from the input tag sequence s = s0s1s2 · · ·, then, for i ≥ m,

si = D(wi−m, . . . , wi, . . . , wi+a) .

We call a the look-ahead of D and m the look-behind of D. The sum m+a+1 is called
the decoding window length of D. It is easy to verify that a tagged (S, n)-encoder has a
sliding-block decoder if and only if it is sliding-block decodable.

A tagged encoder is called block decodable if it is (0, 0)-sliding-block decodable, equiva-
lently if whenever two edges have the same (output) label, they must also have the same
(input) tag.

The following proposition is straightforward.

Proposition 4.6 If a tagged (S, n)-encoder is (m, a)-definite, then it is (m, a)-sliding-
block decodable for any tagging of the edges.

Notions of sliding-block decodability naturally extend to rate p : q finite-state encoders
as follows. Let S be a constrained system over an alphabet Σ. A sliding-block decoder for a
rate p : q finite-state encoder E for S is a mapping

D : S(E) ∩ (Σq)m+a+1 −→ {0, 1}p

such that, if w = w0w1w2 · · · is any sequence of q-blocks (codewords) generated by the
encoder from the input tag sequence of p-blocks s = s0s1s2 · · ·, then, for i ≥ m,

si = D(wi−m, . . . , wi, . . . , wi+a) .

Figure 1.9 shows a schematic diagram of a sliding-block decoder.

CHAPTER 4. FINITE-STATE ENCODERS 117

Recall that a single error at the input to a sliding-block decoder can only affect the
decoding of q-blocks that fall in a “window” of length at most m+a+1, measured in q-blocks.
Thus, error propagation is controlled by sliding-block decoders.

Example 4.5 The encoder in Figure 4.1 is (1, 0)-definite. Hence, it is (1, 0)-sliding-
block decodable for any tagging of the edges. Moreover, for the specific tagging shown in
Figure 4.1, the encoder is actually block decodable: the second bit in each label equals the
input tag.

Example 4.6 The tagged encoder given in Example 1.2 is not sliding-block decodable.
To see this, observe that an arbitrarily long sequence of a’s can be generated by the self-loops
at each state, and yet the self-loops have different input tags.

Example 4.7 Let E be the encoder in Figure 4.2. This encoder is (0, 1)-definite and
therefore (0, 1)-sliding-block decodable. Table 4.1, which we showed earlier in Section 1.4,
defines a sliding-block decoder

D : S(E) ∩
(
{0, 1}3

)2 −→ {00, 01, 10, 11} .

Entries marked by “—” in the table do not affect the value of the decoded input tag si.

wi wi+1 si = D(wi, wi+1)
(current codeword) (next codeword) (decoded input tag)

010 — 11
011 101 or 111 01
011 010, 011, or 110 00
101 101 or 111 10
101 010, 011, or 110 00
110 — 10
111 101 or 111 11
111 010, 011, or 110 01

Table 4.1: Sliding-block decoder for encoder in Figure 4.2.

The following result shows that for encoders, sliding-block decodability implies finite an-
ticipation. So, sliding-block decodability is indeed a stronger property than state-dependent
decodability.

Proposition 4.7 If an essential tagged (S, n)-encoder is (m, a)-sliding-block decodable,
then it has anticipation at most a.

CHAPTER 4. FINITE-STATE ENCODERS 118

wi wi+1 wi+2 wi+3 si
00 00 00 — 0
00 00 01 — 0
00 00 10 00 1
00 00 10 01 0
00 01 — — 0
00 10 — — 1
01 00 00 — 0
01 00 01 — 1
01 00 10 00 1
01 00 10 01 0
10 00 00 — 0
10 00 01 — 1
10 00 10 00 1
10 00 10 01 0
10 01 — — 0

Table 4.2: Decoding function of encoder in Figure 4.4.

Proof. The proof is similar to that given for Definite ⇒ Finite anticipation in Proposi-
tion 2.3.

Example 4.8 The capacity of the (2, 7)-RLL constrained system is approximately .5174
(see Table 3.1). Figure 4.4 presents a rate 1 : 2 six-state encoder for this constrained system.
The encoder is (0, 3)-sliding-block decodable and its decoder, si = D(wi, wi+1, wi+2, wi+3), is

B F

A E

C D

✲0/00
✛

1/01

✛ 1/00

❄

0/10

❄

1/10

✻

1/00 ✲0/00

✒

1/00

✯
1/00

❘

0/00
❨

0/01

❘

0/10

Figure 4.4: Rate 1 : 2 six-state encoder for (2, 7)-RLL constrained system.

presented in Table 4.2. By Proposition 4.7, the anticipation of this encoder is at most 3 and,
in fact, it is exactly 3 (see Problem 2.3: the graph in Figure 2.20 is an untagged version of

CHAPTER 4. FINITE-STATE ENCODERS 119

Figure 4.4, with the labels a, b, and c standing for 00, 01, and 10, respectively). The encoder
in Figure 4.4 is due to Franaszek [Fra72] and has been used in several commercial products.

Figure 4.5 shows another rate 1 : 2 (untagged) encoder for the (2, 7)-RLL constrained sys-
tem. This encoder, which is due to Howell [How89], has only five states. Yet, its anticipation

B

A

C

E

D

❄

01

✛ 10

❄

00

✲00
✛

10

✯

00

❥

01❨

00

✯
00

❨

10

Figure 4.5: Rate 1 : 2 five-state encoder for (2, 7)-RLL constrained system.

is 4 (see Problem 2.4).

Example 4.9 The capacity of the (1, 7)-RLL constrained system is approximately .6793.
Figure 4.6 presents a rate 2 : 3 four-state encoder for this constrained system. This encoder

B D

A C
✛

01/100

✛

11/101

✻

01/010

❄
00/010 ❄

01/010

✛ 00/100

✲

10/001

❄

10/010

❄

11/100

✲

00/000

✲11/001
✛

10/010
✻

11/000

✒

01/000

✠

10/101■

00/010

Figure 4.6: Rate 2 : 3 two-state encoder for (1, 7)-RLL constrained system.

is due to Weathers and Wolf [WW91] and is (0, 2)-sliding-block decodable (a sliding-block
decoder can be found in [WW91]).

CHAPTER 4. FINITE-STATE ENCODERS 120

For finite-type constrained systems, Theorem 4.1 can be improved.

Theorem 4.8 (Adler, Coppersmith, and Hassner [ACH83]) Let S be a finite-type con-
strained system. If p/q ≤ cap(S), then there exists a rate p : q finite-state encoder for S with
a sliding-block decoder.

This result is proved in Section 5.4.

We remark that except in trivial cases it is impossible to have a < 0. On the other hand,
it is quite possible to have m < 0 (but still having m+a ≥ 0). A value m < 0 corresponds
to the case where the sliding-block decoder reconstructs a tag which was input way back in
the past—i.e., m time slots earlier than the ‘oldest’ symbol in the examined window. See
Section 6.6, where we briefly discuss how this is used to reduce the decoding window length,
m+a+1, of the decoder and therefore also the error propagation.

Next, we point out that there is an algorithm for testing whether a given tagged (S, n)-
encoder is (m, a)-sliding-block decodable. When m is nonnegative, this is a simple modifi-
cation of that described in Section 2.7.4 (see Problem 4.7); when m < 0, this is given in
Proposition 4.10 below. In contrast, however, we have the following.

Theorem 4.9 (Siegel [Sie85b], [AKS96]) Given an untagged (S, n)-encoder E , the prob-
lem of deciding whether there is a tag assignment to the edges of E such that E is block
decodable (namely, (0, 0)-sliding-block decodable) is NP-complete.

In fact, the proof of this result shows that the input tag assignment problem in Theo-
rem 4.9 is NP-complete even for fixed n ≥ 3. But the problem becomes polynomial if we fix
the size of the alphabet of S.

Finally, we outline here the algorithm to test whether a tagged (S, n)-encoder is (m, a)-
sliding-block decodable when m < 0. For a tagged (S, n)-encoder E , let RE∗E be the |VE |2 ×
|VE |2 matrix whose rows and columns are indexed by the states of E ∗ E , and for every

u, u′, v, v′ ∈ VE , the entry (RE∗E)〈u,u′〉,〈v,v′〉 equals the number of pairs of edges u
s/a→ v and

u′
s′/a′→ v′ in E , with distinct input tags s 6= s′ (but not necessarily with the same label).

Also, denote by AE ⊗AE the Kronecker product of AE with itself—i.e., (AE ⊗AE)〈u,u′〉,〈v,v′〉 =
(AE)u,v(AE)u′,v′ for every u, u

′, v, v′ ∈ VE .

Proposition 4.10 A tagged (S, n)-encoder E is (m, a)-sliding-block decodable with m < 0
if and only if RE∗E (AE ⊗ AE)−m−1Am+a+1

E∗E = 0.

The full proof of Proposition 4.10 is left as an exercise (Problem 4.10).

CHAPTER 4. FINITE-STATE ENCODERS 121

4.4 Block decodable encoders

Recall that a tagged encoder is block decodable if it is (0, 0)-sliding-block decodable. While a
block decodable encoder is state dependent, it can be decoded just like a block encoder, and
thus block decodable encoders limit error propagation to the same extent as block encoders.
The following example shows why block decodable encoders might provide an advantage over
block encoders.

Example 4.10 Consider the constrained system S over the alphabet {a, b, c, d} which
is presented by the labeled graph G of Figure 4.7.

0 1
✲

a ✲b
✛

c
✛ d

Figure 4.7: Graph presentation for Example 4.10.

Now, suppose we would like to construct a rate p : q block encoder for S. Since the
follower sets of the two states in G are disjoint, then, by Proposition 4.4, the codewords of
the dictionary must all be generated by cycles that start and terminate in the very same
state of G. However, for each of the two states u in G, there are (Aq

G)u,u = 2q−1 cycles of
length q that start and terminate in u. Hence, the best we can achieve is a rate (q−1) : q
block encoder for S, which, evidently, does not achieve the capacity cap(S) = 1.

On the other hand, any tagging of the edges of G yields a rate 1:1 block decodable encoder
and so achieves capacity.

As another example, consider the (1, 3)-RLL constrained system S. The rate 1:2 two-
state encoder for S in Figure 4.1 is block decodable, but is not a block encoder. In fact, we
leave it to the reader to verify that there is no rate 1:2 block encoder for this system (to see
this, use Proposition 4.4 and the procedure described immediately afterwards).

Block-decodable encoders form a class somewhere intermediate between block encoders
and sliding-block decodable encoders. The following result gives a characterization, similar
to Proposition 4.4, for the existence of block decodable encoders.

Proposition 4.11 Let S be a constrained system with a deterministic presentation G
and let n be a positive integer. Then there exists a block decodable (S, n)-encoder if and only
if there exists such an encoder which is a subgraph of G.

Proof. The sufficiency of the condition is obvious. The proof of necessity is similar
to that of Proposition 4.4. First, we may assume that there exists an irreducible block

CHAPTER 4. FINITE-STATE ENCODERS 122

decodable (S, n)-encoder E . By Lemma 2.13, for each state v in E , there is a state u in G
such that FE(v) ⊆ FG(u); while there may be many such states u, just pick one, and call
it u(v). Now, for every symbol a which appears as a label of an outgoing edge in E from
v, there is a unique edge in G outgoing from u(v) with label a; call this edge e(v, a). Then
the set of edges {e(v, a)} obtained in this way defines a subgraph of G. These edges inherit
tags from the corresponding edges in E , and it is evident that this tagged subgraph defines
a block decodable (S, n)-encoder.

Example 4.11 Let S be the (0, 1)-RLL constrained system and let G be the Shannon
cover of S, as shown in Figure 2.2. We have presented a rate 2 : 3 two-state encoder for S in
Example 4.2. Note that this encoder is not block decodable. We claim that there is no block
decodable, rate 2 : 3 finite-state encoder for S. For if there were such an encoder, then by
Proposition 4.11 there would be a subgraph H of G3, with each state of H having outdegree
= 4. But there is no such subgraph: G3 is shown in Figure 2.10; it has outdegree 5 at state
0 and outdegree 3 at state 1, and the deletion of state 1 would leave state 0 with outdegree
only 3.

It follows from Proposition 4.11 that if G is the Shannon cover of a constrained system
S and there is a block decodable rate p : q finite-state encoder for S , then there exists a set
P of states in G such that

∣∣∣
⋃

v∈P
F q

G(u, v)
∣∣∣ =

∑

v∈P
(Aq

G)u,v ≥ 2p for every u ∈ P .

A set of states P which satisfies this inequality is referred to in [Fra68] as a set of principal
states. Note that any (p, q)-block set, as defined in Section 4.2, is necessarily a set of
principal states. The existence of a set of principal states is necessary for the existence of
a block decodable encoder, in particular for a block encoder. In fact, it is necessary and
sufficient for the existence of a deterministic encoder, but in general it is not sufficient for
the existence of a block decodable encoder. However, it turns out (see [Fra68] and [Fra70])
that for a special class of irreducible constrained systems, including powers of (d, k)-RLL
constrained systems, the existence of a rate p : q deterministic encoder is equivalent to the
existence of a rate p : q block decodable encoder. So, for these systems, one can obtain block
decodable encoders by searching for a set of principal states. We will see in Section 5.2.2
that a set of principal states, if any exists, can be found efficiently.

An explicit description of block decodable codes for (d, k)-RLL constrained systems is
given by Gu and Fuja in [GuF94], and also by Tjalkens in [Tja94]. Their constructions
are optimal in the sense that for any given (d, k)-RLL constrained system, and given q,
they achieve the highest possible p for a rate p : q block decodable encoder. The Gu–Fuja
construction is a generalization of a coding scheme due to Beenker and Immink [BI83].

We now describe the Beenker–Immink construction (see also [Imm91, pp. 116–117]).
Let L(q; d, k; r) denote the set of all q-blocks in the (d, k)-RLL constrained system, with

CHAPTER 4. FINITE-STATE ENCODERS 123

at least d leading zeroes and at most r trailing zeroes. We assume that q > k ≥ 2d and
that d ≥ 1, and set r = k−d. Encoding is carried out by a one-to-one mapping of the
p = ⌊log |L(q; d, k; k−d)|⌋ input bits (tags) into q-blocks, or codewords, in L(q; d, k; k−d).
Such a mapping can be implemented either by a look-up table (of size 2p) or by enumerative
coding. However, since the codewords in L(q; d, k; k−d) are not freely-concatenable, the
encoded codeword needs to be adjusted: when the concatenation of the previous codeword
with the current codeword causes a violation of the (d, k)-RLL constraint, we invert one of
the first d zeroes in the latter codeword. The condition q > k ≥ 2d guarantees that such
inversion can always resolve the constraint violation. The first d bits in each codeword (which
are initially zero) are referred to as merging bits. Since encoding of a current codeword
depends on the previous codeword, the Beenker–Immink encoder is not a block encoder;
however, it is block decodable.

We can use Example 4.1 to illustrate how this scheme works (even though the condition
q > k is not met). In the example, the set L(2; 1, 3; 2) consists of the two codewords 00
and 01. When the codeword 00 is to be followed by another 00, we resolve the constraint
violation by changing the latter codeword into 10.

A well-known application of the Beenker–Immink method is that of the 3-EFM(16) code
that was described in Section 1.7.2. The codewords of this code are taken from the set
L(16; 2, 10; 8), which is of size 257, thus yielding a rate 8 : 16 block decodable encoder for
the (2, 10)-RLL constrained system.

In their paper [GuF94], Gu and Fuja show that, for any (d, k)-RLL constrained system
S with k > d ≥ 1, and for any q ≥ d, a block decodable (Sq, n)-encoder exists if and only
if n ≤ |L(q; d, k; k−1)| (Tjalkens presents a similar result in [Tja94] for the range q ≥ k ≥
2d > 1). Hence, the Beenker–Immink construction is optimal for d = 1 and sub-optimal for
d > 1. The construction presented in [GuF94] that attains the equality n = |L(q; d, k; k−1)|
requires more than just inverting a merging bit; still, as shown in [GuF94], it can be efficiently
implemented. See also [Tja94].

4.5 Non-catastrophic encoders

A tagged (S, n)-encoder is a non-catastrophic encoder if it has finite anticipation and when-
ever the sequences of output labels of two right-infinite paths differ in only finitely many
places, then the sequences of input tags also differ in only finitely many places. A rate p : q
finite-state tagged encoder for S is non-catastrophic if the corresponding tagged (Sq, 2p)-
encoder is non-catastrophic.

Observe that non-catastrophic encoders restrict error propagation in the sense that they
limit the number of decoded data errors spawned by an isolated channel error. In general,
however, such encoders do not necessarily limit the time span in which these errors occur.

CHAPTER 4. FINITE-STATE ENCODERS 124

On the other hand, tagged encoders which are sliding-block decodable do limit the time span
as well and therefore are preferable.

The following result shows that, with the standard capacity assumption, we can always
find non-catastrophic encoders and that whenever there is excess in capacity or whenever the
constraint is almost-finite-type (such as the charge-constrained systems), the decoder can be
made sliding-block, ensuring that decoder error propagation is limited in both number and
time span.

Theorem 4.12 Let S be a constrained system. If p/q ≤ cap(S), then there exists a
non-catastrophic rate p : q finite-state encoder for S. Moreover, if, in addition, either p/q <
cap(S) or S is almost-finite-type, then the encoder can be chosen to be sliding-block decodable.

So, for general constrained systems, the error propagation is guaranteed to be limited
only in number. Indeed, in [KarM88] (see Section 5.4), an example is given of a constrained
system with rational capacity, for which there is no sliding-block decodable encoder with rate
equaling capacity (of course, by Theorem 4.12, such a constrained system cannot be almost-
finite-type). In the non-catastrophic encoders constructed in Theorem 4.12, the decoding
errors generated by an isolated channel error are confined to two bounded bursts, although
these bursts may appear arbitrarily far apart (see Section 5.4).

The notion of non-catastrophic encoder is a standard concept in the theory of convolu-
tional codes. In that setting, it coincides with sliding-block decodability [LinCo83, Ch. 10].

The proof of Theorem 4.12 is fairly complicated. We give an outline in Section 5.4.
Although it does not exactly provide a practical encoder synthesis algorithm, the proof makes
use of some very powerful techniques that can be brought to bear in particular applications.
Several of the ideas in the generalization to almost-finite-type systems have also played a
role in the design of coded-modulation schemes based upon spectral-null constraints. See,
for example, [KS91a].

The quest for a sliding-block decodable encoder with rate equaling capacity for a partic-
ular example provided the original motivation for Theorem 4.12. The example is as follows.

Let S be the 6–(1, 3)-CRLL constrained system (see Section 1.5.5 and Problem 2.16). It
turns out that cap(S) = 1/2 (see Problem 3.23). In fact, the only non-trivial B–(d, k)-CRLL
constrained systems with rational binary capacity are the 2–(0, 1)-CRLL and the 6–(1, 3)-
CRLL systems, both with capacity 1/2 [AS87][AHPS93]. For this constraint, Patel [Patel75]
constructed a particular rate 1 : 2 finite-state (S, 2)-encoder. So, the rate of this encoder is
as high as possible. Unfortunately, this encoder does not have finite anticipation. However,
Patel was able to modify the encoder to have finite anticipation and even a sliding-block
decoder with very small decoding window length, at the cost of only a small sacrifice in rate
(although there is an additional cost in complexity). This modified encoder, known as the
Zero-Modulation (ZM) code, was used in an IBM tape drive [Patel75].

CHAPTER 4. FINITE-STATE ENCODERS 125

Recall that charge-constrained systems are almost-finite-type and that runlength-limited
systems are finite-type and therefore almost-finite-type. Now, the intersection of two almost-
finite-type constrained systems is again almost-finite-type (see Problem 2.8); so, the 6–(1, 3)-
CRLL constrained system S is almost-finite-type. It then follows from Theorem 4.12 that
there actually is a rate 1 : 2 tagged finite-state (S, 2)-encoder which is sliding-block decodable.
However, the encoding–decoding complexity of such a code appears to be enormous. On the
other hand, there is a rate 4 : 8 tagged finite-state (S, 2)-encoder which is sliding-block de-
codable, with only moderate encoding–decoding complexity (see [KS91b] and Problem 4.3).

We remark that Ashley [Ash93] has proved a far-reaching generalization of Theorem 4.12.

4.6 Relationships among decodability properties

Finally, in the following result, which we leave as an exercise for the reader, we summarize
the relationships among the decodability properties that we have considered in this chapter.

Proposition 4.13 Let E be an essential tagged encoder. Then

Definite ⇒ Sliding-block
decodable

⇒ Noncatastropic

⇑ ⇑
Block
encoder

⇒ Block
decodable

⇒ Deterministic

⇒ Finite
anticipation

⇒ Encoder .

4.7 Markov chains on encoders

In Section 3.4, we introduced Markov chains on graphs. Clearly, the definitions apply to
(S, n)-encoders as special cases of graphs.

In particular, given a tagged (S, n)-encoder E = (V,E, L), we can obtain a Markov chain
on E by assuming that the input tags within an input sequence are statistically independent
and uniformly distributed. This model is commonly used in analyzing encoders, and it
can be approximated rather well in reality by ‘scrambling’ the sequence of input tags (e.g.,
assuming that the input tags take values on Υ = {0, 1, 2, . . . , n−1}, the ith input tag in the
sequence is added modulo n to the ith symbol in some fixed pseudo-random sequence over
Υ). Equivalently, in this Markov chain, the conditional probability, qe, of each edge e ∈ E
is equal to 1/n.

Example 4.12 We analyze here the 3-EFM(16) code that was described in Section 1.7.2.
Recall that this encoder has three states, 0, 1, and 2–8, with out-degree n = 256 at each
state. The edges are labeled by 16-bit codewords from the (2, 10)-RLL constraint.

CHAPTER 4. FINITE-STATE ENCODERS 126

The adjacency matrix of E is given by

AE =

83 57 116
83 57 116
83 57 116

 .

Indeed, the number of edges from state u to state v in E is independent of u; in fact, the
dependency on u of the labels of those edges is restricted only to the merging bits, which
are the first two bits of those labels.

A uniform distribution over the input tag sequences induces a Markov chain on E whose
transition matrix is given by

QE = 1
256
· AE

(see Section 3.4). By Proposition 3.20 it follows that as the path length ℓ increases, the
probability of ending at state u in E converges to the component πu in the following vector

π⊤ = (π0 π1 π2−8) = (83
256

57
256

116
256

) ≈ (.324 .223 .453) .

In fact, in our case the rows of QE are all equal, so Proposition 3.20 holds not only in the
limit, but rather for every particular path length ℓ > 0.

As pointed out in Section 1.7.2, there are 113 outgoing edges from state 1 in E whose
labels can be altered in their second bit (i.e., in the second merging bit) without violating
the constraint. Therefore, the probability of allowing such a bit inversion is

113
256
· π1 ≈ .098 .

It follows that approximately once in every 10 codewords, on the average, a merging bit can
be inverted. The law of large numbers (Theorem 3.21) can now guarantee an arbitrarily
small deviation from this average with probability approaching one as the path length ℓ goes
to infinity.

4.8 Spectral analysis of encoders

One important application of Markov chains on encoders is the spectral analysis of the
output sequences that are generated by an encoder. Let S be a constrained system whose
alphabet is a subset of the real field IR, and let E = (V,E, L) be an (Sq, n)-encoder. Each
path of length ℓ in E generates a sequence of length ℓ over IRq; yet, for the purpose of spectral
analysis, we will regard those sequences as words of length qℓ over IR. That is, we will be
interested in the constrained system S ′ that is generated by a graph E ′ whose set of states
is given by

V ∪ {ue,i}e∈E, 1≤i<q ,

CHAPTER 4. FINITE-STATE ENCODERS 127

and each edge e in E with a label L(e) = w1w2 . . . wq becomes a path γe in E ′ that takes the
form

σE(e)
w1→ ue,1

w2→ ue,2
w3→ . . .

wq−1→ ue,q−1
wq→ τE(e) .

Every Markov chain P on E can be easily transformed into a Markov chain P ′ on E ′ with
P ′(γe) = P(e) ;

indeed, define P ′(e′) = P(e) for the first edge e′ in γe, and let all the other edges along γe
have conditional probability 1. Note that P ′ is an irreducible Markov chain on E ′ if and only
if P is irreducible on E . Also, the period of an irreducible P ′ is q times the period of P.

Next we recall the definition of power spectral density from Problem 3.35 and apply it
to E ′ and P ′, assuming that P ′ is an irreducible Markov chain on E ′. For simplicity, we will
assume here that for each equivalence class C of the congruence relation on the states of E ′
we have

EP ′ {L′(e′) | σE ′(e′) ∈ C} = 0 .

Let
X = X−ℓ+1X−ℓ+1 . . . X0X1 . . .Xℓ

denote a random word of length 2ℓ+1 taking values on S ′ with a probability distribution as
induced by P ′. The autocorrelation of X is given by

RX(t) = EP ′ {XiXi+t} , t = 0,±1,±2, . . . ,±ℓ ;

by stationarity, RX(t) does not depend on i (provided that −ℓ ≤ i, i+t ≤ ℓ). The power
spectral density f 7→ ΨX(f) of X is the two-sided Fourier transform of RX(t); namely,

ΨX(f) =
∞∑

t=−∞
RX(t)e

−2πtf ,

where =
√
−1. The power spectral density can also be expressed as

ΨX(f) = lim
ℓ→∞

1

2ℓ+1
EP ′

{
|ΦX(f)|2

}
, (4.2)

where f 7→ ΦX(f) is the (two-sided) Fourier transform of X, i.e.,

ΦX(f) =
ℓ∑

i=−ℓ

Xie
−2πif

(see Problem 3.35).

The value ΨX(0) is commonly referred to as the dc component of the power spectral
density. It follows from (4.2) that

ΨX(0) = lim
ℓ→∞

1

2ℓ+1
EP ′

{
Y 2
ℓ

}
,

CHAPTER 4. FINITE-STATE ENCODERS 128

where

Yℓ =
ℓ∑

i=−ℓ

Xi .

Now, EP ′{Xi} = 0 implies that EP ′{Yℓ} = 0. Hence, we can guarantee that the dc component
be zero by requiring that the digital sum variation (DSV) of X be bounded by a prescribed
parameter B (see Section 1.5.4).

As mentioned in Section 1.7.3, the suppression of ΨX(f) for values of f near zero is
desirable in optical recording. To this end, we could use in such applications a B–(d, k)-
CRLL encoder (for, say, (d, k) = (2, 10)), but the charge constraint B could result in a very
complex encoder. An alternate solution was presented in Section 1.7.3, where we showed how
the DSV can be reduced by bit inversions in the (d, k)-RLL sequence before it is precoded
(see Example 1.11). This method can be applied in the EFM code through the occasional
freedom in selecting the merging bits (see Example 4.12).

We note, however, that the reduction of the DSV through bit inversions requires, in
principle, the knowledge of all future bits in the sequence. Clearly, this is impractical and,
therefore, bit inversions are carried out based only on a limited look-ahead at the generated
sequence.

Figure 4.8 shows the power spectral density (obtained by simulation) at the low-frequency
range of the bipolar output of the 9-EFM(16) code after precoding. The merging bits in
every encoded codeword are selected (when possible) as to minimize the absolute value of
the sum of the symbols in the bipolar output. There are two curves in the figure, and both
are shown in the dB scale. One curve has been generated without look-ahead, namely, it is
assumed that the output sequence ends in the currently-encoded codeword; the second curve
has been generated by looking ahead at two upcoming codewords.

The suppression of the low-frequency range in the curves of Figure 4.8 is still insufficient
for optical recording applications. This was resolved in the compact disk by inserting three
merging bits instead of two, resulting in the (proper) EFM code.

Another possible solution is relaxing the requirement that the modification of a codeword
is limited only to inverting one of its first two bits. Such a relaxation allows to have codes
such as the (2, 10)-RLL encoder in [Roth00]. The encoder therein is a rate 8 : 16 block
decodable encoder with four states, 0, 1, 2–5, and 6–8 (with notations bearing the meaning
as in the EFM code). Assuming a uniform distribution on the input bytes, almost every
second input byte (on average) can be encoded into two different codewords that differ in
the parity of the number of 1’s in them (namely, for one codeword that number is even while
it is odd for the other). The power spectral density of this encoder is shown in Figure 4.9,
and the power spectral density of the 9-EFM(16) code is also included for comparison; in
both encoders, the DSV reduction is obtained by looking ahead at two upcoming codewords
(note that due to scaling, the power spectral density values in [Imm95b] and [Roth00] are
shifted by 3dB compared to the figures herein). The curve in Figure 4.9 is very similar to the

CHAPTER 4. FINITE-STATE ENCODERS 129

✲
f

✻
10 log10 ΨX(f)

−30

−25

−20

−15

−10

−5

0

+5

10−4 10−3 10−2 10−1

No look-ahead

Two-byte look-ahead

Figure 4.8: Power spectral density of the 9-EFM(16) code.

power spectral density of the EFMPlus code, which is used in the DVD (yet, the EFMPlus
code is not block decodable).

Problems

Problem 4.1 Recall that the (d, k, s)-RLL constraint is a subset of the (d, k)-RLL constraint where
the runlengths of 0’s must be of the form d+ is, with i a nonnegative integer.

Let S be the (s−1,∞, s)-RLL constraint for a prescribed positive integer s.

1. Show that the capacity of S is 1/s.

2. Construct a rate 1 : s block encoder for S.

Problem 4.2 (Enumerative coding) Let Σ be a finite alphabet and assume some ordering on the
elements of Σ. Let L be a set of distinct words of length ℓ over Σ. The ordering over Σ induces
the following lexicographic (dictionary) ordering over L: given two words w = w1w2 . . . wℓ and
z = z1z2 . . . zℓ in L, we say that w < z if there is i ∈ {1, 2, . . . , ℓ} such that wj = zj for 1 ≤ j < i
and wi < zi.

CHAPTER 4. FINITE-STATE ENCODERS 130

✲
f

✻
10 log10 ΨX(f)

−30

−25

−20

−15

−10

−5

0

+5

10−4 10−3 10−2 10−1

Code from [Roth00]

9-EFM(16)

Figure 4.9: Improvement on the dc suppression compared to the 9-EFM(16) code.

For a word w ∈ L, denote by IndL(w) the index of w in L, according to the induced lexico-
graphic ordering (starting with zero as the smallest index). Also, for a word w1w2 . . . wi of length
i ≤ ℓ over Σ, denote by NL(w1, w2, . . . , wi) the number of words in L whose prefix of length i is
given by w1w2 . . . wi.

1. Show that for every word w = w1w2 . . . wℓ ∈ L,

IndL(w) =
ℓ∑

i=1

∑

a∈Σ : a<wi

NL(w1, w2, . . . , wi−1, a)

(a sum over an empty set is defined to be zero).

2. Given an integer r in the range 0 ≤ r < |L|, show that the algorithm in Figure 4.10 produces
the word w ∈ L such that IndL(w) = r.

3. LetG = (V,E,L) be a deterministic graph and assume an ordering on the range of L : E → Σ.
Given two states u, v ∈ V and a positive integer ℓ, let L = LG(u, v; ℓ) be the set of all words
of length ℓ that can be generated from state u to state v in G.

Write an efficient algorithm for implementing an enumerative coder: the algorithm accepts
as input the quadruple (G,u, v, ℓ) and an integer r in the range 0 ≤ r < |LG(u, v; ℓ)|, and
produces as output the word w ∈ L = LG(u, v; ℓ)| such that IndL(w) = r.

CHAPTER 4. FINITE-STATE ENCODERS 131

s← r;
i← 1;
while (i ≤ ℓ) {

a← smallest element in Σ;
while (s ≥ NL(w1, w2, . . . , wi−1, a)) {

s← s−NL(w1, w2, . . . , wi−1, a);
increment a to the next element in Σ;

}
wi ← a;
i← i+ 1;

}
return w = w1w2 . . . wℓ;

Figure 4.10: Enumerative coding.

Write also an algorithm for implementing the respective enumerative decoder.

Problem 4.3 Explain how an (Sℓ, nℓ)-encoder E = (V,E,L) can be transformed into an (S, n)-
encoder E ′. Write an upper bound on the number of states of E ′ as a function of |V |, n, and
ℓ.

Hint: Start with the Moore co-form of E . Then replace the outgoing edges from each state by
a respective tree.

Problem 4.4 Let S be the constrained system generated by the graph G in Figure 2.22. Since
log 3 > 3/2 then, by Shannon’s coding theorem, there is a positive integer ℓ such that there exists
a rate (3ℓ) : (2ℓ) block encoder for S; i.e., there is an (S2ℓ, 23ℓ)-encoder with only one state.

The goal of this question is finding the smallest value of the integer ℓ for which such a block
encoder exists.

1. Let ℓ be a positive integer for which there is a rate (3ℓ) : (2ℓ) block encoder E for S. Show
that there is a state u in G such that all the codewords in E (of length 2ℓ over the alphabet
Σ of S) are generated by cycles in G that originate and terminate in state u.

2. Show that the number of cycles of length 2ℓ in G that originate and terminate in state B
equals

1

5
·
(
2 · 9ℓ + 3 · (−1)ℓ

)
.

Hint: AG2 = PΛP−1, where Λ is a diagonal matrix; what is P?

3. Obtain expressions, similar to the one in 2, for the number of cycles of length 2ℓ in G that
originate and terminate in—

(a) state A;

CHAPTER 4. FINITE-STATE ENCODERS 132

(b) state C.

4. Apply the results in 1–3 to find the smallest value of the integer ℓ for which there is a rate
(3ℓ) : (2ℓ) block encoder for S.

Problem 4.5 Let S be an irreducible constrained system with finite memory M and let G be
the Shannon cover of S. Assume there exists a block (Sℓ, n)-encoder E (with one state), where n
and ℓ are positive integers and ℓ ≥ M. Denote by L the set of n words of length ℓ that label the
edges of E . Show that if a word w in L is generated in G by a path that terminates in state u,
then L ⊆ FG(u); recall that FG(u) denotes the set of words that can be generated in G by paths
originating in state u.

Problem 4.6 Let S be the constrained system presented by the graph G in Figure 4.11.

A B C D

❲

a

✲b
✛

c

❖
d

✲e
✛

a

❖
b

❲

c

✲d
✛

e
❖

f

Figure 4.11: Graph G for Problem 4.6.

1. What is the period of G?

2. What is the memory of G?

3. Compute the capacity of S.

4. Obtain the entries of the adjacency matrix of G2ℓ as expressions in ℓ. Simplify those expres-
sions as much as possible.

Hint: Find a diagonal matrix Λ and a nonsingular matrix P such that AG2 = PΛP−1.

5. For states u and v in G and a positive integer ℓ, let N(u, v, ℓ) denote the number of distinct
words of length 2ℓ that can be generated in G both from state u and state v; that is,

N(u, v, ℓ) = |FG(u) ∩ FG(v) ∩ Σ2ℓ| .

For every two states in G, obtain the values of N(u, v, ℓ) as expressions in ℓ. Simplify those
expressions as much as possible.

6. Based on 4, and 5, and Problem 4.5, show that there is no block (S2ℓ, 23ℓ)-encoder (with one
state) for any positive integer ℓ.

7. Construct a rate 2 : 2 block encoder for S.

CHAPTER 4. FINITE-STATE ENCODERS 133

Problem 4.7 Let E be a tagged (S, n)-encoder and let AE∗E be the adjacency matrix of E ∗ E
(the input tags are ignored when constructing the fiber product). Denote by TE∗E the |VE |2× |VE |2
matrix with rows and columns indexed by the states of E ∗ E and entries defined as follows: for
every u, u′, v, v′ ∈ VE , the entry (TE∗E)〈u,u′〉,〈v,v′〉 equals the number of (ordered) pairs of edges u→v
and u′→v′ in E that have the same label yet are assigned distinct input tags. Show that E is
(m, a)-sliding-block decodable if and only if

Am
E∗E TE∗E A

a
E∗E = 0 .

Problem 4.8 Prove Proposition 4.10.

Chapter 5

The State-Splitting Algorithm

In this chapter, we provide an exposition of the state-splitting algorithm, which implements
the proof of Theorem 4.1, for constructing finite-state encoders. The steps in the algorithm
are summarized in Figure 5.9.

The approach we will follow uses graph construction techniques, based on state splitting
and approximate eigenvectors, which have their roots in symbolic dynamics, where they
were introduced by R.F. Williams [Will73] and Adler, Goodwyn, and Weiss [AGW77]. The
first application of state-splitting ideas in constrained coding was Patel’s construction of the
Zero-Modulation (ZM) code [Patel75] (see Section 4.5). The state-splitting algorithm is also
related to earlier ideas of Franaszek [Fra80b], [Fra82], [Fra89].

For a given deterministic presentation G of a constrained system S and an achievable rate
p/q ≤ cap(S), we will apply a state-splitting transformation iteratively beginning with the
qth power graph Gq; the procedure culminates in a new presentation of Sq with minimum
out-degree at least 2p; then, after deleting edges, we get an (Sq, 2p)-encoder, which, when
tagged, gives our desired rate p : q finite-state encoder for S.

Although the design procedure can be made completely systematic—in the sense of having
the computer automatically generate an encoder and decoder for any valid code rate—the
application of the method to just about any nontrivial code design problem will benefit from
the interactive involvement of the code designers. There are some practical tools that can
help the designer make “good” choices during the construction process. We will discuss some
of these tools in Section 5.5.

It should be stressed that the general problem of designing codes that achieve, for ex-
ample, the minimum number of encoder states, minimum sliding-block decoding window, or
the less precise feature of minimum hardware complexity, is not solved. This remains an
active research topic, as exemplified by recent papers where lower bounds on the number of
encoder states [MR91] and the minimum sliding-block decoder window are studied [Ash88],

134

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 135

[Kam89], [Imm92], [Holl95], [AM97], [AM00]. See Chapters 6 and 7 for more on this.

5.1 State splitting

In this section, we define state splitting of a labeled graph H and later apply it to H = Gq.
We begin with a simplified special case.

Let H = (V,E, L) be a labeled graph and denote by Eu the set of outgoing edges from
state u in H . A basic out-splitting at state u is determined by a partition

Eu = E(1)
u ∪ E(2)

u

of Eu into two disjoint sets. This partition is used to define a new labeled graph H ′ =
(V ′, E ′, L′) that changes the local picture at state u. The set of states V ′ consists of all
states v 6= u in H , as well as two new states denoted u(1) and u(2):

V ′ = (V − {u}) ∪ {u(1), u(2)} .

The states u(1) and u(2) are called descendant states of state u, and state u is called the
parent state of u(1) and u(2).

The edges in H ′ that do not involve states u(1) and u(2) are inherited from H . That is,
if there is an edge e from state v to state v′ in H , (with v, v′ 6= u) there is a corresponding
edge in H ′. For edges involving state u, we consider the following three cases.

Case 1: Let edge e in H start at a state v 6= u and terminate in state u. This edge is
replicated in H ′ to produce two edges: an edge e(1) from v to u(1) and an edge e(2) from v to
u(2).

Case 2: Let edge e in H start at state u and terminate in a state v 6= u, and suppose
e belongs to the set E(i)

u in the partition of Eu. We draw in H ′ a corresponding edge from
state u(i) to state v.

Case 3: Let edge e be a self-loop at state u in H , and suppose that e belongs to E(i)
u .

In H ′ there will be two edges from state u(i) corresponding to e: one edge to state u(1), the
other to state u(2).

As with states, we refer to descendant edges in H ′ and parent edges in H . In all cases,
the edge label of an edge in H ′ is the edge label of its parent edge in H .

In specifying the partitions in particular examples, we will refer to the edges by their
edge labels in cases where this causes no ambiguity.

The change in the local picture at state u is shown in Figures 5.1 and 5.2. In the figures,
we have partitioned the set of edges Eu into subsets, E(1)

u = {a, b} and E(2)
u = {c}. The

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 136

state u splits into two states, u(1) and u(2), according to the partition. It is evident that the
anticipation at states v1 and v2 may increase by one symbol. So, H ′ need not be deterministic
even if H is.

v2

v1

u

v4

v3

✯

e

❥

d
✯

b

❥
c

❄
a

Figure 5.1: Local picture at state u before splitting.

v2

v1 u(1)

u(2) v4

v3

❄

a

✲d ✲b

✲e ✲c

✒

e

❘

d

❄
a

Figure 5.2: Basic out-splitting at state u for Figure 5.1.

In general, a state splitting may involve partitions into any number of subsets, and several
states may be split simultaneously; so, we have the following more general notion of state
splitting.

An out-splitting of a labeled graph H begins with a partition of the set, Eu, of outgoing
edges for each state u in H into N(u) disjoint subsets

Eu = E(1)
u ∪ E(2)

u ∪ · · · ∪ E(N(u))
u .

From the partition, we derive a new labeled graph H ′. The set of states VH′ consists of the
descendant states u(1), u(2), . . . , u(N(u)) for every u ∈ VH . Outgoing edges from state u in H
are partitioned among its descendant states and replicated in H ′ to each of the descendant
terminal states as follows: for each edge e from u to v in H , determine the partition element
E(i)

u to which e belongs, and endow H ′ with edges e(r) from u(i) to v(r) for r = 1, 2, . . . , N(v);
the label of e(r) in H ′ is the same as the label of e in H .

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 137

Sometimes an out-splitting is called a round of out-splitting to indicate that several states
may have been split simultaneously.

The labeled graph H ′ obtained from H by out-splitting is sometimes called an out-
splitting of H . It has several important characteristics, relative to H , enumerated in the
following proposition.

Proposition 5.1 Let H be a labeled graph and let H ′ be obtained from H by out-splitting.
Then

1. S(H ′) = S(H).

2. If H has anticipation A, then H ′ has anticipation at most A+1.

3. If H is (m, a)-definite, then H ′ is (m, a+1)-definite.

4. If H is irreducible, so is H ′.

The key to this result is the following fact, which is a consequence of the definition of
out-splitting.

Lemma 5.2 Let H be a labeled graph and let H ′ be obtained from H by out-splitting.
Then e

(r1)
1 e

(r2)
2 . . . e

(rℓ)
ℓ is a path in H ′ if and only if e1e2 . . . eℓ is a path in H and

ei+1 ∈ E(ri)
τ(ei)

for i = 1, 2, . . . , ℓ−1 .

Moreover, both paths generate the same word.

We leave the proof of the lemma to the reader.

Proof of Proposition 5.1. 1. This follows immediately from Lemma 5.2.

2. Let e
(r1)
1 e

(r2)
2 . . . e

(rA+2)
A+2 and ê

(s1)
1 ê

(s2)
2 . . . ê

(sA+2)
A+2 be paths of length A+2 in H ′ starting

at the same state and generating the same word. Then e1e2 . . . eA+2 and ê1ê2 . . . êA+2 are
paths in H that start at the same initial state and generate the same word. Thus e1 = ê1
and e2 = ê2. Since e2 belongs to the partition element E

(r1)
τ(e1)

and ê2 belongs to the partition

element E
(s1)
τ(ê1)

= E
(s1)
τ(e1)

, it then follows that r1 = s1. So, e
(r1)
1 = ê

(s1)
1 . Thus, H ′ has

anticipation at most A+1.

3. The proof of this is similar to 2 and is left to the reader.

4. Let u(s) and v(t) be states in H ′ and let γ = e1e2 . . . eℓ be any path in H from u to v
such that e1 ∈ E(s)

u . Then, by Lemma 5.2, there is a path γ′ = e
(r1)
1 e

(r2)
2 . . . e

(rℓ)
ℓ in H ′ where

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 138

the ri are determined by ei+1 ∈ E(ri)
τ(ei)

for i = 1, 2, . . . ℓ−1 and rℓ = t. Observe that γ′ is a

path from u(s) to v(t) in H ′.

The complete out-splitting of a labeled graph H is the out-splitting obtained from the
partition in which each set in the partition consists of a single, distinct edge. The resulting
graph is exactly the Moore co-form of H , as was defined in Section 2.2.7.

We also have the notion of in-splitting obtained by reversing the roles of outgoing and
incoming edges in the definition of out-splitting.

Finally, we mention that the out-splitting graph transformation can be described in terms
of adjacency matrices as follows. A 0–1 matrix is called a division matrix if it has exactly
one 1 in each column and at least one 1 in each row. Now, given an out-splitting H ′ of H , let
D be the division matrix with rows indexed by states of H and columns indexed by states
of H ′, defined by

Du,v(i) =

{
1 if u = v
0 if u 6= v

,

and let C be the matrix with rows indexed by states of H ′ and columns indexed by states
of H , defined by

Cv(i),u = number of edges in E(i)
v which terminate in u .

Then one can check that
AH = DC and AH′ = CD .

Conversely, if there is a division matrix D and a matrix C with nonnegative integer entries
such that AH = DC and AH′ = CD, then H ′ is an out-splitting of H ; we leave the proof of
this to the reader.

5.2 Approximate eigenvectors and consistent splitting

The state-splitting algorithm that we will present starts with a deterministic graph presen-
tation of a given constrained system S and, through a sequence of rounds of out-splitting,
ends up with an (S, n)-encoder. One key question to answer is which states to split and how
to split them. Approximate eigenvectors, to be discussed next, serve as such a guide. In
fact, as we show in Section 5.6 and Chapter 7, approximate eigenvectors are useful not only
for the synthesis of finite-state encoders, but also for analyzing them.

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 139

5.2.1 Approximate eigenvectors

Given a nonnegative integer square matrix A and an integer n, an (A, n)-approximate eigen-
vector is a nonnegative integer vector x 6≡ 0 such that

Ax ≥ nx ,

where the (weak) inequality holds componentwise. We refer to this inequality as the ap-
proximate eigenvector inequality. The set of all (A, n)-approximate eigenvectors is denoted
X (A, n).

When A is the adjacency matrix of a graph G, the approximate eigenvector inequality
has a very simple meaning in terms of G. Think of the vector x = (xu)u∈VG

as assigning
state weights: the weight of state u is xu. Now assign edge weights to the edges of the graph
according to their terminal states: the weight of an edge e is given by xτG(e). Recalling
that Eu denotes the set of outgoing edges from state u in G, the approximate eigenvector
inequality can be written as the set of simultaneous scalar inequalities, one for each state u,

∑

e∈Eu

xτG(e) ≥ nxu for every u ∈ VG .

That is, the sum of the weights of the outgoing edges from a given state u is at least n times
the weight of the state u itself.

Example 5.1 Let G be the presentation of the (0, 1)-RLL constrained system shown
in Figure 2.2. The third power of G is shown in Figure 2.10, and the adjacency matrix
AG3 = A3

G of G3 satisfies

A3
G

(
2
1

)
=

(
3 2
2 1

)(
2
1

)
=

(
8
5

)
≥ 4

(
2
1

)
.

Therefore, the vector x = (2 1)⊤ is an (AG3 , 4)-approximate eigenvector.

The following result is straightforward.

Proposition 5.3 For a graph G, the all-one vector 1 is an (AG, n)-approximate eigen-
vector if and only if G has minimum out-degree at least n. Also, a 0–1 vector is an (AG, n)-
approximate eigenvector if and only if G has a subgraph with minimum out-degree at least
n.

The next result tells us that approximate eigenvectors exist when we need them.

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 140

Theorem 5.4 Let A be a nonnegative integer square matrix and let n be a positive
integer. Then

X (A, n) 6= ∅ if and only if λ(A) ≥ n .

Furthermore, if A is irreducible and λ(A) = n, then every (A, n)-approximate eigenvector is
a right eigenvector associated with the eigenvalue n.

Proof. Sufficiency: Assume that λ(A) ≥ n. We first show that there is an (A, n)-
approximate eigenvector under the assumption that A is irreducible. We distinguish between
the following two cases.

Case 1: λ(A) > n. By Theorem 3.11(b), A has a strictly positive right eigenvector y
associated with λ(A). We first perturb the entries of y to obtain a new vector ŷ, with
positive rational entries, that satisfies the inequality Aŷ ≥ nŷ. Now, let x be the vector
obtained from ŷ by clearing denominators—i.e., by multiplying ŷ by a common multiple of
the denominators of its entries. The vector x has positive integer entries, and it satisfies
the approximate eigenvector inequality since ŷ does. Thus, x is an (A, n)-approximate
eigenvector.

Case 2: λ(A) = n. Since λ(A) = n is an eigenvalue of A, there is a nontrivial solution
(i.e., not the zero vector) to the homogeneous linear system of equations

(A− nI)y = 0 .

Since the coefficients of this linear system are rational numbers, we can assume, by applying
Gaussian elimination, that y has rational entries. Clearing denominators, we obtain a so-
lution x with integer entries. By Theorem 3.11(d) it follows that this solution is an integer
eigenvector associated with λ(A) = n, and by Theorem 3.11(b) it is strictly positive (possibly
after multiplying each of its entries by −1). Hence, x is a positive integer eigenvector and,
as such, it is an (A, n)-approximate eigenvector. This completes the proof of sufficiency in
case A is irreducible.

If A is a k × k reducible matrix, then there is, by Theorem 3.15(a), an irreducible
component B of A with λ(B) = λ(A) ≥ n. Thus, by what we have just proved, there is a
(B, n)-approximate eigenvector x. We extend x to a vector with k entries simply by setting
to zero the entries that are indexed by columns of A that do not contain columns of B. This
new vector is an (A, n)-approximate eigenvector.

Necessity: Suppose first that A is irreducible and let x be an (A, n)-approximate eigen-
vector. Also, let z be a left eigenvector associated with the eigenvalue λ = λ(A). By
Theorem 3.11(b), the eigenvector z can be assumed to be strictly positive. Hence,

λzx = zλx = zAx ≥ nzx .

Noting that zx > 0, we thus obtain λ ≥ n, with equality (λ = n) if and only if Ax = nx.
Therefore, if λ = n, every (A, n)-approximate eigenvector is a right eigenvector associated
with the eigenvalue n.

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 141

Finally, suppose that A is reducible and let Ã be the matrix obtained by removing the
rows and columns of A that contain the irreducible components of A whose columns all index
zero components in x. Let B be an irreducible sink in Ã and let y be the subvector of x
which is indexed by the columns of B in A. It can be readily verified that the vector y is a
(B, n)-approximate eigenvector and, so, n ≤ λ(B) ≤ λ(Ã) ≤ λ(A).

5.2.2 Computing approximate eigenvectors

In this section, we describe an algorithm for computing (A, n)-approximate eigenvectors.
The algorithm is due to Franaszek [Fra82, Appendix] (see also [ACH83, Appendix]), and its
running time is proportional to the values (rather than the size of the bit representations)
of the computed approximate eigenvector [MR91].

The Franaszek algorithm is presented in Figure 5.3. The input to the algorithm is a

y← ξ;

x← 0;

while (x 6= y) {
x← y;

y← min
{⌊

1

n
Ax
⌋
,x
}
; /∗ apply ⌊·⌋ and min{·, ·} componentwise ∗/

}
return x;

Figure 5.3: Franaszek algorithm for computing (A, n)-approximate eigenvectors.

nonnegative integer square matrix A, a positive integer n, and a nonnegative integer vector
ξ. The output is a nonnegative integer vector x, the properties of which are summarized in
Proposition 5.5(b) below.

For a nonnegative integer square matrix A, a positive integer n, and a nonnegative integer
vector ξ = (ξu)u, let X (A, n; ξ) denote the set of all elements x = (xu)u of X (A, n) that are
dominated by ξ (i.e., xu ≤ ξu for all u, or, in short, x ≤ ξ). Also, for a vector y = (yu)u, we
will use the notations ‖y‖1 and ‖y‖∞ for

∑
u |yu| and maxu |yu|, respectively.

Proposition 5.5 Let A be a nonnegative integer square matrix and let n be a positive
integer.

(a) If x,x′ ∈ X (A, n), then the vector defined by Bigl(max(xu, x
′
u)
)
u
belongs to X (A, n).

Thus, for any nonnegative integer vector ξ there is a largest (componentwise) element of
X (A, n; ξ) (provided of course that X (A, n; ξ) 6= ∅).

(b) The Franaszek algorithm eventually halts for any input vector ξ; and the output is ei-
ther the zero vector (if X (A, n; ξ) = ∅) or the largest (componentwise) element of X (A, n; ξ).

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 142

Proof. Part (a) is a straightforward computation. As for part (b), let x be an element
of X (A, n; ξ) and let ym denote the value of y at the beginning of the mth iteration of the
main loop of the algorithm. We show inductively on m that x ≤ ym. Clearly, this holds for
m = 1, where we have y1 = ξ. Now, assuming that x ≤ ym, we also have x ≤ 1

n
Ax ≤ 1

n
Aym.

Since x is an integer vector we obtain

x ≤ min
{⌊

1

n
Aym

⌋
,ym

}
= ym+1 .

It remains to show that the algorithm halts and produces the required vector x. Assume
first that ym+1 6= ym. Recalling that ym+1 is dominated by ym, we must have ‖ym+1‖1 <
‖ym‖1. Now, all vectors involved are nonnegative integer vectors and, therefore, the algo-

rithm must eventually halt with ym+1 = ym. At this point we have ym = ym+1 ≤
⌊
1
n
Aym

⌋
.

Hence, either ym ∈ X (A, n; ξ) or ym = 0. Furthermore, if X (A, n; ξ) 6= ∅, we must have
ym 6= 0, as ym dominates any vector in X (A, n; ξ).

By the proof of Proposition 5.5, it also follows that the number of iterations of the main
loop of the algorithm is at most ‖ξ‖1 + 1.

Now, suppose that A is a nonnegative integer k×k matrix and we would like to compute
the vector in X (A, n) with the smallest norm ‖x‖∞. In order to find such a vector, we apply
the Franaszek algorithm to vectors of the form ξ = ξ · 1 (namely, to integer multiples of the
all-one vector), searching for the smallest positive integer ξ for which the algorithm produces
a nonzero vector x. By Theorem 5.4, there exists such ξ if n ≤ λ(AG). Performing a binary

search on ξ, the number of integer operations thus totals to O
(
k2 ·‖x‖∞ log ‖x‖∞

)
. We point

out, however, that there are families of k × k matrices A for which the computed vectors x
are such that ‖x‖∞ is exponential in k. Such a family is described in Example 7.1.

Example 5.2 Let G denote the third power of the Shannon cover of the (1, 7)-RLL
constrained system. The adjacency matrix of G is given by

AG =

1 1 0 1 0 0 0 0
2 1 1 0 1 0 0 0
2 1 1 0 0 1 0 0
2 1 1 0 0 0 1 0
2 1 1 0 0 0 0 1
2 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0

.

We apply the Franaszek algorithm to AG and n = 4, with vectors of the form ξ = ξ · 1. The
smallest value of ξ that results in a nonzero output is ξ = 3, in which case the output of the
algorithm is

x = (2 3 3 3 2 2 2 1)⊤ .

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 143

We can now try to find other (AG, 4)-approximate eigenvectors whose largest entry is 3 by
applying the Franaszek algorithm with ξ = xi for i = 0, 1, 2, . . . , 7, where

(xi)u =

{
(x)u if u 6= i
(x)u − 1 if u = i

.

That is, in each application of the algorithm, we start with a vector ξ obtained by subtracting
1 from one of the entries of x. When doing so, we find that ξ = x7 is the only case for which
the algorithm produces a nonzero output: that output is x7 itself, namely,

(2 3 3 3 2 2 2 0)⊤ .

It follows that there are only two (AG, 4)-approximate eigenvectors, x and x7, whose largest
entry is 3.

Example 5.3 Let G be now the second power of the Shannon cover of the (2, 7)-RLL
constrained system. By applying the Franaszek algorithm we find that X (AG, 2; ξ · 1) is
nonempty if and only if ξ ≥ 4. The output of the algorithm for ξ = 4 is

x = (2 3 4 4 3 3 2 1)⊤ .

There is another (AG, 2)-approximate eigenvector,

(2 3 4 4 3 3 1 1)⊤ ,

whose largest entry is 4.

Recall from Section 4.4 that a necessary and sufficient condition for the existence of a rate
p : q deterministic encoder for a constrained system S is the existence of a set of principal
states; the definition of such a set (given in Section 4.4) depends on p, q and a deterministic
presentation G of S (recall also that this condition was necessary for the existence of a block
decodable encoder, in particular the existence of a block encoder). From Proposition 5.3, it
is evident that such a set exists if and only if there is an (Aq

G, 2
p)-approximate eigenvector

with 0–1 entries. Thus, the question of existence of a rate p : q deterministic encoder can be
answered by applying the Franaszek Algorithm to the vector ξ = 1: such an encoder exists
if and only if the algorithm does not return the zero vector.

5.2.3 x-consistent splitting

Let H be a labeled graph and let x = (xv)v∈VH
be an (AH , n)-approximate eigenvector. A

basic x-consistent partition at state u is a partition of Eu into

Eu = E(1)
u ∪ E(2)

u ,

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 144

with the property that
∑

e∈E(1)
u

xτ(e) ≥ n y(1) and
∑

e∈E(2)
u

xτ(e) ≥ n y(2) ,

where y(1) and y(2) are positive integers and

y(1) + y(2) = xu .

The out-splitting determined by this partition is called a basic x-consistent splitting at
state u, and we denote the resulting labeled graph by H ′. It is straightforward to check that
the induced vector x′ = (x′v)v, indexed by the states of H ′, defined by

x′v =

xv if v 6= u
y(1) if v = u(1)

y(2) if v = u(2)
,

is an (AH′, n)-approximate eigenvector.

The cube of the (0, 1)-RLL graph presentation is shown in Figure 5.4 (which is identical
to Figure 2.10). Figure 5.5 shows the result of a basic x-consistent splitting for Figure 5.4,
with respect to the (A3

G, 2
2)-approximate eigenvector x = (2 1)⊤. State 0 is split into

two descendant states, 0(1) and 0(2), according to the partition E
(1)
0 = {011, 110, 010} and

E
(2)
0 = {101, 111}. The induced vector is x′ = (1 1 1)⊤, and the resulting labeled graph

therefore has minimum out-degree at least 22 = 4.

0 1
✲

111
✲

101
✲

011

010
❄❲110

❖ 101✻
111

✛ 110

Figure 5.4: Cube of (0, 1)-RLL graph presentation.

The notion of x-consistency can be extended to out-splittings in general as follows.

Given a labeled graph H , a positive integer n, and an (AH , n)-approximate eigenvector
x = (xv)v∈VH

, an x-consistent partition of H is defined by partitioning the set, Eu, of
outgoing edges for each state u in H into N(u) disjoint subsets

Eu = E(1)
u ∪ E(2)

u ∪ · · · ∪ E(N(u))
u ,

such that ∑

e∈E(r)
u

xτ(e) ≥ nx(r)u for r = 1, 2, . . . , N(u) , (5.1)

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 145

0(1)

0(2)

1

✲

101

✛

111

❄
011

✻

101

✻

111011

③
✙

101

✛
111

❨

101

❨

111 ❄

010

❄

110

❖
110

Figure 5.5: Basic x-consistent splitting for Figure 5.4.

where x(r)u are nonnegative integers and

N(u)∑

r=1

x(r)u = xu for every u ∈ VH . (5.2)

The out-splitting based upon such a partition is called an x-consistent splitting. The vector
x′ indexed by the states u(r) of the split graph H ′ and defined by x′

u(r) = x(r)u is called the
induced vector.

An x-consistent partition or splitting is called non-trivial if for at least one state u,
N(u) ≥ 2 and x(1)u and x(2)u are positive. Observe that any basic x-consistent splitting is a
non-trivial x-consistent splitting.

Figures 5.6 and 5.7 give an example of an x-consistent splitting in which two states, 0
and 1, are split simultaneously. An (AG, 2)-approximate eigenvector is x = (2 2 1)⊤ (in
this particular case, it is actually an eigenvector). An x-consistent splitting for states 0

and 1 can be carried out as follows. State 0 splits according to the partition E
(1)
0 = {a}

and E
(2)
0 = {b, c}. State 1 splits, simultaneously, according to the partition E

(1)
1 = {d} and

E
(2)
1 = {e}. This yields a new labeled graph H ′ with induced vector x′ = (1 1 1 1 1)⊤, and

the resulting labeled graph therefore has minimum out-degree at least 2.

We summarize in Proposition 5.6 the important features of x-consistent out-splittings.

Proposition 5.6 Let H be a labeled graph and let x be an (AH , n)-approximate eigen-
vector. Suppose that H ′ is obtained from H by an x-consistent splitting and x′ is the induced
vector. Then

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 146

0

1

2

❄
e

✼
a

✴
d

✲b
✲

c
f✻

Figure 5.6: Labeled graph to be split.

0(1) 0(2)

1(1)

2

1(2)
❄
e

❄
e

❄
d

✼

a
✸a

✰
d

✲b
✲

c
f❖❖

f

Figure 5.7: x-consistent splitting for Figure 5.6.

1. x′ is an (AH′ , n)-approximate eigenvector.

2.
∑

u∈VH
xu =

∑
v∈VH′

x′v.

Proof. 1. The inequality (5.1) says precisely that (AH′x′)u(r) ≥ nx′
u(r) for each state u(r)

of H ′. So, x′ is an (AH′ , n)-approximate eigenvector.

2. This follows immediately from (5.2).

5.3 Constructing the encoder

The key result needed for the construction of our encoders is as follows.

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 147

Proposition 5.7 Let H be an irreducible labeled graph and assume that the all-one vector
1 is not an (AH , n)-approximate eigenvector. Let x be a strictly positive (AH , n)-approximate
eigenvector. Then, there is a basic x-consistent splitting of H.

Before giving the proof, we describe how we will make use of it in an iterative fashion to
construct finite-state encoders with finite anticipation.

Let G be a deterministic labeled graph presenting S and let p and q be integers such
that p/q ≤ cap(S). So, Gq is a deterministic labeled graph presenting Sq. Let x = (xv)v∈VG

be an (Aq
G, 2

p)-approximate eigenvector (which exists by Theorem 5.4). If x is a 0–1 vector,
then some subgraph of Gq has minimum out-degree at least 2p, and we are done. So, we
may assume that there is no 0–1 (Aq

G, 2
p)-approximate eigenvector. Let G′ be the labeled

subgraph of Gq corresponding to the states of G with nonzero entries of x. The vector
x′ obtained by restricting x to the states in G′ is a strictly positive (AG′, 2p)-approximate
eigenvector.

If G′ is irreducible, then we will be in a position to apply Proposition 5.7 for H = G′

and n = 2p. Otherwise, we can restrict to a sink G0 of G
′; recall that a sink is an irreducible

component all of whose outgoing edges terminate in the component, and recall that every
graph has a sink. Since G0 is an irreducible component of G′, and, by assumption, there is
no 0–1 (Aq

G, 2
p)-approximate eigenvector, it follows that 1 is not an (AG0 , 2

p)-approximate
eigenvector. Moreover, since G0 is a sink, it follows that the restriction, x0, of x

′ to G0 is
a strictly positive (AG0 , 2

p)-approximate eigenvector. Proposition 5.7 can now be applied to
carry out a basic x0-consistent splitting of G0, producing an irreducible labeled graph G1.

By Proposition 5.6, a basic x0-consistent splitting decomposes an entry of x0 into strictly
smaller positive integers. So, iteration of this state-splitting procedure will produce a se-
quence of labeled graphs G1, G2, . . . , Gt, where the graph Gt has an adjacency matrix AGt

with an all-1’s (AGt
, n)-approximate eigenvector. Therefore, by Proposition 5.3, the graph Gt

has minimum out-degree at least n = 2p. Since, by Proposition 5.1, out-splitting preserves
finite anticipation, the graph Gt has finite anticipation. Deleting excess edges, we pass to a
subgraph of G′

t which is an (Sq, 2p)-encoder. Now, tag this encoder with input labels, and
we have our rate p : q finite-state encoder for S with finite anticipation.

Having now completely described the construction of the encoder, we have completed the
proof of Theorem 4.1 modulo the proof of Proposition 5.7.

Note that the number of iterations required to arrive at the encoder graph is no more
than

∑
v∈VG

(xv − 1), since a state v with entry xv will be split into at most xv descendant
states throughout the whole iteration process. So, by Proposition 5.1, the anticipation of Gt

is at most
∑

v∈VG
(xv − 1). For the same reason, the number of states in the encoder graph

is at most
∑

v∈VG
xv.

If we delete the self-loop at state 1 and assign input tags to the labeled graph in Figure 5.5,
we obtain a rate 2 : 3 finite-state (0, 1)-RLL encoder shown in Figure 5.8. We indicate, for

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 148

this example, how the encoding and decoding is implemented.

0(1)

0(2)

1

✲

10/101

✛

11/111

❄
00/011

✻

00/101

✻

01/111

01/011

✲
✙

10/101

✛
11/111

❨

01/111

❨

00/101

❄

11/010

❄

10/110

Figure 5.8: Tagged (0, 1)-RLL encoder.

If we initialize to state 0(1), the data sequence of 2-blocks, 00 10 10 11, encodes to the
(0, 1)-RLL sequence of 3-codewords

011 110 101 111 .

We decode the (0, 1)-RLL codeword sequence just generated. Starting at state 0(1), the edge

determined by the codeword 011, with upcoming codeword 110, is the self-loop 0(1)
00/011−→ 0(1),

so the decoder will generate the input tag 00. Proceeding, the codeword 110, with upcoming

word 101, determines the edge 0(1)
10/110−→ 1. The reader can decode the next codeword 101 in

a similar matter, and that is as far as we can go without knowing more upcoming codewords.

As we will see, the encoder of Figure 5.8 is not the smallest (in terms of number of states)
rate 2 : 3 finite-state (0, 1)-RLL encoder. We now proceed with the proof of Proposition 5.7.

Proof of Proposition 5.7. Let xmax 6= 1 be the maximum of the entries of x. We will
show that there is a state u with the following properties:

xu = xmax (5.3)

and
(AH)u,v 6= 0 for some state v with xv < xmax . (5.4)

We then show that there is a basic x-consistent splitting at each such state u.

Assume that no such state exists. Then, the outgoing edges for every state u with
component xmax must terminate only in states with the component xmax. Since the graph H

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 149

is assumed to be irreducible, this implies that the approximate eigenvector x is a constant
vector, with all of its components equal to xmax. If we divide both sides of the approximate
eigenvector inequality (AHx ≥ nx) by xmax, we see that the all-1’s vector 1 is also an
approximate eigenvector. However, this contradicts our assumption about AH .

Let u be a state satisfying properties (5.3) and (5.4). We claim that |Eu| ≥ n. To see
this, observe that the approximate eigenvector inequality asserts

∑

v∈VH

(AH)u,vxv ≥ nxu .

Thus, by property (5.3) above,

|Eu| xmax ≥
∑

v∈VH

(AH)u,vxv ≥ nxu = nxmax .

Dividing by xmax gives the desired conclusion |Eu| ≥ n (actually, with the help of property
(5.4) above one can show that |Eu| ≥ n+1, but this is not really needed now).

Let M = |Eu| ≥ n. Write Eu = {e1, e2, . . . , eM} and assume that e1 terminates in state
v (i.e., a state satisfying (5.4)), so xτ(e1) < xmax. Consider the partial accumulated weights

θm =
m∑

i=1

xτ(ei) , m = 1, 2, . . . ,M

and their residues modulo n

ρm ≡ θm (mod n) , m = 1, 2, . . . ,M .

The pigeon-hole principle—which states that if one distributes n pigeons into n pigeon-holes,
then either every hole has a pigeon, or some hole contains two or more pigeons—implies that
the n residues, ρ1, ρ2, . . . , ρn, satisfy one of the following conditions:

1. ρm ≡ 0 (mod n) for some 1 ≤ m ≤ n, or—

2. ρm1 ≡ ρm2 (mod n) for some 1 ≤ m1 < m2 ≤ n.

In the former case, we define a partition of Eu by setting

E(1)
u = {ei}mi=1 and E(2)

u = Eu −E(1)
u .

In the latter case, we set

E(1)
u = {ei}m2

i=m1+1 and E(2)
u = Eu −E(1)

u .

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 150

In either case, the sum of weights of the edges in E(1)
u is divisible by n:

∑

e∈E(1)
u

xτ(e) = rn .

Next we claim that
1 ≤ r < xmax .

Clearly 1 ≤ r since E(1)
u is nonempty. To see that r < xmax, observe that in the first case,

E(1)
u contains at most n edges and includes e1 for which xτ(e1) < xmax; and in the second

case, E(1)
u has strictly fewer than n edges, each contributing at most xmax to the sum.

Now,

∑

e∈E(2)
u

xτ(e) =
∑

e∈Eu

xτ(e) −
∑

e∈E(1)
u

xτ(e)

≥ xun− rn
= (xu − r)n .

Letting y(1) = r and y(2) = xu − r, we conclude that the partition,

Eu = E(1)
u ∪ E(2)

u ,

defines a basic x-consistent splitting.

The discussion in this chapter implies a encoder construction procedure is known as the
state-splitting algorithm or the Adler-Coppersmith-Hassner (ACH) algorithm. This algo-
rithm is summarized in Figure 5.9.

Hints when constructing an encoder:

• In the course of a sequence of state splittings, the resulting graphs may become too
unwieldy to draw. Instead, it may be more convenient to represent the graphs by
tables; such a table has rows and columns indexed by the set of states with the (u, v)-
entry containing the list of labels of all edges from u to v. Both the untagged encoder
and the tagged encoder can also be represented in this way.

• If more then one round of splitting is required, it is convenient at each round to use
the notation ui,j for each state. For instance, if state u has weight 5 and is split in the
first round into two states, one of weight 3 and the other of weight 2, then after the
first round, denote one of the descendant states by u1,3 and the other by u4,5. After
the sequence of splittings is completed, the descendant states of u are denoted u1, u2,
u3, u4, u5.

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 151

1. Select a labeled graph G and integers p and q as follows:

(a) Find a deterministic labeled graph G (or more generally a labeled graph with finite anticipation)
which presents the given constrained system S.

(b) Find the adjacency matrix AG of G.

(c) Compute the capacity cap(S) = logλ(AG).

(d) Select a desired code rate p : q satisfying

cap(S) ≥ p

q

(one usually wants to keep p and q relatively small for complexity reasons).

2. Construct Gq.

3. Using the Franaszek algorithm of Figure 5.3, find an (Aq
G, 2

p)-approximate eigenvector x.

4. Eliminate all states u with xu = 0 from Gq, and restrict to an irreducible sink H of the resulting
graph. Restrict x to be indexed by the states of H .

5. Iterate steps 5a–5c below until the labeled graph H has minimum out-degree at least 2p:

(a) Find a non-trivial x-consistent partition of the edges in H (the proof of Proposition 5.7 shows
how to find such a partition in at least one state).

(b) Find the x-consistent splitting corresponding to this partition, creating a labeled graph H ′ and
an approximate eigenvector x′.

(c) Let H ← H ′ and x← x′.

6. At each state of H , delete all but 2p outgoing edges and tag the remaining edges with binary p-blocks,
one for each outgoing edge. This gives a rate p : q finite-state encoder for S.

Figure 5.9: State-splitting algorithm.

5.4 Strong decoders

We begin this section by proving Theorem 4.8, thereby showing how to achieve sliding-block
decodability for finite-type constraints.

The proof is obtained by applying the state-splitting algorithm to any presentation of
S with finite memory. Recall from Propositions 2.7 and 5.1 that higher powers and out-
splitting preserve definiteness (although the anticipation may increase under out-splitting).
Thus, the (Sq, 2p)-encoder constructed in Section 5.3 is (m, a)-definite for some m and a and
so, by Proposition 4.6, is sliding-block decodable. This completes the proof of Theorem 4.8.

Note that we can decode a q-block w as follows: observe the m previous q-blocks and the
a upcoming q-blocks to determine the unique edge that produced w; then read off the input
tag on this edge. This defines an (m, a)-sliding-block decoder.

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 152

As an example, by examining Figure 5.8, one can see that the (0, 1)-RLL encoder has a
sliding-block decoder with window length 2, as shown in Table 4.1.

Next, we give a very simple example to illustrate how a tagged encoder can be non-
catastrophic without being sliding-block decodable.

Consider the constrained system S which is presented by the labeled graph of Figure 5.10.
Figure 5.11 exhibits a tagged (S, 3)-encoder E which has finite anticipation; in fact it is
deterministic. We claim that E is non-catastrophic. To see this, first observe that every
symbol, except for d, is decoded consistently wherever it appears; so, the only decoding
ambiguity is caused by the appearance of d as the label of two different edges with different
input tags (namely, the edges labeled d outgoing from states 2 and 3). Now, suppose that
two right-infinite sequences, y+ = y1y2 · · · and z+ = z1z2 · · ·, that can be generated by right-
infinite paths in E , differ in only finitely many places; then for some N and all i > N , we
have yi = zi. We must show that when we decode y+ and z+ in a state-dependent manner,
we get only finitely many differences in their decodings; more precisely, we must show that
when e1e2 · · · and e′1e′2 · · · are right-infinite paths in E with output labels y+ and z+, then
their input tags differ in only finitely many places. Well, ei and e

′
i will have the same input

tag for N < i < K, where K is the first time after N that the symbol d appears in y+

(equivalently, z+), i.e., K is the smallest integer such that K > N and yK = d; if d does not
appear at all after time N , then ei and e

′
i will have the same input tag for i > N , and we

will be done. Now, at time K, we may decode yK = zK = d in two different ways. But both
occurrences of d in Figure 5.11 appear on edges with the same terminal state. So, for i > K,
we will have ei = e′i, and decoding will be synchronized. Thus, the number of differences
between the decodings of y+ and z+ will be at most N+1, and therefore our tagged encoder
E is indeed non-catastrophic.

1 0

2

3
✲

a ✲b
✲

c

✎

e

❄
a

❄

c

❄

d

②

f

✛ a✛ b
✛

d
❖

g

Figure 5.10: Graph presentation of constrained system S.

On the other hand, we claim that E is not sliding-block decodable. This follows imme-
diately from the fact that for each ℓ, the symbol d in the word aℓdeaℓ can appear on either

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 153

1 0

2

3
✲

0/a
✲1/b
✲

2/c

✎

0/e

❄
0/a

❄

2/c

❄

1/d

②

1/f

✛ 0/a
✛ 1/b
✛

2/d
✗

2/g

Figure 5.11: (S, 3)-encoder for constrained system S presented in Figure 5.10.

edge labeled d, yielding different decodings. In fact, for this particular constraint S, it turns
out that there is no sliding-block decodable (S, 3)-encoder at all [KarM88].

We remark that if this code were to be used in conjunction with a noisy channel, then an
isolated channel error would cause at most two ‘bursts’ of decoding errors: one burst from
the channel error itself followed by a second burst caused by the ambiguity of decoding one
occurrence of the symbol d. This ‘two-burst’ feature holds for the non-catastrophic encoders
produced by the construction in Theorem 4.12.

We now give a very rough outline of the proof of Theorem 4.12; for details, see [KarM88].
Let S be an irreducible constrained system and let G be the Shannon cover of S. For sim-
plicity, we assume that q = 1 (otherwise, by Theorem 3.7, we take an irreducible constrained
system S ′ ⊆ Sq with cap(S ′) = cap(S)). We must show that when log n ≤ cap(S), there is
a non-catastrophic (S, n)-encoder E , and if either logn < cap(S) or S is almost-finite-type,
then there is a sliding-block decodable (S, n)-encoder.

If logn < cap(S), then it follows from Theorem 4.8 and Proposition 3.25 that there is a
sliding-block decodable (S, n)-encoder. So, we may suppose that cap(S) = log n.

We need to introduce some terminology. A generalized homing word for a labeled graph
is a word w = w1w2 . . . wℓ such that for some 1 ≤ r ≤ ℓ, whenever e1e2 . . . eℓ and e

′
1e

′
2 . . . e

′
ℓ

are paths which generate w, then τ(er) = τ(e′r); the integer r is called a homing coordinate
for w. Observe that in the special case that r = ℓ, a generalized homing word is a homing
word as in Section 2.6.3.

Our tagged encoder E will satisfy the following property:

(†) There is a generalized homing word w ∈ S(E) ⊆ S for the encoder E and a positive
integer M such that whenever a word z = z−Mz−M+1 . . . zM of length 2M+1 in S(E)

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 154

does not contain w, and e−Me−M+1 . . . eM and e′−Me
′
−M+1 . . . e

′
M are encoder paths

which generate z, then e0 and e′0 have the same input tag.

Such an encoder is bound to be non-catastrophic for roughly the same reason as the
example above (in that example d is the (generalized) homing word): suppose that y+ =
y1y2 · · · and z+ = z1z2 · · · are two right-infinite sequences that can be generated by the
Shannon cover G such that yi = zi for all i greater than some N ; if we decode y+ and z+

then we will obtain the same decoded input tag sequence except possibly for two bounded
bursts: a burst from time 0 to time N+M and a burst from time K−M to time K+r where
r is a homing coordinate for w and K is the first time after N at which w appears in y+;
i.e., K is the smallest integer such that K > N and yKyK+1 . . . yK+ℓ(w)−1 = w; after time
K+r, our decodings of y+ and z+ will be synchronized and we will get the same decoded
symbol. Thus, our tagged encoder will indeed be non-catastrophic.

How do we construct a tagged encoder which satisfies (†)? Well, recall from Section 2.6
that there is a homing word w for the Shannon cover G. Let Sw denote the constrained
system obtained from S by forbidding the appearance of the word w. Since cap(S) = log n,
it follows that cap(Sw) < logn. From this, using a state splitting argument, starting with G,
and deleting edges, (see [Mar85]), we construct a graph (V,E) endowed with two labelings—
input labeling LI and output labeling LO—both with finite anticipation, such that

1. the labeled graph (V,E, LO) presents Sw;

2. the labeled graph (V,E, LI) presents some proper constrained sub-system of the set of
all n-ary words; and—

3. whenever γ and γ′ are bi-infinite paths in (V,E) with the same LO-labeling, they have
the same LI -labeling.

Then, by a long and delicate sequence of state splittings, both out-splitting and in-splitting,
(see [KarM88]), the labeled graph (V,E, LO) is transformed and extended to a presentation
(V ′, E ′, L′

O) of all of S; moreover, this presentation has finite anticipation and constant out-
degree n. At the same time, the labeling LI is transformed to a deterministic labeling which
serves as an input tagging L′

I of (V ′, E ′, L′
O). This gives our tagged (S, n)-encoder E . While

w need not be a generalized homing word for (V,E, LO), it does determine a longer word
which is a generalized homing word for (V ′, E ′, L′

O) and such that the condition (†) holds.
This completes our outline of the construction of a non-catastrophic (S, n)-encoder E .

It remains to show that if S is almost-finite-type, then E is actually sliding-block decod-
able. By definition, S is presented by some labeled graph with finite anticipation and finite
co-anticipation (in fact, by Proposition 2.15, the Shannon cover G is such a presentation).
Our encoder E is constructed from such a presentation by a sequence of state splittings, and
thus it too has finite anticipation and finite co-anticipation. To show that it is sliding-block

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 155

decodable, it suffices to show that whenever γ and γ′ are bi-infinite paths in E with the same
sequence, y, of output labels, then they have the same sequence of input tags.

There are two cases to consider. If y contains w—the generalized homing word for E—
then γ and γ′ must arrive at the same state at some time, and so, by finite anticipation and
finite co-anticipation, we must have γ = γ′; clearly then γ and γ′ have the same sequence of
input tags. Otherwise, y does not contain w and so by (†), γ and γ′ again have the same
sequence of input tags; thus, E is indeed sliding-block decodable, as desired.

5.5 Simplifications

5.5.1 State merging

In practice, it is desirable to design fixed-rate encoders with a small number of states. For
a given labeled graph G = (V,E, L), with an (AG, n)-approximate eigenvector x = (xv)v∈V ,
we have shown that the state-splitting algorithm can produce an encoder E with |VE | states
where

|VE | ≤
∑

v∈V
xv .

This gives an upper bound on the number of states in the smallest (S, n)-encoder. Often,
however, one can reduce this number substantially by means of state merging. Although
there is not yet a definitive solution to the problem of minimizing the number of encoder
states, there are techniques and heuristics that have proved to be very effective in the con-
struction of encoders.

One situation where we can merge states in a labeled graph H is the following. Let u and
u′ be two states in H and suppose that there is a 1–1 correspondence ei 7→ e′i between the sets
of outgoing edges Eu = {e1, e2, . . . , et} and Eu′ = {e′1, e′2, . . . , e′t} such that for i = 1, 2, . . . , t
we have τ(ei) = τ(e′i) and L(ei) = L(e′i). Then, we can eliminate one of the states, say
u′, and all of its outgoing edges, and redirect into u all incoming edges to u′. Clearly, the
new labeled graph presents the same constraint, but with one fewer state. Note that this
procedure is precisely the inverse of an in-splitting.

Example 5.4 Consider again the (0, 1)-RLL constrained system S. If we delete the self-

loop 1
110−→ 1 from Figure 5.5, we can see that states 0(2) and 1 can be merged, according to the

merging criterion just discussed. The resulting two-state labeled graph is the one shown in
Figure 5.12. Tagging the latter, we obtain a tagged (S3, 22)-encoder as shown in Figure 5.13;
this is the same encoder presented in Figure 4.2. As mentioned in Example 4.2, this encoder
is (0, 1)-definite. Hence, it is also (0, 1)-sliding-block decodable, and the respective decoding
table is shown in Table 4.1. Note that the encoder of Figure 5.13 has fewer states than the
encoder previously shown in Figure 5.8.

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 156

0(1) 0(2),1
✲

011

❄

011

❄
110

❲010

❖ 101✻
111

✛ 101✛ 111

Figure 5.12: Deleting edges and merging states in Figure 5.5.

0(1) 0(2),1
✲

00/011

❄

01/011

❄
10/110

❲11/010

❖ 00/101✻
01/111

✛ 10/101✛ 11/111

Figure 5.13: Rate 2 : 3 tagged two-state encoder for (0, 1)-RLL constrained system.

Example 5.5 The second power of the Shannon cover of the (1, 3)-RLL constrained
system is given by the graph G in Figure 5.14. One can verify that

x = (x0 x1 x2 x3)
⊤ = (1 1 1 0)⊤

is an (A2
G, 2)-approximate eigenvector. After deleting state 3 from G, we obtain an (S(G), 2)-

0 1 2 3✛01 ✛10
❲

00 ✲

10

❄

00

✎
01

✗00✻

10

Figure 5.14: Second power of the Shannon cover of the (1, 3)-RLL constrained system.

encoder in which states 1 and 2 are equivalent. When these two states are merged, we end
up with the graph in Figure 5.15. This graph is an untagged version of the MFM encoder
in Figure 4.1.

One key idea for merging states involves ordering the states in a labeled graph to reflect
the inclusion relations among the follower sets at each state (defined in Section 2.6): given
two states u and u′ in a labeled graph G, we say that u � u′ if the follower sets FG(u)

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 157

0 1
✲

10
✲01

✛
00

✛ 01

Figure 5.15: Untagged MFM encoder.

and FG(u
′) satisfy FG(u) ⊆ FG(u

′). This partial ordering of sets was used by Freiman and
Wyner [FW64] in the construction of optimal block codes, mentioned in Section 4.2.

We now generalize the merging operation illustrated above as follows. Let G be a labeled
graph and let u and u′ be two states in G such that u � u′. The (u, u′)-merger of G is the
labeled graph H obtained from G by:

1. eliminating all edges in Eu′ ;

2. redirecting into state u all remaining edges coming into state u′;

3. eliminating the state u′.

Figures 5.16 and 5.17 show a schematic representation of a (u, u′)-merger—before and
after merging.

u′

u v

v′
✲

c

✲
a

✻
a

❄
c

✲b

✲d
✛

e

⑥

f

❃

b

Figure 5.16: Local picture at states u and u′ before merging.

u v

v′

✲
c

✲
a ✲b

⑥
f

⑥

e

Figure 5.17: (u, u′)-merger for Figure 5.16.

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 158

It is not hard to see that the merging of states performed on Figure 5.5 to obtain Fig-
ure 5.12 is a (0(2), 1)-merger.

The following result shows how we can reduce the final number of encoder states by
(u, u′)-merging.

Proposition 5.8 Let G be a labeled graph, with an (AG, n)-approximate eigenvector x,
and let u and u′ be states in G satisfying

(a) u � u′, and —

(b) xu = xu′.

Let H denote the (u, u′)-merger of G. Then

1. S(H) ⊆ S(G) and

2. The vector y defined by yv = xv for all vertices v of H is an (AH , n)-approximate
eigenvector.

Proof. 1. Let w = w1w2 . . . wℓ be a word generated in H by a path γ = e1e2 . . . eℓ.
If γ does not contain any edge derived from an edge in G terminating in state u′, one can
immediately find a corresponding path γ̂ in G that generates w. Otherwise, let et be the last
edge of γ that terminates in state u in H and comes from an edge êt in G that terminates
in state u′. By hypothesis (a) we have FG(u) ⊆ FG(u

′), so there is a path êt+1êt+2 . . . êℓ
in G emanating from state u′ and generating wt+1wt+2 . . . wℓ. If e1e2 . . . et−1 contains no
redirected edges, then e1e2 . . . et−1êtêt+1 . . . êℓ is a path in G generating w. If it does, let ek
be the last such edge. Then ek+1ek+2 . . . et−1êtêt+1 . . . êℓ is a path in G that begins at state
u and generates wk+1wk+2 . . . wℓ. By hypothesis (a), there is another path e′k+1e

′
k+2 . . . e

′
ℓ in

G emanating from u′ that also generates wk+1wk+2 . . . wℓ. Continuing in this manner, we
eventually produce a path in G that generates the entire word w.

2. Let v be a state in H . By hypothesis (b),

(AHy)v = (AGx)v ≥ nxv = nyv ,

so y is an (AH , n)-approximate eigenvector, as desired.

So, if states u and u′ satisfy hypotheses (a) and (b) of the preceding result, then the
number of final encoder states in the state-splitting construction is reduced by xu.

In a set with partial ordering, there is the possibility of having minimal elements: a state
u is weight-minimal, with respect to the partial ordering by follower sets and approximate
eigenvector x, if, for any other state v, the conditions v � u and xv = xu imply that u = v.

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 159

Proposition 5.8 shows that, by means of preliminary state merging, encoder construction by
the state-splitting algorithm can be accomplished using only the subgraph restricted to the
weight-minimal states. This reduces the number of final encoder states to the sum of the
weights of the weight-minimal states.

Example 5.6 Let G be some power of the Shannon cover of the (d, k)-RLL constrained
system. Denoting the states by 0 through k (as in Figure 1.3), it is easy to verify that

i+ 1 � i

for every d ≤ i < k.

Consider now the special case (d, k) = (1, 7) and let G be the third power of this con-
strained system. We have mentioned in Example 5.2 that

(2 3 3 3 2 2 2 0)⊤ (5.5)

is an (AG, 4)-approximate eigenvector. With respect to this vector, the weight-minimal states
in G are 0, 3, 6, and 7. We now delete state 7 (whose weight is zero) and merge the other
states into the three remaining weight-minimal states as follows: states 1 and 2 are merged
into state 3 to form state 1–3, and states 4 and 5 are merged into state 6 to form state
4–6. This, in turn, yields a graph G′ with only three states, as shown in Figure 5.18. The

0 1–3 4–6
✲010

✛
001

✲000
✛

100

❲
000

❖
101

❖
010

✻

101

❲
001

✛

010

✛

100

Figure 5.18: Merged graph G′ for the (1, 7)-RLL constrained system.

adjacency matrix of G′ is given by

AG′ =

1 2 0
2 2 1
1 2 0

 ,

with an (AG′ , 4)-approximate eigenvector (2 3 2)⊤; in fact, this is a true eigenvector of AG′

associated with the Perron eigenvalue 4.

If we now apply the state-splitting algorithm to the graph G′, we can obtain a rate 2 : 3
encoder for the (1, 7)-RLL constrained system with at most 2+3+2 = 7 states. This upper

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 160

bound on the number of states is far better than the bound, 17, which we would obtain if the
state-splitting algorithm were applied to the original presentation G with the approximate
eigenvector in (5.5).

By applying further merging in the course of the state-splitting rounds of G′, Weathers
and Wolf obtained in [WW91] the encoder of Figure 4.6, which has only four states. It will
follow from the discussion in Chapter 7 (Example 7.2) that no rate 2 : 3 encoder for the
(1, 7)-RLL constrained system can have less than four states.

The partial ordering on weight-minimal states also suggests certain out-splitting rounds
and further state merging rounds than can simplify the final encoder graph. For instance,
if u � v and xu < xv, it would be tempting to try to split state v into two states v(1) and
v(2) with weights xu and xv − xu such that v(1) can be merged with state u. This would
then further reduce the number of encoder states by xu. In most cases of practical interest,
this can be done. The paper [MSW92] describes one situation in general and several specific
examples where the operations suggested by the partial ordering of the weight-minimal states
can actually be implemented (those ideas were used by Weathers and Wolf in [WW91] to
obtain their encoder in Figure 4.6). So, the merging principle is a valuable heuristic in
encoder design.

However, as we show in Chapter 7, given a constrained system S and a positive integer
n, there are lower bounds on the number of states that any (S, n)-encoder can have. In
particular, there are limits on the amount of state merging that can be carried out.

Example 5.7 Let G be the 16th power of the (2, 10)-RLL constrained system. One can
verify through the Franaszek algorithm that

(1 1 1 1 1 1 1 1 1 0 0)⊤

is an (AG, 2
8)-approximate eigenvector. The weight-minimal states in G are 0, 1, 8, and 10,

and by deleting states 9 and 10 and merging states 2 through 7 into state 8 we obtain a
labeled graph G′ with three states, 0, 1, and 2–8. The adjacency matrix of G′ is given by

AG′ =

83 57 117
122 83 170
1 85 173

 .

By further deleting edges we can obtain the 3-EFM(16) code (see Sections 1.7.2 and 4.4).

In Section 1.7.3, we showed how bit inversions in the output sequence of the encoder can
reduce the DSV after precoding; such inversions effectively map certain input tags (bytes)
into two possible codewords that differ in one bit. It was also mentioned, however, that
the DSV reduction that can be obtained with the 3-EFM(16) code is not enough for optical
applications.

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 161

The approach adapted in the DVD was designing an (S(G), n)-encoder where n is (signif-
icantly) greater than 256. The excess out-degree then allows to have n−256 input bytes each
of which can be mapped into two different codewords; this flexibility in selecting the encoded
codeword can then be used to reduce the DSV, especially if the two codeword candidates
are such that one contains an even number of 1’s while the other contains an odd number.

By Franaszek algorithm we obtain that there exists an (AG, n)-approximate eigenvector
whose largest component is 1 if and only if n ≤ 260; yet, an out-degree 260 is still too close
to 256. Allowing the largest component in the approximate eigenvector to be 2, the values
of n can go up to 351. For n = 351 we obtain the approximate eigenvector

(1 1 2 2 2 2 1 1 1 1 0)⊤ ,

and the respective weight-minimal states in G are 0, 1, 5, 9, and 10. By deleting state 10
and merging states, we obtain a labeled graph H with four states, 0, 1, 2–5, and 6–9, whose
adjacency matrix is given by

AH =

83 57 98 22
122 83 142 32
164 113 192 42
97 67 113 25

and the respective (AH , 351)-approximate eigenvector is

(1 1 2 1)⊤ .

Next, we obtain a labeled graph H ′ by splitting state 2–5 into two descendant states,
2–5(1) and 2–5(2), with out-degrees 351 and 352. In fact, the splitting can be such that

FH′(2–5(1)) ⊆ FH′(6–9) ,

thereby allowing merging. By deleting excess edges we thus obtain a four-state (S(G), 351)-
encoder that is (0, 1)-sliding-block decodable. In particular, we can obtain in this manner
the EFMPlus code, which is used in the DVD; see Section 1.7.3 and [Imm95b], [Imm99,
Section 14.4.2].

5.5.2 Sliding-block decoder window

When a finite-state encoder with sliding block decoder is used in conjunction with a noisy
channel, the extent of error propagation is controlled by the size of the decoder window. How
large is this window? Well, suppose that we start the state-splitting algorithm with some
labeled graph G presenting a constrained system of finite-type and Gq has finite memory
M =M(Gq) (measured in q-blocks). If t is the number of (rounds of) out-splitting used to

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 162

construct the encoder, then the encoder graph E is (M, t)-definite (measured in q-blocks). It
follows that we can design a sliding-block decoder with decoding window length W satisfying
the bound

W ≤M+ t+ 1

(again, measured in q-blocks). Recall from Section 5.3 that an upper bound on the number
of (rounds of) out-splitting required is

t ≤
∑

v∈VG

(xv − 1) ,

so,
W ≤M+

∑

v∈VG

(xv − 1) + 1 . (5.6)

The guarantee of a sliding-block decoder when S is finite-type and the explicit bound
on the decoder window length represent key strengths of the state-splitting algorithm. In
practice, however, the upper bound (5.6) on the window length often is larger—sometimes
much larger—than the shortest possible.

For the (0, 1)-RLL encoder in Figure 5.8, where (referring to Figure 5.4)M = 1, x0 = 2,
and x2 = 1, this expression gives an upper bound of 3 (codewords) on the window length.
However, we saw, in Table 4.1, a decoder with window length of W = 2. For the rate 2 : 3
(1, 7)-RLL encoder mentioned in Example 5.6 the initial labeled graph has memoryM = 3,
and the approximate eigenvector is

(2 3 2)⊤ .

The number of rounds of splitting turns out to be only 2, implying

W ≤M+ 3 = 6 ,

which is, again, less than the upper bound (5.6) gives. In fact, a window length of W = 3
was actually achieved [AHM82], [WW91]. For the rate 8 : 9 (0, G/I) = (0, 3/3) encoder for
PRML discussed in [MSW92], the bound (5.6) was 11, but a window length of W = 2 was
achieved [MSW92].

These reduced window lengths were achieved by trying several possibilities for the choices
of presentation, approximate eigenvector, out-splittings, elimination of excess edges and
input tagging assignment (see, for instance [MSW92], [WW91]). In [KarM88] and [AM95],
in-splitting was another tool used in reducing the window length—although for those codes,
the ordinary state-splitting algorithm applied to a ‘very large’ approximate eigenvector will
yield codes with the same sliding block decoding window. Recently, Hollmann [Holl95]
has found an approach that combines aspects of the state-splitting algorithm with other
approaches and has been demonstrated to be of use in further reducing the window length.

To illustrate the importance of the input tagging assignment, consider the encoders in
Figures 5.19 and 5.20. In Figure 5.19 (which is the same as the MFM code of Figure 4.1), the

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 163

decoder window length is one codeword, but in Figure 5.20, the minimum decoder window
length is two codewords (one codeword look-back). The difference is that the assignment in
the former is done in a more consistent manner: edges that have the same output label are
assigned the same input tag.

0 1
✲

0/10
✲1/01

✛
0/00

✛ 1/01

Figure 5.19: One choice of input tags.

0 1
✲

0/10
✲1/01

✛
1/00

✛ 0/01

Figure 5.20: Another choice of input tags.

There is a ‘brute-force’ procedure for deciding if, given m and a, there is an input tagging
assignment of a given (S, n)-encoder G which is (m, a)-sliding block decodable: for each edge
e in G, let L(e,m, a) denote the set of all words generated by paths e−m . . . e0 . . . ea such that
e0 = e; it is straightforward to verify that an input tagging assignment on G is (m, a)-sliding
block decodable if and only if whenever L(e,m, a) and L(e′,m, a) intersect, e and e′ have the
same input tag.

In Figure 5.21, we exhibit an (S, 2)-encoder which is not block decodable (i.e., (0, 0)-
sliding block decodable): the reader can easily verify that it is impossible to assign 1-bit
input tags in such a way that the sliding-block decoder will have no look-back and no look-
ahead. However, since the encoder is (1, 0)-definite, any input tag assignment allows a
decoder window of length 2.

0

1

2
✲

a

✼b

❄
b

✇

c

✛ c✛
a

Figure 5.21: Encoder requiring decoder window length ≥ 2.

Theorem 4.9 shows that in general there is not much hope for simplifying the brute-
force procedure, described above, when n ≥ 3 (see the paragraph following the statement of
Theorem 4.9).

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 164

5.6 Universality of the state-splitting algorithm

We end our treatment of the state-splitting algorithm by reviewing, without proof, some
results from [AM95] and [RuR01] on the universality of the state-splitting algorithm.

Given a deterministic graph G, an integer n, and an (AG, n)-approximate eigenvector x,
we say that the triple (G, n,x) splits into an (S, n)-encoder E if there is sequence of rounds
of out-splitting that can be applied to G such that the following holds:

1. The first round is consistent with x, and each subsequent round is consistent with the
respective induced approximate eigenvector.

2. The last round ends produces a labeled graph H in which each state has out-degree at
least n.

3. The encoder E can be obtained from H by deleting excess edges and—in case E is
tagged—by assigning input tags to the edges.

5.6.1 Universality for sliding-block decodable encoders

For integers m, a, and a function D from (m+a+1)-blocks of S to the n-ary alphabet (such as
a sliding-block decoder), we define Dm,a

∞ to be the induced mapping on bi-infinite sequences
defined by:

Dm,a
∞ (· · ·w−1w0w1 · · ·) = · · · s−1s0s1 · · · ,

where
si = D(wi−m . . . wi−1wiwi+1 . . . wi+a) .

Sometimes, we simply write D∞ = Dm,a
∞ . For a tagged (S, n)-encoder E with sliding-block

decoder D, we then have the mapping D∞, and we take its domain to be the set of all bi-
infinite (output) symbol sequences obtained from E . When we refer to D∞, we tacitly assume
that its domain is included. We say that a mapping D∞ is a sliding-block (S, n)-decoder if
D is a sliding-block decoder for some tagged (S, n)-encoder.

We have the following positive results from [AM95].

Theorem 5.9 Let S be an irreducible constrained system and let n be a positive integer.

(a) Every sliding-block (S, n)-decoder has a unique minimal tagged (S, n)-encoder (here
minimality can be taken to be in terms of number of states).

(b) If we allow an arbitrary choice of deterministic presentation G of S and (AG, n)-
approximate eigenvector x, then the triple (G, n,x) splits into a tagged (S, n)-encoder for
every sliding-block (S, n)-decoder. If we also allow merging of states (i.e., (u, v)-merging

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 165

as in Section 5.5.1), then that triple splits into the minimal tagged (S, n)-encoder for every
sliding-block (S, n)-decoder.

(c) If we fix G to be the Shannon cover S, but allow arbitrary (AG, n)-approximate eigen-
vector x, then (G, n,x) splits into a tagged (S, n)-encoder for every sliding-block (S, n)-
decoder D, modulo a change in the domain of D∞, possibly with a constant shift of each
bi-infinite sequence prior to applying D∞ (but with no change in the decoding function D it-
self). If we also allow merging of states, then, modulo the same changes, the triple (G, n,x)
splits into the minimal tagged (S, n)-encoder for every sliding-block (S, n)-decoder. In par-
ticular, the triple splits into a sliding-block (S, n)-decoder with minimal decoding window
length.

On the other hand, we have the following negative results from [AM95].

1. If we fix G to be the Shannon cover of an irreducible constrained system S, then
(G, n,x) need not split into a sliding-block (S, n)-decoder with smallest number of
encoder states in its minimal tagged (S, n)-encoder.

2. If we fix G to be the Shannon cover of an irreducible constrained system S and we fix
x to be a minimal (AG, n)-approximate eigenvector (in terms of the value of ‖x‖∞),
then (G, n,x) may fail to split into a sliding-block (S, n)-decoder with minimum de-
coding window length; examples of this kind were first found by Kamabe [Kam89] and
Immink [Imm92], but in [AM95] an example is given where cap(S) = logn.

5.6.2 Universality for encoders with finite anticipation

Let u and u′ be states in labeled graph G. We say that u and u′ are 0-strongly equivalent if
they are follower-set equivalent states; namely, FG(u) = FG(u

′).

States u and u′ in G = (V,E, L) are t-strongly equivalent if the following conditions hold:

1. A one-to-one and onto mapping ϕ : Eu → Eu′ can be defined from the set of outgoing
edges of u to the set of outgoing edges of u′, such that for every e ∈ Eu, both e and
ϕ(e) have the same label.

2. For every e ∈ Eu, the terminal states of e and ϕ(e) are (t−1)-strongly equivalent.

States that are t-strongly equivalent are also r-strongly equivalent (and in particular they
are equivalent states) for every r < t.

We say that two states are strongly equivalent states if for every t ≥ 0 the states are
t-strongly equivalent. So, when states are strongly equivalent, the infinite trees of paths that

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 166

start in those states are the same. In a deterministic graph, two states are equivalent if and
only if they are strongly equivalent. On the other hand, in a nondeterministic graph there
may be two states that are equivalent but not strongly equivalent.

The following result is proved in [Ru96] and [RuR01].

Theorem 5.10 Let S be an irreducible constraint and let n be a positive integer where
cap(S) ≥ log n. Suppose there exists some irreducible (S, n)-encoder E with A(E) = t <∞.
Then there exists an irreducible deterministic (not necessarily reduced) presentation G of S
and an (AG, n)-approximate eigenvector x that satisfy the following:

(a) ‖x‖∞ ≤ nt.

(b) The triple (G, n,x) splits in t rounds into an (S, n)-encoder EG such that A(EG) = t.

(c) In each of the splitting rounds, every state is split into at most n states.

(d) In the ith round, the induced approximate eigenvector x(i) satisfies ‖x(i)‖∞ ≤ nt−i.

(e) The encoder E can be obtained from EG by merging strongly equivalent states.

Theorem 5.10 establishes the universality of the state-splitting algorithm for encoders
with finite anticipation: every (S, n)-encoder with finite anticipation can be constructed
using the state-splitting algorithm, combined with merging of (strongly) equivalent states,
where the input to the process is some irreducible deterministic presentation G of S and
an (AG, n)-approximate eigenvector x. (However, as shown in [RuR01], not always can the
Shannon cover be taken as the graph G in Theorem 5.10.)

Another application of Theorem 5.10 is obtaining lower bounds on the anticipation of
any (S, n)-encoder. We elaborate more on this in Section 7.4.3.

Problems

Problem 5.1 Construct the graph that is obtained by a complete out-splitting of the Shannon
cover of the (1, 3)-RLL constrained system in Figure 1.16.

Problem 5.2 Let E1 be an (S, n)-encoder with finite anticipation. What can be said about the
graph E2 that is obtained from E1 by complete out-splitting?

Problem 5.3 Let G = (V,E,L) be an irreducible graph with λ = λ(AG) and let n be a positive
integer such that n < λ. Denote by ∆ the largest out-degree of any state in G.

Let x = (xv)v∈V be a strictly positive right eigenvector of AG associated with the eigenvalue λ
and let xmin the smallest entry in x. Normalize the vector x so that xmin = ∆/(λ− n), and define

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 167

the integer vector z = (zv)v∈V by zv = ⌊xv⌋, where ⌊y⌋ stands for the largest integer not greater
than y.

1. Show that
AGz ≥ nz > 0

(that is, z is an (AG, n)-approximate eigenvector whose entries of are all positive).

2. Show that the sum of the entries in z satisfies the inequality

∑

v∈V
zv ≤

∆

λ− n
· λ

|V | − 1

λ− 1
.

Problem 5.4 Let S be the (0,∞, 2)-RLL constraint; that is, S consists of all binary words in
which the runs of 0’s in between consecutive 1’s have even length. Denote by G the Shannon cover
of S.

1. Construct the graphs G and G3.

2. Are there any values m and a for which G3 is (m, a)-definite?

3. Compute the base-2 capacity of S.

4. Construct a (0, 1)-definite (S3, 4)-encoder with three states.

5. Does there exist an (S3, 4)-encoder that is block decodable?

Problem 5.5 Let S be the constrained system presented by the graph G in Figure 4.11.

1. Construct an (S2, 23)-encoder (i.e., a rate 3 : 2 finite-state encoder for S) with two states.

2. Assign input tags to the encoder found in 1 so that it is block decodable (i.e., (0, 0)-sliding
block decodable).

Problem 5.6 Let S be the constrained system presented by the graph G in Figure 5.22.

A
✲

a B

❲

b

✛ c
✛

d
✛ a✛ b

Figure 5.22: Graph G for Problem 5.6.

1. Compute the eigenvalues of AG.

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 168

2. Construct a three-state (S, n)-encoder with n = λ(AG) by applying the state-splitting algo-
rithm to G.

3. What is the anticipation of the encoder found in 2?

4. Let H be the graph in Figure 5.23. Is H an (S, n)-encoder?

A
✲

b
✲

a B

❲

b

✛ c
✛

d
✛ a

Figure 5.23: Graph H for Problem 5.6.

5. What is the anticipation of the graph H?

6. Can H be obtained by applying a sequence of rounds of state splitting to G (and merging
equivalent states if there are any)? If yes, specify the sequence of state-splitting rounds;
otherwise, explain.

Problem 5.7 Let S be the constrained system generated by the graph G in Figure 2.22.

1. Let E be an (S, 3)-encoder with the smallest number of states that can be obtained by an
application of the state-splitting algorithm (without merging equivalent states) to the graph
G. What is the number of states in E?

2. Repeat 1 except that now E is an (S2, 23)-encoder with the smallest number of states obtained
by an application of the state-splitting algorithm (without merging equivalent states) on G2.

3. Repeat 1 except that now E is an (S4, 26)-encoder obtained from G4.

4. What can be said about the anticipation of the encoder in 3?

Problem 5.8 Let G be the graph in Figure 5.24 in which the edges are assumed to have distinct
labels.

1. Compute an (AG, 4)-approximate eigenvector x in which the largest entry is the smallest
possible.

2. Apply the state-splitting algorithm to G and the vector x from 1, and construct an (S(G), 4)-
encoder using a minimal number of state-splitting rounds. What is the adjacency matrix of
the resulting encoder?

3. Show that the encoder found in 2 satisfies the minimality criterion of number of rounds; that
is, explain why no other (S(G), 4)-encoder can be obtained from x by less state-splitting
rounds.

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 169

A

B

C

❄

✼ ♦

✇✇✲✛ ✛✛✛

Figure 5.24: Graph G for Problem 5.8.

A B C D
✲a

✛
b

❲

b

✲c
✲

d
❖

e

✲a
✛

e

Figure 5.25: Graph G for Problem 5.9.

Problem 5.9 Let G be the graph in Figure 5.25 with labels over {a, b, c, d}.

1. What is the anticipation of G?

2. Compute the base-2 capacity of S(G).

3. Compute an (AG, 2)-approximate eigenvector in which the largest entry is the smallest pos-
sible.

4. Apply the state-splitting algorithm toG and the vector found in 3, and construct an (S(G), 2)-
encoder with anticipation which is the smallest possible.

5. The anticipation of the encoder found in 4 is smaller than the anticipation of G. Explain
how this could happen, in spite of obtaining the encoder by splitting states in G.

Problem 5.10 Let G be a deterministic graph and let x be an (AG, n)-approximate eigenvector.
Further, assume that an (S(G), n)-encoder E can be obtained from G by one x-consistent round of
state splitting (and deleting redundant edges), and the resulting (AE , n)-approximate eigenvector
is a 0–1 vector.

1. Show that x must satisfy the inequality

AG1 ≥ x ,

where 1 is the all-one vector.

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 170

2. Suppose that, in addition, x does not satisfy the inequality

AG1 ≥ 2x .

Show that one of the entries in x is at least n.

Hint: Show that there is a state u in G such that every x-consistent partition of the outgoing
edges from u must contain a partition that consists of exactly one edge.

Problem 5.11 Let S be the constrained system presented by the graph G in Figure 2.23.

1. Construct an (S4, 23)-encoder (i.e., a rate 3 : 4 finite-state encoder for S) with two states.

2. Is it possible to assign input tags to the encoder found in 1 so that it is block decodable (i.e.,
(0, 0)-sliding block decodable)? If yes, suggest such a tag assignment; otherwise, explain.

Problem 5.12 Let S be the constrained system generated by the graph G in Figure 5.26.

A

B

✲
a

✲
b C

✼
c ✼

d
✇

e

✇
f

✛
a ✛ e✛ f

Figure 5.26: Graph G for Problem 5.12.

1. Find the smallest value of M for which there exists an (AG, 3)-approximate eigenvector whose
largest entry equals M .

2. Among all (AG, 3)-approximate eigenvectors whose largest entries equal the value M found
in 1, find a vector x whose sum of entries is minimal.

3. Construct an (S, 3)-encoder E by applying the state-splitting algorithm to G and the vector
x found in 2.

4. How many state-splitting rounds were required in 3? Why can’t an (S, 3)-encoder be obtained
from G and x using a smaller number of rounds?

5. What is the anticipation of E?

6. An (m, a)-sliding block decoder is sought for the encoder E . Find the smallest possible values
of m and a for which such a decoder exists regardless of the tag assignment to the edges in
E .

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 171

7. Is it possible to have an (m, a)-sliding block decoder for E with a smaller m by a clever tag
assignment to the edges in E? If yes, suggest such a tag assignment. Otherwise explain.

8. Repeat 7 with respect to the parameter a.

Problem 5.13 Let S be the constrained system presented by the graph G in Figure 5.27 (which
is the same as Figure 2.25).

A B C D E
✲a

✛
b

✲a
✛

a
✲b

✛
a

✲b
✛

b
❖

c
✻

a

Figure 5.27: Graph G for Problem 5.13.

1. Compute the base-2 capacity of S.

2. Compute an (AG, 2)-approximate eigenvector in which the largest entry is the smallest pos-
sible.

3. Show that an (S, 2)-encoder can be obtained by four rounds of splitting of G.

4. Construct a (0, 1)-definite (S2, 4)-encoder with two states.

Problem 5.14 Let S be the constrained system presented by the graph G in Figure 2.24.

1. Compute the base-2 capacity of S.

2. Using the state-splitting algorithm, construct an (S2, 2)-encoder (i.e., a rate 1 : 2 finite-state
encoder for S) with six states and anticipation at most 1.

3. Is it possible to assign input tags to the encoder in 2 so that it is block decodable? If yes,
suggest such an assignment; otherwise, explain.

4. Show how to construct an (S2, 2)-encoder with finite anticipation yet that anticipation is
greater than 1.

5. Is there a positive integer ℓ for which there exists a block (S2ℓ, 2ℓ)-encoder (i.e., a rate ℓ : 2ℓ
one-state encoder for S)? If yes, construct such an encoder; otherwise, explain.

Problem 5.15 Let S be the constrained system generated by the graph G in Figure 5.28.

1. What is the memory of G?

CHAPTER 5. THE STATE-SPLITTING ALGORITHM 172

A

B

C

✼a

✛ c
✛

d

✇

b

✛ b

❄
a

Figure 5.28: Graph G for Problem 5.15.

2. Compute the base-2 capacity of S(G).

3. Compute an (AG, 2)-approximate eigenvector x in which the largest entry is the smallest
possible.

4. Apply the state-splitting algorithm to G and the vector x from 3, and construct an (S(G), 2)-
encoder using a minimal number of state-splitting rounds. Merge states to obtain an encoder
with three states. What is the anticipation of this encoder?

5. Assign input tags to the encoder found in 4 so that it is (m, a)-sliding-block decodable with
the smallest possible window length m+ a+ 1.

6. Is there a positive integer ℓ for which there exists a deterministic (Sℓ, 2ℓ)-encoder? If yes,
construct such an encoder; otherwise, explain.

Problem 5.16 Let G be the second power of the Shannon cover of the (2, 7)-RLL constrained
system and let bldx be the vector

(2 3 4 4 3 3 1 1)⊤ .

As mentioned in Example 5.3, this vector is an (AG, 2)-approximate eigenvector.

1. Find the weight-minimal states in G with respect to x.

2. By merging states in G into its weight-minimal states, construct a deterministic graph G′

with five states such that S(G′) ⊆ S(G) and cap(S(G′)) ≥ 1.

Chapter 6

Other Code Construction Methods

In Chapter 5, we focused on the state-splitting algorithm which gives a rigorous proof of the
general existence theorems (Theorems 4.1 and 4.8) for constrained code constructions. The
algorithm has other virtues: it is fairly easy to use, it has yielded many codes of practical
interest, and, as stated in Section 5.6, it is a universal method of constructing every sliding-
block decoder. However, as pointed out in Section 5.5, there are lots of choices in the
algorithm: the presentation, the approximate eigenvector, the sequence of out-splittings, the
deletion of excess edges, and the input-tagging assignment. It is not known how to make
these choices to yield optimal encoders/decoders.

There have been many other important and interesting approaches to constrained code
construction—far too many to mention here. In this chapter we review, without proof, some
alternative methods for constructing constrained codes (see also Sections 4.2 and 4.4). Since
these methods are all aimed at the same goal, it is perhaps not surprising that they have a
lot in common. In fact, other methods are probably just as universal as the state-splitting
algorithm. Some of these methods give very useful heuristics for constructing sliding-block
decodable encoders with small decoding window length as well as some rigorous upper bounds
on the smallest possible anticipation (or decoding delay) and decoding window length.

We will focus on constructions of tagged (S, n)-encoders. So, throughout this chapter,
we will always assume that S is an irreducible constrained system with cap(S) ≥ log n. For
rate p : q finite-state encoders for S, one can apply the results and methods of this chapter
by passing to the power Sq.

6.1 IP encoders

We start with an encoder construction due to Franaszek that is very closely related to the
state-splitting construction. We need the following notation: for a path γ in a labeled graph

173

CHAPTER 6. OTHER CODE CONSTRUCTION METHODS 174

G = (V,E, L), let γ̂ denote the truncation of γ obtained by deleting the last edge, and for a
set Γ of paths in G, let Γ̂ denote the set {γ̂ : γ ∈ Γ}.

Now, for each state u ∈ V , let N = N(u) be a positive integer and let Γu =
{Γ(1)

u ,Γ(2)
u , . . . ,Γ(N)

u } be a partition of a set of paths outgoing from u, of some fixed length
T , subject to the following condition:

IP condition: Whenever e is an edge from state u to state v and γ1 and γ2 are paths that
belong to the same element of Γv (in particular, they both have initial state v), then
eγ̂1 and eγ̂2 belong to the same element of Γu.

Note that this is a condition imposed on the entire collection of partitions, {Γu}u∈V ,
not on an individual partition Γu. The IP condition was developed by Franaszek [Fra80a],
[Fra80b], [Fra82], who called the individual partition elements, independent path sets or
IP sets. The IP condition was called the left Markov property in [AM95].

Now suppose that {Γu}u∈V is a collection of partitions satisfying the IP condition. Con-
struct the following labeled graph G′ = (V ′, E ′, L′): the states in G′ are the independent

path sets Γ(i)
u ; there is an edge Γ(i)

u
b→ Γ(j)

v in G′ for each edge e labeled b from state u to
state v in G such that

e Γ̂(j)
v ⊆ Γ(i)

u .

Now, it can be shown that G′ is lossless (Problem 6.1). Moreover, if the vector x defined
by xu = N(u) is an (AG, n)-approximate eigenvector, then G′ has minimum out-degree at
least n; so, by deleting edges and adding input tags, we obtain an ordinary tagged (S, n)-
encoder, which we call an IP encoder. If G has finite memory M, then this encoder is
sliding-block decodable with decoding window length ≤M+T+1.

It turns out that any IP encoder can also be constructed by x-consistent out-splittings
(see [AM95] and [Holl95]). It follows from this result and the state-splitting construction in
Chapter 5 that the IP approach is bound to succeed provided that T is taken sufficiently
large. In fact, one can view the state-splitting algorithm as giving a constructive procedure
for manufacturing IP sets. Recently, Franaszek and Thomas [FT93] discovered an algorithm
which reduces the search required for finding IP sets.

6.2 Stethering encoders

Next, we describe a more general framework of encoder construction within which the state-
splitting construction fits. Let G = (V,E, L) be a deterministic labeled graph with S = S(G)
and let x = (xu)u∈V be an (AG, n)-approximate eigenvector. As usual, we may assume that

CHAPTER 6. OTHER CODE CONSTRUCTION METHODS 175

the entries of x are all strictly positive. We describe a particular class of (S, n)-encoders E ,
built from x, as follows. The set of states of E is given by

VE =
{
(u, i)

∣∣∣ u ∈ VG and i = 0, 1, . . . , xu−1
}
.

Recall that Eu denotes the set of edges outgoing from a state u, and we will use L(Eu)
here to denote the set of L-labels of edges in Eu. Since G is deterministic, the mapping
Eu → L(Eu) defined by e 7→ L(e) is one-to-one and onto. So, it makes sense, for each
u ∈ VG and a ∈ L(Eu), to define τ(u; a) to be the terminal state of the unique edge outgoing
from u with label a. Now, let

∆u = {(a, j) : a ∈ L(Eu) and j = 0, 1, . . . , xτ(u;a)−1} .
By definition of approximate eigenvector we have |∆u| ≥ nxu. Thus, we can partition ∆u

into xu+1 subsets ∆(0)
u ,∆(1)

u , . . . ,∆(xu)
u such that |∆(i)

u | = n for each i, except for i = xu
(∆(xu)

u may be empty). Now, for each i = 0, 1, . . . , xu−1 and (a, j) ∈ ∆(i)
u , we endow E with

an edge (u, i)
a→ (τ(u; a), j). This completely defines E .

It turns out that E is an (S, n)-encoder (the proof is essentially contained in [AGW77]—
see also [AMR95]); in fact, if G were merely lossless, then one could modify the construction
so that E would still be an (S, n)-encoder. Also, it is not hard to see that the (S, n)-encoders
constructed by the state-splitting algorithm are of this type. Clearly the construction of this
type of encoder is somewhat easier than the state-splitting construction: there is no iterative
process to go through. However, there are lots of examples of encoders of this type that do
not have finite anticipation; it is not at all clear how to choose the partitions of each ∆u to
achieve finite anticipation.

On the other hand, if we have sufficient excess capacity and we choose our partitions of
∆u with some extra care, then it turns out that E will have finite anticipation; and if G has
finite memory (more generally, if G is definite), then E will be definite, and so any tagging
of E will yield a sliding-block decodable encoder. We describe this special construction as
follows.

The definition of the partitions assumes some ordering on the edges in Eu for each
u ∈ VG—equivalently, in light of the assumption that G is deterministic, an ordering on
the symbols in L(Eu). We allow symbols to have different ordering relations in L(Eu) for
different states u. For u ∈ VG and a ∈ L(Eu), define φ(u; a) by

φ(u; a) =
∑

{b∈L(Eu) : b<a}
xτ(u;b) ,

where the sum is zero on an empty set. For i = 0, 1, . . . , xu−1, let
∆(i)

u = { (a, j) : a ∈ L(Eu) and in ≤ φ(u; a) + j < (i+ 1)n } ,
and ∆(xu)

u is whatever is left over. This means that for each u, v ∈ VG, 0 ≤ i < xu, 0 ≤ j < xv,
and symbol a, we have one edge (u, i)

a→ (v, j) in E if and only if

a ∈ L(Eu) , v = τ(u; a) , and in ≤ φ(u; a) + j < (i+ 1)n . (6.1)

CHAPTER 6. OTHER CODE CONSTRUCTION METHODS 176

Such an encoder is called a stethering (S, n)-encoder because the elements of each partition
element ∆(i)

u form a contiguous interval and thus are ‘stuck together.’ This construction is
illustrated in Figure 6.1: there is an edge from each state (u, i) in the first row to each state
in the second row that sits below (u, i).

0 1 ... n−1 0 1 ... n−1 0 1 ... n−1

(u, 0) · · · (u, xu−1)
(v,0) (v,1) · · · (v,xv−1) (v′,0) · · · (v′,xv′−1) (v′′,0) (v′′,1) · · ·
(a,0) (a,1) · · · (a,xv−1) (a′,0) · · · (a′,xv′−1) (a′′,0) (a′′,1) · · ·
←− ∆(0)

u −→ ←− ∆(1)
u −→ ←− · · · −→

Figure 6.1: Stethering encoders.

Suppose that we have enough excess capacity that cap(S) ≥ log (n+1). Then, using an
(AG, n+1)-approximate eigenvector, we can form a stethering (S, n+1)-encoder E . Now, for
each state u, the ordering on L(Eu) induces a lexicographic ordering on ∆u, and hence an
ordering on each ∆(i)

u . We tag E by assigning the input tags {0, 1, . . . , n} in an ordering-
preserving way to the outgoing edges specified by each ∆(i)

u . From E we form an (S, n)-
encoder E ′ by deleting all edges in E tagged by the input symbol n. We call such an encoder
a punctured stethering (S, n)-encoder. In [AMR95], it is shown that any punctured stethering
(S, n)-encoder has finite anticipation.

Now, what is the advantage of such an encoder? Well, not only is it easy to construct, but,
as we will discuss in Section 7.4, its anticipation is in some sense ‘small,’ especially compared
to the upper bound on anticipation that we gave in Section 5.3. Also, with sufficient excess
capacity, this construction leads to sliding-block decoders with ‘small’ decoding window
length (see the discussion in Section 7.4).

6.3 Generalized tagged (S, n)-encoders

In order to describe some of the other approaches to code construction, we will now formulate
what appears to be a more general notion of tagged (S, n)-encoder. However, these more
general encoders can be transformed to ordinary tagged (S, n)-encoders.

A generalized tagged (S, n)-encoder E = (V,E, LI/LO) is a finite directed graph (V,E)
endowed with two labelings—input labeling (tagging) LI and output labeling LO—yielding
two labeled graphs GI = (V,E, LI) and GO = (V,E, LO) such that

1. GI presents the unconstrained system of all n-ary sequences;

CHAPTER 6. OTHER CODE CONSTRUCTION METHODS 177

2. GI has finite anticipation;

3. S(GO) ⊆ S;

4. GO is lossless.

As with ordinary tagged encoders, we will use the notation u
s/b→ v for an edge from state u

to state v in E with LI -labeling (tagging) s and LO-labeling b.

The main difference between a generalized tagged encoder and an ordinary tagged en-
coder is that the input tagging is merely required to have finite anticipation, rather than to
be deterministic. However, since GI presents all n-ary sequences, it can be shown directly
that (V,E, LI/LO) can encode unconstrained data into S at the cost of finite delay. Alter-
natively, we can transform any generalized tagged (S, n)-encoder into an (ordinary) tagged
(S, n)-encoder. This fact is implicit in many papers (e.g., [AFKM86], [Heeg91, p. 770]) and
has recently been made more explicit by Hollmann [Holl95]. However, it is also a simple con-
sequence of an old symbolic dynamics result. The transformation is outlined in Section 6.7.

6.4 Encoders through variable-length graphs

6.4.1 Variable-length graphs and n-codability

In the following, we show how a certain kind of labeled variable-length graph yields a gen-
eralized tagged (S, n)-encoder (and therefore an ordinary tagged (S, n)-encoder).

A (labeled) variable-length graph (in short, VLG) is a labeled finite directed graph G =
(V,E, L) in which each edge e has a length ℓ(e), assumed to be a positive integer, and is
labeled by a word L(e) (in some alphabet) of length ℓ(e). An ordinary labeled finite directed
graph is a VLG where each edge has length 1.

Any VLG, G, may be viewed as an ordinary labeled graph by inserting dummy states.
In this way, a VLG presents a constrained system. So, the notation S(G) makes sense for a
VLG, and we can apply the various notions of determinism, losslessness, definiteness, finite
memory, finite anticipation, etc., to VLG’s. An advantage of VLG’s is that they tend to
be more compact representations of constraints. For instance, any (d, k)-RLL constraint
naturally has an ordinary presentation with k+1 states and a VLG presentation with only
one state, as shown in Figure 6.2.

A VLG G is n-codable if at each state u ∈ VG, the length distribution of the set Eu of
outgoing edges satisfies the Kraft inequality with equality, namely, we have

∑

e∈Eu

n−ℓ(e) = 1 .

CHAPTER 6. OTHER CODE CONSTRUCTION METHODS 178

0

wi = 00 . . . 0︸ ︷︷ ︸
i

1

✛ wd✛ wd+1 . . .
✛

wk

Figure 6.2: VLG presentation of (d, k)-RLL constrained system.

Now, suppose that G is an n-codable lossless VLG presentation of a subset of a con-
strained system S. Then, we can select, for each state u ∈ VG, a prefix-free list Xu of n-ary
words whose length distribution matches that of Eu. Using any length-preserving correspon-
dence between Xu and Eu, we endow G with an input tagging LI . It can be shown that
(V,E, LI/L), viewed as an ordinary graph with two labelings—input tagging LI and output
labeling L—is a generalized tagged (S, n)-encoder (Problem 6.2).

6.4.2 Variable-length state splitting

Variable-length state splitting is a code construction technique, due to Adler, Friedman,
Kitchens, and Marcus [AFKM86] (see also Heegard, Marcus, and Siegel [Heeg91]), which
adapts the state-splitting algorithm to variable-length graphs. In this method, we begin
with an ordinary lossless presentation G = (V,E, L) of a constrained system S, and we
select a subset V ′ ⊆ V of states such that every sufficiently long path in G meets some state
of V ′. We then convert G into a VLG G′ = (V ′, E ′, L′), where E ′ is the set of paths in
G which start and terminate in V ′, but do not contain any states of V ′ in their interior,
with the naturally inherited labeling (the length of an edge in G′ is, of course, the length of
the path in G that it represents). The assumption on V ′ guarantees that every bi-infinite
path in G can be parsed into edges of G′, and so we do not really lose anything in passing
from G to G′. We remark that if we view G′ as an ordinary labeled graph (by inserting
dummy states), then, while G′ may not exactly reproduce G, it is a lossless labeled graph
with S(G′) = S(G).

One can develop notions of state splitting, approximate eigenvectors, etc. for VLG’s, and
see that state splitting preserves finite anticipation and definiteness as in Proposition 5.1.
Then we apply a variable-length version of the state-splitting algorithm to iteratively trans-
form G′ into a new VLG which is n-codable, thereby yielding a generalized tagged (S, n)-
encoder. If the original presentation G has finite anticipation (resp., has finite memory),
then the encoder will have finite anticipation (resp., be sliding-block decodable).

The variable-length state-splitting procedure offers the advantage of a simpler construc-
tion method because there are fewer states to split. In some cases, it also suggests ways to
find codes with reduced complexity (see [AFKM86], [Heeg91] for examples).

CHAPTER 6. OTHER CODE CONSTRUCTION METHODS 179

6.4.3 Method of poles

Our next alternative method is the method of poles, due to Béal [Béal90a], [Béal93a],
[Béal90b]. This method is a modification of the method of principal states, developed by
Franaszek [Fra69]. A related method was used in [HorM76] to obtain the first practical rate
2 : 3 finite-state encoder for the (1, 7)-RLL constraint.

In this method, we assume that cap(S) > logn, although it does work sometimes even
when cap(S) = logn (see [AB94]). Again, we begin with an ordinary lossless presentation G
of S. Given a positive integer M , we find a subset P of V , called principal states, and, for
each u ∈ P , a collection Γ(u) of paths in G satisfying the following four conditions:

(PS-1) each path in Γ(u) starts at u;

(PS-2) each path terminates in some element of P ;

(PS-3) each path has length at most M ;

(PS-4) the reverse Kraft inequality holds at every state u ∈ P , namely,

∑

γ∈Γ(u)
n−ℓ(γ) ≥ 1 .

Note that, in contrast to variable-length state splitting, paths in Γ(u) are allowed to
visit states of P in their interior (i.e., not just at the beginning or end). In Section 4.4
we presented a special case of this definition, where each Γ(u) consisted of paths of length
exactly q =M .

Assuming cap(S) > log n, for sufficiently large M , such a set of principal states always
exists [Béal90a]. There are algorithms which give short-cuts to an exhaustive search for sets
of principal states [Fra69], [Béal90a].

A generalized tagged (S, n)-encoder with sliding-block decoder can be found using the
lists Γ(u) as follows. We first extract a subset Γ′(u) ⊆ Γ(u) such that the following condition
holds:

(PS-4’)
∑

γ∈Γ′(u) n
−ℓ(γ) = 1.

This can always be done [Béal90a]. We now define a VLG presentation G = (V ,E, L) of
a subset of S = S(G) as follows. For each principal state u ∈ P , we endow G with a state
u, called a pole state, and for each path γ ∈ Γ′(u) in G terminating in a state v ∈ P , we
endow G with an edge γ = u→ v of length ℓ(γ). The edge γ in G is labeled with the word
generated by the corresponding path γ in G.

CHAPTER 6. OTHER CODE CONSTRUCTION METHODS 180

Clearly, S(G) ⊆ S(G) = S, and it is not hard to see that since G is lossless, so is G.
Moreover, the VLG G is n-codable. So, as described in Section 6.4.1, we can endow G with
an input tagging to obtain a generalized tagged (S, n)-encoder.

Now, the presentation G need not be definite even if G has finite memory. However,
Béal [Béal90a] showed that if G does have finite memory and the lists Γ′(u) satisfy an
optimization condition (condition (PS-5) below), then G will be definite. Namely, she showed
that if G has finite memory and P ⊆ VG is a set of states such that for each u ∈ P , the
list Γ′(u) satisfies conditions (PS-1)–(PS-3), (PS-4’), and (PS-5), then G is definite, and so
any tagging of the resulting (S, n)-encoder will be sliding-block decodable. The additional
condition (PS-5) is as follows:

(PS-5) for each state u ∈ P , the list Γ′(u) minimizes the sum
∑

γ∈Γ′(u) ℓ(γ), among all
possible lists satisfying conditions (PS-1)–(PS-3) and (PS-4’).

We note that Béal [Béal93b] has found other optimality conditions that can replace
condition (PS-5) for guaranteeing sliding-block decodability.

6.5 Look-ahead encoders

Next, we discuss some methods, due to Franaszek [Fra79], [Fra82], [Fra89], which predate
the state-splitting approach, but involve some very closely related ideas. In our description,
we adopt the viewpoint of Hollmann [Holl95], whose terminology is somewhat different from
that of Franaszek.

We begin with look-ahead encoding, a variation of ordinary finite-state coding. At each
state u of the encoder, the allowable input tag sequences are not arbitrary; namely, there
is a list of n-ary words W (u), all of the same length K, such that an input tag sequence
labeling a path from u is allowable if and only if its K-prefix belongs to W (u). So, when we
encode an input tag (an input symbol), we do so with the commitment to encode thereafter
only a certain specified collection of input tag sequences. The encoded input tag and the
next encoder state are dictated by the upcoming sequence of input tags, subject to the
requirement that each edge in the encoder graph is associated with exactly one input tag.

In order to describe look-ahead encoding precisely, we will make use of the following
notation: for sets U and V of (finite) words, we denote by UV the set of all concatenations
uv such that u ∈ U and v ∈ V . We will use the notation Bn for the n-ary set {0, 1, . . . , n−1}.

A look-ahead encoder (or more precisely, a K-tag look-ahead encoder with input alphabet
Bn) for a lossless graph G = (V,E, L) is defined by an input tagging LI : E → Bn of the
edges of G and subsets W (u) of (Bn)

K for each state u ∈ V such that the following two
conditions hold:

CHAPTER 6. OTHER CODE CONSTRUCTION METHODS 181

(LA-1) for at least one state u ∈ V we have W (u) 6= ∅;

(LA-2) for each u ∈ V we have

W (u)Bn ⊆ ∪e∈Eu
LI(e)W (τG(e)) .

Now, we can transform a look-ahead encoder into a generalized tagged (S(G), n)-encoder
(and therefore an ordinary tagged (S(G), n)-encoder) as follows. For each state u ∈ V ,
s ∈ W (u), and b ∈ Bn, use condition (LA-2) above to choose a particular outgoing edge
e = e(u, sb) from u in G such that sb = as′, a = LI(e), and s′ ∈ W (τG(e)). Now, construct
a new graph E = (V ′, E ′, L′

I/L
′
O) with two labelings—input labeling L′

I and output labeling
L′
O—as follows. The states of E are all pairs [u, s], where u ∈ V and s ∈ W (u). We draw an

edge [u, s]
a/c→ [u′, s′] (with L′

I -labeling a and L′
O-labeling c) if and only if the following three

conditions hold:

(a) sb = as′, where a is the first Bn-symbol in s and b is the last Bn-symbol in s′.

(b) u′ = τG(e(u, sb)).

(c) c = L(e(u, sb)).

It can be shown that E is a generalized tagged (S, n)-encoder (Problem 6.5). Moreover,
if G has finite anticipation (resp., has finite memory), then E has finite anticipation (resp.,
is sliding-block decodable). In particular, if G has finite memoryM, then E is sliding-block
decodable with decoding window length ≤M+1: any word of lengthM+1 in S(G) uniquely
determines an edge e of G and the decoded input tag in E is then L′

I(e). So, if G has memory
zero, then the decoding window length is 1 (note that this does not mean that the encoder
is block decodable, i.e., (0, 0)-sliding-block decodable).

A very special case of the main result in [AM95] is that for any K-tag look-ahead encoder
for a labeled graph G, there is an equivalent encoder (in the sense that the encoding function
is the same modulo a shift) obtained from G by at most K rounds of out-splitting. Now, if
G has memory M, then the upper bound in Section 5.5.2 given for the smallest decoding
window length of a sliding-block decoder isM+K+1. However, as mentioned above, such an
encoder is sliding-block decodable with window length at mostM+1. So, here is an instance
where the bound on the decoding window length given by the state-splitting algorithm is
much larger than the actual decoding window length.

Lempel and Cohn [LemCo82] proposed a generalization of the look-ahead encoding
method. Their method differs from look-ahead encoding in several respects. First, at each
state, the set of input words is allowed to have variable lengths (this is not really an essential
difference, and this possibility was already considered by Franaszek [Fra80a]). Second, the
outgoing edge dictated by an input tag is allowed to depend on the sequence of previous
input tags (as well as following input tags). Third, an edge in the encoder graph may be
associated with more than one input tag. While this still gives a well-defined encoder, it

CHAPTER 6. OTHER CODE CONSTRUCTION METHODS 182

may not have finite anticipation, and so decoding can be problematic. Nevertheless, by a
series of examples, Lempel and Cohn showed that this method works very well in many
circumstances.

6.6 Bounded-delay encoders

The bounded-delay method is a generalization of look-ahead encoding. Let G = (V,E, L)
be a labeled graph. The T th order Moore form of G, denoted G{T}, is the labeled graph
defined as follows. The states of G{T} are the paths of length T−1 in G, and for each path
e1e2 . . . eT of length T in G, there is an edge e1e2 . . . eT−1 → e2e3 . . . eT in G{T} labeled L(eT).
The labeled graph G{2} is the ordinary Moore form of G, as was defined in Section 2.2.7.

Let G = (V,E, L) be a lossless presentation of a constrained system S, and let K and T
be positive integers. A bounded-delay encoder (or more precisely, a K-tag, delay-T bounded-
delay encoder with input alphabet Bn) for a lossless graph G is a K-tag look-ahead encoder
with input alphabet Bn for the T th order Moore form G{T} of G. Observe that if G has finite
memory M, then such an encoder is sliding-block decodable with decoding window length
M+T+1. We remark that Franaszek [Fra82] originally framed his IP approach (discussed
in Section 6.1) in terms of bounded-delay encoding.

Hollmann [Holl95] has recently developed an approach which combines features of the
bounded-delay method and the state-splitting method. The idea is to first split states suffi-
ciently until one obtains a graph which is amenable to a certain variation of the bounded-
delay method. In many cases, the result of this procedure is a sliding-block decodable encoder
whose decoder has smaller window length than would be expected. Several very nice codes
for specific constraints of practical importance were constructed in [Holl95].

Hollmann’s approach was influenced by earlier work of Immink [Imm92], as well as by
Franaszek’s bounded-delay encoding method. Immink showed that in many situations, while
there may be no block decodable tagged (S, n)-encoder, it may still be possible to construct
a tagged (S, n)-encoder which is (−1, 1)-sliding-block decodable. The decoder produces a
decoded input tag at time i, by examining only the output symbol at time i+1; in other
words, it decodes by looking into the future and ignoring the present. What does this
mean in terms of the input tagging of an (S, n)-encoder E? Well, suppose, for simplicity,
that E has memory 1 and at each state, the input tags on the incoming edges are all
the same. Then, any output symbol uniquely determines a state v in E and is decoded
to the input tag which is written on the incoming edges to v. Of course, it is not at all
obvious how to construct such encoders. However, useful heuristics, illustrated by several
examples, were given in [Imm92], as well as in subsequent papers by Immink [Imm95a] and
Hollmann [Holl94]. In [Holl95], [Holl96], Hollmann develops codes that look ‘further’ into
the future: in his construction, he aims for (−m, a)-sliding-block decodable encoders, where
0 ≤ m ≤ a; that is, the decoder produces a decoded input tag at time i by examining only

CHAPTER 6. OTHER CODE CONSTRUCTION METHODS 183

the output symbols wi+mwi+m−1 . . . wi+a.

6.7 Transforming a generalized encoder to an ordinary

encoder

Here, we outline how to transform a generalized tagged (S, n)-encoder to an ordinary tagged
(S, n)-encoder.

Let G be a labeled graph with finite anticipation A. We define the induced labeled graph
G′ = (V ′, E ′, L′) of G in the following manner. The states of G′ are all pairs [u, s], where
u ∈ VG and s is a word of length A that can be generated from u in G. We draw an edge

[u, s]
b→ [u′, s′] if and only if the following two conditions hold:

(a) sb = as′, where a is the first symbol in s;

(b) u′ is the terminal state of the first (unique) edge u
a→ u′, denoted e(u, sb), in any

path of length A+1 that is labeled by the word sb = as′ in G starting at state u.

Kitchens [Kit81] (see also [BKM85]) showed that whenever G = (V,E, L) is a labeled
graph with finite anticipation, then the corresponding induced labeled graph G′ is determin-
istic and S(G) = S(G′) (Problem 6.6).

Now, given a generalized tagged (S, n)-encoder E = (V,E, LI/LO), we apply the preced-
ing result to EI = (V,E, LI), yielding a deterministic induced tagged graph E ′I = (V ′, E ′, L′

I)
(i.e., the labels given by L′

I are regarded as “input tags”). We form a generalized tagged
(S, n)-encoder E ′ = (V ′, E ′, L′

I/L
′
O) by endowing E ′I with an output labeling L′

O to re-

flect the labeling LO: namely, the L′
O-label, c, of the edge [u, s]

b/c−→ [u′, s′] in E ′ is set
to c = LO(e(u, sb)).

Clearly, both EI and E ′I present the set of all n-ary words through their labelings LI and
L′
I . Hence, since E ′I is deterministic, there is an (input-)labeled subgraph E ′′I = (V ′′, E ′′, L′

I) of
E ′I with constant out-degree n which still presents the unconstrained system of n-ary words.
Now, by the losslessness of EO = (V,E, LO) we have that the labeled graph E ′O = (V ′, E ′, L′

O)
and, therefore, also E ′′O = (V ′′, E ′′, L′

O), is an (S, n)-encoder. The tagging L′
I then converts

it into an (ordinary) tagged (S, n)-encoder E ′′ = (V ′′, E ′′, L′
I/L

′
O). In this way, we have

transformed the generalized tagged (S, n)-encoder E = (V,E, LI/LO) to the ordinary tagged
(S, n)-encoder E ′′ (although the encoding mapping is shifted in the process). Moreover, if
EO has finite anticipation, then the resulting (S, n)-encoder E ′′O will have finite anticipation,
and if EO has finite memory, then the resulting tagged (S, n)-encoder E ′′ will be sliding-block
decodable. Therefore, the notions of finite anticipation and sliding-block decodability can
be applied to generalized encoders.

The induced labeled graph described above resembles that produced by the determinizing

CHAPTER 6. OTHER CODE CONSTRUCTION METHODS 184

construction of Section 2.2.1. However, it is different: the determinizing construction yields
a labeled graph which is ‘too small’ to allow the definition of a well-defined labeling L′

O that
reflects the labeling LO.

Problems

Problem 6.1 Show that the graph G′, constructed in Section 6.1, is lossless.

Problem 6.2 Show that (V,E,LI/L), as described at the end of Section 6.4.1, is a generalized
tagged (S, n)-encoder (when viewed as an ordinary graph with two labelings—input tagging LI and
output labeling L).

Problem 6.3 Let G = (V,E,L) be a variable-length graph (VLG). Denote by QG(z) the |V |× |V |
matrix in the indeterminate z, with entries given by

(QG(z))u,v =
∑

e

z−ℓ(e) ,

where u, v ∈ V and the summation is taken over all edges e in G that originate in u and terminate
in v.

Define the ordinary form of G as the ordinary graph H obtained from G by replacing each edge
e, of length ℓ(e), with a chain of ℓ(e) edges connected through ℓ(e)−1 new states.

1. Show that if G is an ordinary graph (i.e., ℓ(e) = 1 for every e ∈ E), then

QG(z) = z−1AG ,

where AG is the adjacency matrix of G.

2. Show that if H is the ordinary form of a VLG G, then µ is a nonzero eigenvalue of AH if and
only if

det(QG(µ)− I) = 0 .

In particular, the largest real solution of det(QG(z)− I) = 0 is z = λ(AH).

Problem 6.4 A finite set Γ of words over an alphabet Σ is called exhaustive if every word w over
Σ is either a prefix of a word in Γ or there is a word in Γ that is a prefix of w. Denote by ℓ(w) the
length of the word w.

1. Let Γ be an exhaustive set of words over an alphabet of size n. Show that
∑

w∈Γ
n−ℓ(w) ≥ 1 .

Hint: Let ℓmax be the largest length of any word in Γ; show that
∑

w∈Γ
nℓmax−ℓ(w) ≥ nℓmax .

CHAPTER 6. OTHER CODE CONSTRUCTION METHODS 185

2. Let m1,m2, . . . ,mt be nonnegative integers that satisfy

t∑

i=1

n−mi ≥ 1 .

Show that there exist integers ℓ1, ℓ2, . . . , ℓt such that ℓi ≥ mi and

t∑

i=1

n−ℓi = 1 .

3. A finite set Γ of words over am alphabet Σ is called prefix-free is no word in Γ is a prefix of
any other word in Γ. Show that if Γ is prefix-free, then

∑

w∈Γ
n−ℓ(w) ≤ 1 .

4. Let ℓ1, ℓ2, . . . , ℓt be nonnegative integers that satisfy the equality

t∑

i=1

n−ℓi = 1 .

Suggest an efficient algorithm for constructing a set Γ of t words over an alphabet of size n
such that the following three conditions hold:

(a) Γ is exhaustive;

(b) Γ is prefix-free; and —

(c) the ith word in Γ has length ℓi.

Problem 6.5 Let E be the encoder, based on a lossless graph G, described in Section 6.5.

1. Show that E is a generalized tagged (S, n)-encoder.

2. Show that if G has finite anticipation (resp., has finite memory), then E has finite anticipation
(resp., is sliding-block decodable).

Problem 6.6 Let G be a labeled graph with finite anticipation, and let G′ be the induced labeled
graph described in Section 6.7.

1. Show that G′ is deterministic.

2. Show that S(G) = S(G′).

Chapter 7

Complexity of Encoders

7.1 Complexity criteria

There are various criteria that are used to measure the performance and complexity of
encoders, and their corresponding decoders. We list here the predominant factors that are
usually taken into account while designing rate p : q finite-state encoders.

The values of p and q. Typically, the rate p/q is chosen to be as close to cap(S) as pos-
sible, subject to having p and q small enough: The reason for the latter requirement
is minimizing the number of outgoing edges, 2p, from each state in the encoder and
keeping to a minimum the number of input–output connections of the encoder.

Number of states in an encoder. In both hardware and software implementation of en-
coders E , we will need ⌈log |VE |⌉ bits in order to represent the current state of E . This
motivates an encoder design with a relatively small number of states [Koh78, Ch. 9].

Gate complexity. In addition to representing the state of a finite-state encoder, we need,
in hardware implementation, to realize the next-state function and the output function
as a gate circuit. Hardware complexity is usually measured in terms of the number of
required gates (e.g., NAND gates), and this number also includes the implementation
of the memory bit cells that represent the encoder state (each memory bit cell can be
realized by a fixed number of gates).

The number of states in hardware implementation becomes more significant in applica-
tions where we run several encoders in parallel with a common circuit for the next-state
and output functions, but with duplicated hardware for representing the state of each
encoder.

Time and space complexity of a RAM program. When the finite-state encoder is to
be implemented as a computer program on a random-access machine (RAM) [AHU74,

186

CHAPTER 7. COMPLEXITY OF ENCODERS 187

Ch. 1], the complexity is usually measured by the space requirements and the running
time of the program.

Encoder anticipation. One way to implement a decoder for an encoder E with finite
anticipation A(E) is by accumulating the past A(E) symbols (in Σ(Sq)) that were
generated by E ; these symbols, with the current symbol, allow the decoder to simulate
the state transitions of E and, hence, to reconstruct the sequence of input tags (see
Section 4.1). The size of the required buffer thus depends on A(E).

Window length of sliding-block decodable encoders. A typical decoder of an (m, a)-
sliding-block decodable encoder consists of a buffer that accumulates the past m+a

symbols (in Σ(Sq)) that were generated by the encoder. A decoding function D :
(Σ(Sq))(m+a+1) → {0, 1, . . . , 2p−1} is then applied to the current symbol and to the
contents of the buffer to reconstruct an input tag in {0, 1}p (see Section 4.3). From
a complexity point-of-view, the window length, m+a+1, determines the size of the
required buffer.

In order to establish a general framework for comparing the complexity of encoders gen-
erated by different methods of encoder synthesis, we need to set some canonical presentation
of the constrained system S, in terms of which the complexity will be measured. We adopt
the Shannon cover of S as such a distinguished presentation.

7.2 Number of states in the encoder

In this section we present upper and lower bounds on the smallest number of states in any
(S, n)-encoder for a given constrained system S and integer n.

Let G be a deterministic presentation of S. As was described in Chapter 5, the state-
splitting algorithm [ACH83] starts with an (AG, n)-approximate eigenvector x = (xv)v∈VG

,
which guides the splitting of the states in G until we obtain an (S, n)-encoder with at most∑

v∈VG
xv = ‖x‖1 states. Hence, we have the following.

Theorem 7.1 Let S be a constrained system presented by a deterministic graph G and
let n be a positive integer. Assume that cap(S) ≥ log n. Then, there exists an (S, n)-encoder
E such that

|VE | ≤ min
x∈X (AG,n)

‖x‖1 .

On the other hand, the following lower bound on the number of states of any (S, n)-
encoder was obtained in [MR91].

CHAPTER 7. COMPLEXITY OF ENCODERS 188

Theorem 7.2 Let S be a constrained system presented by a deterministic graph G and
let n be a positive integer. Assume that cap(S) ≥ logn. Then, for any (S, n)-encoder E ,

|VE | ≥ min
x∈X (AG,n)

‖x‖∞ .

Proof: Let E be an (S, n)-encoder and let Σ = Σ(S). The following construction effectively
provides an (AG, n)-approximate eigenvector x which satisfies the inequality |VE | ≥ ‖x‖∞.

(a) Construct a deterministic graph H = H(E) which presents S ′ = S(E).
This can be done using the determinizing graph of Section 2.2.1.

(b) For an irreducible sink H ′ of H, define a vector ξ 6= 0 such that AH′ξ = nξ.

Let H ′ be an irreducible sink of H . Recall that each state Z ∈ VH′

(
⊆ VH

)
is a subset

TE(w, v) of states of E that can be reached in E from a given state v ∈ VE by paths that
generate a given word w. Let ξZ = |Z| denote the number of states of E in Z and let ξ be
the positive integer vector defined by ξ = (ξZ)Z∈VH′ . We now claim that

AH′ξ = nξ .

Consider a state Z ∈ VH′ . Since E has out-degree n, the number of edges in E outgoing from
the set of states Z ⊆ VE is n|Z|. Now, let Ea denote the set of edges in E labeled a that start
at the states of E in Z and let Za denote the set of terminal states, in E , of these edges. Note
that the sets Ea, for a ∈ Σ, induce a partition on the edges of E outgoing from Z. Clearly,
if Za 6= ∅, there is an edge Z

a→ Za in H and, since H ′ is an irreducible sink, this edge is
also contained in H ′. We now claim that any state u ∈ Za is accessible in E by exactly one
edge labeled a whose initial state is in Z; otherwise, if Z = TE(w, v), the word wa could be
generated in E by two distinct paths which start at v and terminate in u, contradicting the
losslessness of E . Hence, |Ea| = |Za| and, so, the entry of AH′ξ corresponding to the state Z
in H ′ satisfies

(AH′ξ)Z =
∑

Y ∈VH′

(AH′)Z,Y ξY =
∑

Y ∈VH′

(AH′)Z,Y |Y |

=
∑

a∈Σ
|Za| =

∑

a∈Σ
|Ea| = n|Z| = nξZ ,

as desired.

(c) Construct an (AG, n)-approximate eigenvector x = x(E) from ξ.

As G and H ′ comply with the conditions of Lemma 2.13, each follower set of a state in
H ′ is contained in a follower set of some state in G. Let x = (xu)u∈VG

be the nonnegative
integer vector defined by

xu = max { ξZ : Z ∈ VH′ and FH′(Z) ⊆ FG(u) } , u ∈ VG ,

CHAPTER 7. COMPLEXITY OF ENCODERS 189

and denote by Z(u) some particular state Z in H ′ for which the maximum is attained. In
case there is no state Z ∈ VH′ such that FH′(Z) ⊆ FG(u), define xu = 0 and Z(u) = ∅.
We claim that x is an (AG, n)-approximate eigenvector. First, since VH′ is nonempty, we
have x 6= 0. Now, let u be a state in G; if xu = 0 then, trivially, (AGx)u ≥ nxu and, so,
we can assume that xu 6= 0. Let Za(u) be the terminal state in H ′ for an edge labeled a

outgoing from Z(u). Since FH′

(
Z(u)

)
⊆ FG(u), there exists an edge labeled a in G from

u which terminates in some state ua in G; and, since G and H ′ are both deterministic, we
have FH′

(
Za(u)

)
⊆ FG(ua). Furthermore, by the way x was defined, we have xua

≥ ξZa(u)

and, so, letting ΣZ(u) denote the set of labels of edges in H ′ outgoing from Z(u), we have

(AGx)u ≥
∑

a∈ΣZ(u)

xua
≥

∑

a∈ΣZ(u)

ξZa(u) = (AH′ξ)Z(u) = nξZ(u) = nxu ,

where we have used the equality AH′ξ = nξ. Hence, AGx ≥ nx.

The theorem now follows from the fact that each entry in x is a size of a subset of states
of VE .

The bound of Theorem 7.2 can be effectively computed by the Franaszek algorithm which
was described in Section 5.2.2. The upper bound of Theorem 7.1 is at most |VG| times the
lower bound of Theorem 7.2, which amounts to an additive term of log |VG| in the number
of bits required to represent the current state of the encoder.

There are examples of sequences of labeled graphs G for which the lower bound of The-
orem 7.2 is exponential in the number of states of G [Ash88], [MR91]. We give here such an
example, which appears in [AMR95] and [MR91].

Example 7.1 Let r be a positive integer and let Σ denote the alphabet of size r2+r+1
given by {a} ∪ {bi}r

2+r−1
i=1 ∪ {c}. Consider the constrained systems Sk that are presented by

the graphs Gk of Figure 7.1 (from each state u ≤ k there are r2+r−1 parallel outgoing edges
labeled by the bi’s to state k+u). It is easy to verify that λ(AGk

) = λ = r+1 and that every
(AGk

, λ)-approximate eigenvector is a multiple of (λ λ2 . . . λk 1 λ . . . λk−1)⊤. Hence, by
Theorem 7.2, every (Sk, r+1)-encoder must have at least (r+1)k = exp{O(|VGk

|)} states.
On the other hand, note that the vector x = (xu)u, whose nonzero components are xk = r

and x2k = 1, is an (AGk
, r)-approximate eigenvector. Hence, if we can compromise on the

rate and construct (Sk, r)-encoders instead, then the state-splitting algorithm provides such
encoders with at most r+1 states.

The bound of Theorem 7.2 is based on the existence of an approximate eigenvector
x = x(E), where each of the entries in x is a size of a subset of VE . The improvements on
this bound, given in [MR91], are obtained by observing that some of these subsets might be
disjoint. One such improvement (with proof left to the reader) is as follows.

CHAPTER 7. COMPLEXITY OF ENCODERS 190

k+1 k+2 k+3 2k−1 2k

1 2 3 k−1 k

❄

{bi}

❄

{bi}

❄

{bi}

❄

{bi}

❄

{bi}

✲
c

✲
c ·· · ✲ ✲

c

✛ a ✛ a ✛ ·· · ✛ a

✇

c

✇

c ·· ·

✇ ✇

c

✲

a

✛

c

❄
c

Figure 7.1: Labeled graph Gk for Example 7.1.

Theorem 7.3 Let S be a constrained system presented by a deterministic graph G and
let n be a positive integer. Assume that cap(S) ≥ logn. Then, for any (S, n)-encoder E ,

|VE | ≥ min
x∈X (AG,n)

max
U

∑

u∈U
xu,

where the maximum is taken over all subsets U ⊆ VG such that FG(u)∩FG(u
′) = ∅ for every

distinct states u and u′ in U .

In fact, the preceding result can be generalized further to obtain the best general lower bound
known on the number of states in any (S, n)-encoder, as it is stated in [MR91]. In order to
state this result, we need the following definitions.

Let S be a constrained system presented by a deterministic graph G. For a state u ∈ VG
and a word w ∈ FG(u), let τG(w, u) be the terminal state of the path in G that starts at u
and generates w. (Using the notations of Section 2.2.1, we thus have TG(w, u) = {τG(w, u)}.)
For a word w 6∈ FG(u), define τG(w, u) = ∅.

Let n be a positive integer and x = (xu)u∈VG
be an (AG, n)-approximate eigenvector. For

a word w and a subset U ⊆ VG, let IG(x,w, U) denote a state u ∈ U such that xτG(w,u) is
maximal (for the case where τG(w, u) = ∅, we define x∅ = 0).

Let U be a subset of VG. A list C of words is U-complete in G, if every word in
⋃

u∈U FG(u)
either has a prefix in C or is a prefix of a word in C. Let CG(U) denote the set of all finite
U -complete lists in G. For example, the list Fm

G (U) of all words of length m that can be
generated in G from states of U , belongs to CG(U).

Finally, given an integer n, an (AG, n)-approximate eigenvector x, a subset U of VG, and

CHAPTER 7. COMPLEXITY OF ENCODERS 191

a list C of words, we define µG(x, n, U, C) by

µG(x, n, U, C) =
∑

u∈U
xu −

∑

w∈C
n−ℓ(w)

∑

u∈U−{IG(x,w,U)}
xτG(w,u)

(recall that ℓ(w) is the length of the word w).

Theorem 7.4 Let S be a constrained system presented by a deterministic graph G and
let n be a positive integer. Assume that cap(S) ≥ logn. Then, for any (S, n)-encoder E ,

|VE | ≥ min
y∈X (AG,n)

max
U⊆VG

sup
C∈CG(U)

µG(y, n, U, C) .

In particular, for all U ⊆ VG and m,

|VE | ≥ min
y∈X (AG,n)

µG(y, n, U,Fm
G (U)) .

Example 7.2 Figure 4.6 depicts a rate 2 : 3 four-state encoder for the (1, 7)-RLL con-
strained system. The example therein is due to Weathers and Wolf [WW91], whereas the
example of an encoder used in practice is due to Adler, Hassner, and Moussouris [AHM82]
and has five states (see also [How89]). Using Theorem 7.4, a lower bound of 4 on the number
of states of any such encoder is presented in [MR91]. Thus, the Weathers–Wolf encoder has
the smallest possible number of encoder states.

Example 7.3 Figure 4.4 depicts a rate 1 : 2 six-state encoder for the (2, 7)-RLL con-
strained system. This encoder is used in practice and is due to Franaszek [Fra72] (see
also [EH78], [How89]). On the other hand, the encoder shown in Figure 4.5, which is due
to Howell [How89], has only five states. Using Theorem 7.4, it can be shown that 5 is a
lower bound on the number of encoder states for this system; thus, the Howell encoder has
the smallest possible number of encoder states (note, however, that the anticipation of the
Howell encoder is larger than Franaszek’s).

7.3 Values of p and q

When cap(S) is a rational number p/q, we can attain the bound of Theorem 4.2 by a rate
p : q finite-state encoder for S: Taking a deterministic presentation G of S, we have in this
case an (Aq

G, 2
p)-approximate eigenvector which yields, by the state-splitting algorithm, an

(Sq, 2p)-encoder.

On the other hand, when cap(S) is not a rational number, we cannot attain the bound
of Theorem 4.2 by a rate p : q finite-state encoder for S. Still, we can approach the bound

CHAPTER 7. COMPLEXITY OF ENCODERS 192

cap(S) from below by a sequence of rate pm : qm finite-state encoders Em. In fact, as stated
in Theorem 4.3, we can approach capacity from below even by block encoders. It can be
shown that in this way we obtain a sequence of rate pm : qm block encoders Em for S such
that ∣∣∣∣∣

pm
qm
− cap(S)

∣∣∣∣∣ ≤
β

qm

for some constant β = β(G). However, the constant β might be very large (e.g., exponential)
in terms of the number of states of G. This means that qm might need to be extremely large
in order to have rates pm/qm close to capacity.

Obviously, for every sequence of rate pm : qm finite-state encoders Em for S, the number
of edges in Em is increasing exponentially with pm. The question is whether convergence of
pm/qm to cap(S) that is faster than O(1/qm) might force the number of states in Em to blow
up as well. The answer is given in the following result, which is proved in [MR91] using
Theorem 7.2.

Theorem 7.5 Let S be a constrained system with cap(S) = log λ.

(a) If λ = ks/t for some positive integers k, s, and t, then there exists an integer N
such that for any two positive integers p, q, where p/q ≤ log λ and t divides q, there is an
(Sq, 2p)-encoder with at most N states.

(b) If λ is not a rational power of an integer and, in addition,

lim
m→∞

(
pm
qm
− log λ

)
· qm = 0 ,

then for any sequence of (Sqm, 2pm)-encoders Em,

lim
m→∞ |VEm | =∞ .

Sketch of proof. Case (a): Let G be a deterministic presentation of S. Since λ = ks/t,
the matrix (AG)

t has an integer largest eigenvalue and an associated integer nonnegative right
eigenvector x. An (Stm, ksm)-encoder Em can therefore be obtained by the state-splitting
algorithm for every m, with number of states which is at most N = ‖x‖1. Write q = tm; we
have 2p ≤ ksm and, so, an (Sq, 2p)-encoder can be obtained by deleting excess edges from
Em.

Case (b): It can be shown that if the values pm/qm approach log λ faster than O(1/qm),
then the respective ((AG)

qm, 2pm)-approximate eigenvectors x (when scaled to have a fixed
norm) approach a right eigenvector which must contain an irrational entry. Therefore, the
largest components in such approximate eigenvectors tend to infinity. The result then follows
from Theorem 7.2.

CHAPTER 7. COMPLEXITY OF ENCODERS 193

If we choose pm and qm to be the continued fraction approximants of log λ, we get
∣∣∣∣∣
pm
qm
− log λ

∣∣∣∣∣ <
β

q2m

for some constant β. So, in case (b), the fastest approach to capacity necessarily forces the
number of states to grow without bound.

7.4 Encoder anticipation

7.4.1 Deciding upon existence of encoders with a given anticipa-
tion

We start with the following theorem, taken from [AMR96], which shows that checking
whether there is an (S, n)-encoder with anticipation t is a decidable problem. A special
case of this theorem, for t = 0, was alluded to in Section 4.4. Recall that F t

G(u) stands for
the set of words of length t that can be generated from a state u in a labeled graph G.

Theorem 7.6 Let S be an irreducible constrained system with a Shannon cover G, let n
and t be positive integers, and, for every state u in G, let N(u, t) = |F t

G(u)|. If there exists
an (S, n)-encoder with anticipation t, then there exists an (S, n) encoder with anticipation
≤ t and at most

∑
u∈VG

(2N(u,t) − 1) states.

By Lemma 2.9, we may assume that there is an irreducible (S, n)-encoder E with antici-
pation at most t. The proof of Theorem 7.6 is carried out by effectively constructing from E
an (S, n)-encoder E ′ with anticipation ≤ t and with a number of states which is at most the
bound stated in the theorem. We describe the construction of E ′ below, and the theorem
will follow from the next two lemmas.

For a state u ∈ VG and a nonempty subset F of F t
G(u), let Γ(u,F) denote the set of all

states v in E for which FE(v) ⊆ FG(u) and F t
E(v) = F . Whenever Γ(u,F) is nonempty we

designate a specific such state v ∈ Γ(u,F) and call it v(u,F). By Lemma 2.13, at least one
Γ(u,F) is nonempty.

We now define the labeled graph E ′ as follows. The states of E ′ are the pairs (u,F) such
that Γ(u,F) is nonempty. We draw an edge (u,F) a→ (û, F̂) in E ′ if and only if there is an
edge u

a→ û in G and an edge v(u,F) a→ v̂ in E for some v̂ ∈ Γ(û, F̂).

Lemma 7.7 For every ℓ ≤ t+1,

F ℓ
E ′

(
(u,F)

)
= F ℓ

E
(
v(u,F)

)
.

CHAPTER 7. COMPLEXITY OF ENCODERS 194

Proof. We prove that F ℓ
E ′

(
(u,F)

)
⊆ F ℓ

E
(
v(u,F)

)
by induction on ℓ. We leave the

reverse inclusion (which is not used here) to the reader.

The result is immediate for ℓ = 0. Assume now that the result is true for some fixed
ℓ ≤ t. Let w0w1 . . . wℓ ∈ F ℓ+1

E ′

(
(u,F)

)
, which implies that there is in E ′ a path of the

form (u,F) w0→ (u1,F1)
w1→ (u2,F2) → . . . → (uℓ,Fℓ)

wℓ→ (uℓ+1,Fℓ+1). By the inductive
hypothesis, there is a path v(u1,F1)

w1→ v2
w2→ v3 → . . . → vℓ

wℓ→ vℓ+1 in E . Therefore, the

word w = w1w2 . . . wℓ belongs to FE
(
v(u1,F1)

)
and, since ℓ ≤ t, we can extend w to form a

word ww′ of length t that belongs to F1. Now, by definition of the edges in E ′, there is an
edge v(u,F) w0→ v̂ in E for some v̂ ∈ Γ(u1,F1). Since ww′ ∈ F1, there is a path labeled w
outgoing from v̂ in E and, so, there is a path labeled w0w1 . . . wℓ outgoing from v(u,F) in E .
Hence, F ℓ+1

E ′

(
(u,F)

)
⊆ F ℓ+1

E
(
v(u,F)

)
, as desired.

The next lemma shows that E ′ is an (S, n)-encoder with anticipation ≤ t.

Lemma 7.8 The following three conditions hold:

(a) The out-degree of each state in E ′ is n;
(b) S(E ′) ⊆ S; and —

(c) E ′ has anticipation ≤ t.

Proof. Part (a): It suffices to show that there is a one-to-one correspondence between
the outgoing edges of (u,F) in E ′ and those of v(u,F) in E . Consider the mapping Φ from
outgoing edges of (u,F) to outgoing edges of v(u,F) defined by

Φ
(
(u,F) a→ (û, F̂)

)
=
(
v(u,F) a→ v̂

)

where v̂ ∈ Γ(û, F̂). To see that Φ is well-defined, observe that since E has anticipation at
most t, there cannot be two distinct edges v(u,F) a→ v̂ and v(u,F) a→ v̂′ with v̂ and v̂′

both belonging to the same Γ(û, F̂). To see that Φ is onto, first consider an outgoing edge
v(u,F) a→ v̂ from v(u,F), and note that since F ⊆ FG(u), there is in G an outgoing edge
u

a→ û for some û. Let F̂ = F t
E(v̂). We claim that v̂ ∈ Γ(û, F̂). Of course F t

E(v̂) = F̂ ; and
since FE(v(u,F)) ⊆ FG(u) and G is deterministic, FE(v̂) ⊆ FG(û). Thus, by definition of E ′
there is an edge (u,F) a→ (û, F̂). We thus conclude that Φ is onto. Since u and a determine
û and since v̂ determines F̂ , it follows that Φ is 1–1. This completes the proof of (a).

Part (b): By definition of E ′, we see that whenever there is a path (u0,F) w0→ (u1,F) w1→
(u2,F)→ . . .→ (uℓ−1,F)

wℓ−1→ (uℓ,F) in E ′, there is also a path u0
w0→ u1

w1→ . . .→ uℓ−1
wℓ−1→

uℓ in G. Thus S(E ′) ⊆ S(G) = S, as desired.

Part (c): We must show that the initial edge of any path γ of length t+1 in E ′ is
determined by its label w0w1 . . . wt and its initial state (u,F). Write the initial edge of γ as:

CHAPTER 7. COMPLEXITY OF ENCODERS 195

(u,F) w0→ (û, F̂). By Lemma 7.7, there is a path in E with label w0w1 . . . wt that begins at
state v(u,F). Since E has anticipation at most t, the label sequence w0w1 . . . wt and v(u,F)
determine the initial edge v(u,F) w0→ v̂ of this path. So, it suffices to show that u, w0, and v̂
determine û and F̂ ; for then (u,F) and w0w1 . . . wt will determine the initial edge of γ.

Indeed, by definition of E ′, there must be an edge u
w0→ û in G such that v̂ ∈ Γ(û, F̂).

Since G is deterministic, u and w0 determine û. Furthermore, for any fixed û, the sets Γ(û,G)
are disjoint for distinct G, and, so, v̂ determines F̂ . It follows that u, w0, and v̂ determine
û and F̂ , as desired, thus proving (c).

Now, for every state u ∈ VG, the number of distinct nonempty subsets Γ(u,F) is bounded
from above by 2N(u,t)−1. This yields the desired upper bound of Theorem 7.6 on the number
of states of E ′.

It follows by Theorem 7.6 that in order to verify whether there exists an (S, n)-encoder
with anticipation t, we can exhaustively check all irreducible graphs E with labeling over
Σ(S), with out-degree n, and with number of states |VE | which is at most the bound of
Theorem 7.6. Checking that such a labeled graph E is an (S, n)-encoder can be done by the
following finite procedure: Construct the determinizing graph H of E as in Section 2.2.1.
Since E is irreducible, the states of any irreducible sink H ′ of H , as subsets of VE , must
contain all the states of E . Hence, we must have S(E) = S(H ′). Then, we verify that
S(G ∗H ′) = S(H ′); to this end, it suffices, by Lemma 2.9, to check that S(H ′) is presented
by an irreducible (deterministic) component G′ of G ∗H ′. The equality S(H ′) = S(G′), in
turn, can be checked by Theorem 2.12, using the Moore algorithm of Section 2.6.2.

Finally, testing whether E has anticipation ≤ t can be done by the efficient algorithm
described in Section 2.7.2.

By the Moore co-form construction of Section 2.2.7, the existence of such an encoder
implies the existence of an (S, n)-encoder with anticipation exactly t.

7.4.2 Upper bounds on the anticipation

Continuing the discussion of Section 7.4.1, we now obtain more tractable upper and lower
bounds on the smallest attainable anticipation of (S, n)-encoders in terms of n and a deter-
ministic presentation of the constrained system S.

LetG be a deterministic presentation of S. The anticipation of an encoder obtained by the
state-splitting algorithm [ACH83] is bounded from above by the number of splitting rounds.
This, in turn, yields the following result, which is, so far, the best general upper bound
known for the anticipation obtained by direct application of the state-splitting algorithm.

Theorem 7.9 Let S be a constrained system presented by a deterministic graph G and
let n be a positive integer. Assume that cap(S) ≥ log n. Then, there exists an (S, n)-encoder

CHAPTER 7. COMPLEXITY OF ENCODERS 196

E , obtained by the state-splitting algorithm, such that,

A(E) ≤ min
x∈X (AG,n)

{
‖x‖1 − w(x)

}
,

where w(x) is the number of nonzero components in x. Furthermore, if G has finite memory,
then E is (M(G),A(E))-definite.

This bound is quite poor, since it may be exponential in |VG|, as is, indeed, the case for
the constrained systems of Example 7.1. On the other hand, if G has finite memory, then
the encoder E obtained by the state-splitting algorithm is guaranteed to be definite.

Now, suppose that Gt can be split fully in one round; that is, the splitting yields a labeled
graph E1 with out-degree ≥ nt at each state. By deleting excess edges, E1 can be made an
(St, nt)-encoder E2 with anticipation 1 over Σ(St). Let E3 be the Moore co-form of E2 as
in Section 2.2.7. Then E3 is an (St, nt)-encoder with anticipation 2. If we replace the nt

outgoing edges from each state in E3 by an n-ary tree of depth t, we obtain an (S, n)-encoder
E4 with anticipation ≤ 3t−1. Therefore, we have the following.

Theorem 7.10 Let S be a constrained system presented by a deterministic graph G and
let n and t be positive integers. Suppose that Gt can be split in one round, yielding a labeled
graph with minimum out-degree at least nt. Then, there is an (S, n)-encoder with anticipation
≤ 3t−1.

In [Ash87b] and [Ash88], Ashley shows that for t = O(|VG|), Gt can be split in one round,
yielding a labeled graph with minimum out-degree at least nt; moreover, the splitting can
be chosen to be x-consistent with respect to any (AG, n)-approximate eigenvector x. This
provides encoders with anticipation which is at most linear in |VG|. The following theorem
is a statement of Ashley’s result.

Theorem 7.11 Let S be a constrained system presented by a deterministic graph G and
let n be a positive integer. Assume that cap(S) ≥ log n. Then, there exists an (S, n)-encoder
E such that,

(a) when n = λ(AG),

A(E) ≤ 9|VG|+ 6⌈logn |VG|⌉ − 1 ;

(b) when n < λ(AG),

A(E) ≤ 15|VG|+ 3⌈logn |VG|⌉ − 1 .

CHAPTER 7. COMPLEXITY OF ENCODERS 197

Note, however, that the encoders obtained by splitting the tth power of G are typically
not sliding-block decodable when t > 1, even when G has finite memory.

A further improvement on the upper bound of the smallest attainable anticipation is
presented in [AMR95], using the stethering method which, in turn, is based on an earlier
result by Adler, Goodwyn, and Weiss [AGW77] (see Chapter 6). The following result applies
to the case where n ≤ λ(AG)− 1.

Theorem 7.12 Let S be a constrained system presented by a deterministic graph G and
let n be a positive integer ≤ λ(AG)− 1. Then, there is an (S, n)-encoder E , obtained by the
(punctured) stethering method, such that

A(E) ≤ 1 + min
x∈X (AG,n+1)

{
⌈logn+1 ‖x‖∞⌉

}
.

Furthermore, if G has finite memory, then E is (M(G),A(E))-definite, and hence any tagged
(S, n)-encoder based on E is (M(G),A(E))-sliding-block decodable.

In particular, when n ≤ λ(AG)− 1, there always exists an (AG, n+1)-approximate eigen-
vector x such that ‖x‖∞ ≤ (n+1)2|VG| [Ash87a], [Ash88]. Hence, we have the following.

Corollary 7.13 Let S be a constrained system presented by a deterministic graph G and
let n be a positive integer ≤ λ(AG)− 1. Then, there is an (S, n)-encoder E , obtained by the
(punctured) stethering method, such that

A(E) ≤ 2|VG|+ 1 .

Furthermore, if G has finite memory, then E is (M(G), 2|VG|+1)-definite, and hence any
tagged (S, n)-encoder based on E is (M(G), 2|VG|+1)-sliding block decodable.

In terms of rate p : q finite-state encoders, the requirement n ≤ λ(AG)− 1 is implied by

p

q
≤ cap(S)− 1

2pq loge 2
;

namely, we need a margin between the rate and capacity which decreases exponentially with
p.

Applying the stethering method on a power of G, the following result is obtained
in [AMR95].

Theorem 7.14 Let S be a constrained system presented by a deterministic graph G and
let n be a positive integer smaller than λ(AG). Then, there is an (S, n)-encoder E such that

A(E) ≤ 12|VG| − 1 .

Theorem 7.14 improves on Theorem 7.11, but it does not cover the case n = λ(AG).
Also, the encoders guaranteed by Theorem 7.14 are typically not sliding-block decodable.

CHAPTER 7. COMPLEXITY OF ENCODERS 198

7.4.3 Lower bounds on the anticipation

The next theorem, taken from [MR91], provides a lower bound on the anticipation of any
(S, n)-encoder. A special case of this bound appears in [Fra89].

Theorem 7.15 Let S be a constrained system presented by a deterministic graph G and
let n be a positive integer. Assume that cap(S) ≥ logn. Then, for any (S, n)-encoder E ,

A(E) ≥ min
x∈X (AG,n)

{
logn ‖x‖∞

}
.

Proof. The theorem trivially holds if A(E) =∞, so we assume that E has finite antici-
pation A. Let x = x(E) = (xu)u∈VG

be as in the proof of Theorem 7.2. We recall that by the
way x was constructed, each nonzero component of x is a size of some subset Z = TE(w, v)
of states in E which are accessible from v ∈ VE by paths labeled w.

Let TE(w, v) be such a subset whose size equals the largest component of x and let
ℓ = ℓ(w) (i.e., the length of w). Since the out-degree of E is n, we have nℓ paths of length ℓ
starting at v in E and, so,

nℓ ≥ |TE(w, v)| = max
u∈VG

xu ,

implying
ℓ ≥ min

(yu)u∈X (AG,n)

{
logn (maxu∈VG

yu)
}
.

Therefore, when A ≥ ℓ, we are done.

Assume now that ℓ > A. Since E has finite anticipation A, the first ℓ−A edges of any
path in E labeled w are uniquely determined, once we know the initial state v. It thus follows
that the paths from v to TE(w, v) labeled w may differ only in their last A edges. Hence,
we can have at most nA such paths. Recalling that the number of such paths is |TE(w, v)|,
we have

nA ≥ |TE(w, v)| = max
u∈VG

xu ≥ min
(yu)u∈X (AG,n)

max
u∈VG

yu ,

as claimed.

There is some resemblance between the lower bound of Theorem 7.15 and the upper
bound of Theorem 7.12. And, indeed, there are many cases where the difference between
these bounds is at most 1. Note, however, that for the constrained systems Sk = S(Gk) of
Example 7.1, we obtain, by Theorem 7.12, an upper bound of 1 + 1

2
|VGk
| on the smallest

anticipation of any (Sk, r)-encoder, where the lower bound of Theorem 7.15 equals 2. In
fact, this lower bound is tight [AMR95].

The following bound, proved in [AMR96] is, in a way, a converse of Theorem 7.10.

CHAPTER 7. COMPLEXITY OF ENCODERS 199

Theorem 7.16 Let S be an irreducible constrained system presented by an irreducible
deterministic graph G and let n and t be positive integers. If there is an (S, n)-encoder with
anticipation t, then Gt can be split in one round, yielding a graph with minimum out-degree
at least nt.

Proof. Let E be an (S, n)-encoder with anticipation t, let Σ = Σ(S), and let H be the
determinizing graph constructed from E as in Section 2.2.1. Recall that each state Z ∈ VH is
a subset TE(w, v) of states of E that can be reached in E from a given state v ∈ VE by paths
that generate a given word w. Let H ′ be an irreducible sink of H and let x = (xu)u∈VG

be
the nonnegative integer vector defined in the proof of Theorem 7.2:

xu = max { |Z| : Z ∈ VH′ and FH′(Z) ⊆ FG(u) } , u ∈ VG ;

in case there is no state Z ∈ VH′ such that FH′(Z) ⊆ FG(u), define xu = 0. Then, as in the
proof of Theorem 7.2, x is an (AG, n)-approximate eigenvector.

Let Z = TE(w, v) be a state in H ′ and suppose that Z contains two distinct states, z
and z′, of E . First, we claim that there is no word w′ of length t that can be generated in E
from both z and z′. Otherwise, we would have in E two paths of length ℓ(w) + t, starting
at the same state v, with the same labeling ww′, that do not agree in at least one of their
first ℓ(w) edges. This, however, contradicts the fact that E has anticipation t.

For w′ ∈ F t
H′(Z), denote by Zw′ the terminal state in H ′ of a path labeled w′ starting

at Z. As we have just shown, a word w′ ∈ F t
H′(Z) can be generated in E from exactly one

state z ∈ Z. Therefore, the sets F t
E(z), z ∈ Z, form a partition of F t

H′(Z). Furthermore, by
the losslessness of E , the number of paths in E that start at z ∈ Z and generate w′ ∈ F t

E(u)
equals |TE(w′, z)| = |Zw′|. Since E is an (S, n)-encoder, we conclude:

∑

w′∈Ft
E (z)

|Zw′| = nt for every z ∈ Z . (7.1)

For each state u ∈ VG such that xu 6= 0, select some Z = Z(u) ∈ VH′ such that |Z| = xu
and FH′(Z) ⊆ FG(u). Now, the partition {F t

E(z) : z ∈ Z} of F t
H′(Z) may be regarded as a

partition of F t
G(u) by appending the complement F t

G(u)\F t
H′(Z) to one of the atoms F t

E(z),
z ∈ Z. Since Gt is deterministic, this defines a partition PGt(u) = {EGt(u, z)}z∈Z(u) of the
outgoing edges from u in Gt into |Z(u)| = xu atoms. For w′ ∈ FE(z), let u′ denote the
terminal state of the edge in Gt that begins at u and is labeled w′. Now, if w′′ ∈ FH′(Zw′),
then w′w′′ ∈ FH′(Z) ⊆ FG(u). Since G is deterministic, this implies that w′′ ∈ FG(u

′).
Thus FH′(Zw′) ⊆ FG(u

′) and, so, |Zw′| ≤ xu′ . This, together with Equation (7.1), shows
that the splitting of Gt defined by the partition PGt(u) satisfies the following inequality:

∑

e∈EGt (u,z)

xτ(e) ≥ nt for every u ∈ VG and z ∈ Z(u) .

Hence, the split graph has minimum out-degree at least nt.

CHAPTER 7. COMPLEXITY OF ENCODERS 200

Theorem 7.16 may be regarded as a lower bound on the anticipation of an encoder. This
result, together with Theorem 7.10, shows that by one round of splitting of some power of G,
one can obtain an encoder whose anticipation is within a constant factor from the smallest
anticipation possible.

There are examples which show that neither of the lower bounds in Theorems 7.15, 7.16
implies the other. On the other hand, when cap(S) = log n, we claim that for irreducible
constrained systems the lower bound of Theorem 7.16 implies that of Theorem 7.15. Indeed,
let t denote the bound of Theorem 7.16. Then for each state u ∈ VG there is a partition
{EGt(u, i)}xu

i=1 of the outgoing edges from u in Gt such that the vector x = (xu)u is a positive
(AG, n)-approximate eigenvector and

∑

e∈EGt (u,i)

xt(e) ≥ nt for each (u, i) . (7.2)

We now claim that (7.2) holds in our case with equality for every (u, i). Otherwise, the
corresponding splitting would yield an irreducible, lossless presentation of St with minimum
out-degree at least nt and at least one state with out-degree greater than nt—contradicting
the equality cap(S) = log n.

Let umax be a state in G for which xumax = ‖x‖∞. Also, let v be a state with an outgoing
edge, in Gt, to umax. Then any edge e from v to umax in Gt belongs to some EGt(v, i) and so
the equality

∑
e∈EGt (v,i) xt(e) = nt implies

xumax ≤ nt

—i.e., t ≥ logn ‖x‖∞ ≥ miny∈X (AG,n)

{
logn ‖y‖∞

}
.

We end this section by mentioning without proof the improvements on Theorems 7.15
and 7.16 that have been obtained in [Ru96] and [RuR01].

Recall that Theorem 5.10 in Section 5.6.2 provides a necessary and sufficient condition for
having (S, n)-encoders with anticipation t Such a characterization also implies a lower bound
on the anticipation of (S, n)-encoders: given S and n, the anticipation any (S, n)-encoder is
at least the smallest nonnegative integer t for which there exists a presentation G of S and
an (AG, n)-approximate eigenvector x that satisfy conditions (a)–(e) of Theorem 5.10.

The following is another result obtained in [Ru96] and [RuR01].

Theorem 7.17 Let S be an irreducible constraint, let n be a positive integer where
cap(S) ≥ logn, and let G be any irreducible deterministic presentation of S. Suppose there
exists some irreducible (S, n)-encoder with anticipation t <∞. Then there exists an (AG, n)-
approximate eigenvector x such that the following holds:

(a) ‖x‖∞ ≤ nt.

CHAPTER 7. COMPLEXITY OF ENCODERS 201

(b) For every k = 1, 2, . . . , t, the states of Gk can be split in one round consistently with
the (Ak

G, n
k)-approximate eigenvector x, such that the induced approximate eigenvector x′

satisfies ‖x′‖∞ ≤ nt−k, and each of the states in Gk is split into no more than nk states.

While Theorem 5.10 gives a necessary and sufficient condition on the existence of (S, n)-
encoders with a given anticipation t, Theorem 7.17 gives only a necessary condition on the
existence of such encoders. On the other hand, Theorem 7.17 allows to obtain a lower
bound on the anticipation using any irreducible deterministic presentation of S—in partic-
ular the Shannon cover of S. Therefore, it will typically be easier to compute bounds using
Theorem 7.17.

Note that Theorem 7.15 is equivalent to Theorem 7.17(a), while Theorem 7.16 is equiv-
alent to Theorem 7.17(b) for the special case k = t. Examples in [RuR01] show that Theo-
rem 7.17 (and hence Theorem 5.10) yields stronger bounds than these two former results.

The results in [RuR01] also imply tight lower bounds in certain practical cases. For
example, it is shown therein that any rate 2 : 3 finite-state encoder for the (1, 7)-RLL
constraint must have anticipation at least 2, and the Weathers-Wolf encoder in 4.6 does
attain this bound (and so does the encoder of Adler Coppersmith, and Hassner in [ACH83]).
Similarly, any rate 1 : 2 encoder for the (2, 7)-RLL constraint must have anticipation at least
3, and this bound is attained by the Franaszek encoder in Figure 4.4. A lower bound of 3
applies also to the anticipation of any rate 2 : 5 encoder for the (2, 18, 2)-RLL constraint
(see Figure 1.12); this bound is tight due to the constructions by Weigandt [Weig88] and
Hollmann [Holl95].

7.5 Sliding-block decodability

The following is the analog of Theorem 7.6 for sliding-block decodable encoders. The special
case of block decodable encoders was treated in Section 4.4.

Theorem 7.18 Let S be an irreducible constrained system with a Shannon cover G, and
let n be a positive integer and m and a be nonnegative integers. For every state u in G, let
N(u, a) = |F a

G(u)| and let P (u,m) be the number of words of length m that can be generated
in G by paths that terminate in state u. If there exists an (m, a)-sliding-block decodable
(S, n)-encoder, then there exists such an encoder with at most

∑
u∈VG

P (u,m)(2N(u,a) − 1)
states.

Proof. The proof is similar to that of Theorem 7.6. In fact, that proof applies almost
verbatim to the case of (0, a)-sliding-block decodable encoders, so we assume here that m is
strictly positive. Let E be an irreducible (m, a)-sliding-block decodable (S, n)-encoder. Also,

CHAPTER 7. COMPLEXITY OF ENCODERS 202

let H ′ be an irreducible sink of the determinizing graph of E obtained by the construction
of Section 2.2.1. By construction of H ′, for every path from state v to state v̂ in E that
generates a word w, there is a path in H ′ that generates w, starting at a state Z and
terminating in a state Ẑ, such that v ∈ Z and v̂ ∈ Ẑ. Hence, by Lemma 2.13, there also
exists a path in G that generates w, starting at a state u and terminating in a state û, such
that FE(v) ⊆ FG(u) and FE(v̂) ⊆ FG(û). It thus follows that for every state v̂ in E and a
word w that can be generated in E by a path terminating in v̂, there is a path in G that
generates w whose terminal state, û, satisfies FE(v̂) ⊆ FG(û).

For a state u ∈ VG, a wordw of length m that can be generated inG by a path terminating
in u, and a nonempty subset F ⊆ F a

G(u), we define Γ(u,w,F) to be the set of all states v
in E which are terminal states of paths in E that generate w and such that FE(v) ⊆ FG(u)
and F a

E(v) = F . Note that each state of E is contained in some set Γ(u,w,F) and, so, at
least one such set is nonempty.

A tagged (S, n)-encoder E ′ is now defined as follows. In each nonempty set Γ(u,w,F),
we designate a state of E and call it v(u,w,F). The states of E ′ are triples (u,w,F) for
which Γ(u,w,F) is nonempty.

Let u and û be states in G and let w = w1w2 . . . wm and ŵ = ŵ1ŵ2 . . . ŵm be two words
that can be generated by paths in G that terminate in u and û, respectively. If Γ(u,w,F)
and Γ(û, ŵ, F̂) are nonempty, then we draw a tagged edge (u,w,F) s/b→ (û, ŵ, F̂) in E ′ if and
only if the following four conditions hold:

(a) ŵj = wj+1 for j = 1, 2, . . . ,m−1;
(b) b = ŵm;

(c) there is a tagged edge v(u,w,F) s/b→ v̂ in E for some v̂ ∈ Γ(û, ŵ, F̂);

(d) there is an edge u
b→ û in G.

By the proof of Theorem 7.6, it follows that E ′ is, indeed, an (S, n)-encoder and that

F a+1
E ′

(
(u,w,F)

)
= F a+1

E
(
v(u,w,F)

)
. Furthermore, it can be shown by induction that, for

every ℓ ≤ m, the paths of length ℓ in E ′ that terminate in (u, w1w2 . . . wm,F), all have the
same labeling wm−ℓ+1wm−ℓ+2 . . . wm. Since the ‘outgoing picture’—including tagging—from
state (u,w,F) in E ′ is the same as that from state v(u,w,F) in E , it follows that E ′ is
(m, a)-sliding-block decodable.

The upper bound on |VE ′| is now obtained by counting the number of distinct states
(u,w,F).

The upper bound on the number of states in Theorem 7.18 is doubly-exponential in the
decoding look-ahead a. In [AM95], a stronger result is obtained where the upper bound on
the number of states is singly-exponential. It is still open whether such an improvement is

CHAPTER 7. COMPLEXITY OF ENCODERS 203

possible also for the doubly-exponential bound of Theorem 7.6.

The following bound is easily verified.

Proposition 7.19 Let E be an irreducible (m, a)-sliding-block decodable encoder. Then,
a ≥ A(E).

Hence, we can apply the lower bounds on the anticipation which were presented in Sec-
tion 7.4.3, to obtain lower bounds on the attainable look-ahead of sliding-block decodable
encoders (but these do not give lower bounds on the decoding window length, m + a + 1,
since m may be negative). On the other hand, Theorems 7.9 and 7.12 and Corollary 7.13
provide upper bounds on the look-ahead of encoders obtained by constructions that yield
sliding-block decodable encoders for finite-type constrained systems.

We remark that Theorem 7.18 implies upper bounds on the the size of encoders which
are sliding-block decodable also when m is negative: simply apply the theorem with m = 0.

And finally we note that, at least for finite-type constrained systems, Hollmann [Holl96]
has given a procedure for deciding if there exists a sliding block decodable (S, n)-encoder
with a given window length; here, the window length L = m + a + 1, rather than m and a,
is specified. Even for L = 1, this is a non-trivial problem, because one must consider the
possibility that a = −m may be arbitrarily large.

7.6 Gate complexity and time–space complexity

In this section, we discuss the gate complexity and time-space complexity of some of the
encoding schemes that were mentioned in the previous sections. We start with the time-
space complexity criterion, assuming that the encoders are to be implemented as a program
on a random-access machine (RAM) [AHU74, Ch. 1]. The results on gate complexity will
then follow by known results in complexity theory.

We define an encoding scheme as a function (G, q, n) 7→ E(G, q, n), that maps a determin-
istic graph G and integers q and n into an (S(Gq), n)-encoder E(G, q, n). The state-splitting
algorithm of [ACH83], the method described by Ashley in [Ash88], and the stethering method
of [AMR95] are examples of encoding schemes.

For a given encoding scheme (G, q, n) 7→ E(G, q, n), we can formalize the encoding problem
as follows: We are to write an encoding program P on a RAM; an input instance to P consists
of the following entries:

• a deterministic graph G over an alphabet Σ,

• an integer q,

CHAPTER 7. COMPLEXITY OF ENCODERS 204

• an integer n ≤ λ(Aq
G),

• a state u of E(G, q, n),

• an input tag s ∈ {0, 1, . . . , n−1}.

For any input instance, the program P computes an output q-block over Σ and the next
state of the tagged (S(Gq), n)-encoder E(G, q, n), given we are at state u in E(G, q, n) and
the current input tag is s. Note that in order to perform its function, the program P does
not necessarily have to generate the whole graph presentation of E(G, q, n).

We denote by Poly(·) a fixed arbitrary multinomial, whose coefficients are absolute con-
stants, independent of its arguments.

The following was proved in [AMR95] for the stethering coding scheme and for a variation
of Ashley’s construction [Ash88].

Theorem 7.20 There exists an encoding scheme (G, q, n) 7→ E(G, q, n) (such as the one
presented in [Ash88] or [AMR95]), for which there is an encoding program P on a RAM that

solves the encoding problem in time complexity which is at most Poly
(
|VG|, q, log |Σ|

)
.

In particular, if we now fix G, q, and n, we obtain an encoding program that simulates
E(G, q, n) with a polynomial time and space complexity.

Theorem 7.20 applies to the constructions covered in Theorems 7.11, 7.12, and 7.14. In
contrast, it is not known yet whether a polynomial encoder can be obtained by a direct
application of the state-splitting algorithm.

For a positive integer ℓ, denote by Iℓ the set of all possible inputs to P of size ℓ, according
to some standard representation of the input. Now, if the time complexity of P on each
element of Iℓ is polynomial in ℓ, then for any input size ℓ, there exists a circuit Cℓ with
Poly(ℓ) = Poly

(
|VG|, q, log |Σ|

)
gates that implements P for inputs in Iℓ. Furthermore, such

circuits Cℓ are ‘uniform’ in the sense that there is a program on a RAM that generates the
layouts of Cℓ in time complexity which is Poly(ℓ). This is a consequence of a known result
on the equivalence between polynomial circuit complexity and polynomial RAM complexity
of decision problems [ST93, Theorem 2.3].

By Theorem 7.20, it thus follows that we can have such a polynomial circuit at hand
for both Ashley’s construction and the stethering construction. We summarize this in the
following theorem.

Theorem 7.21 For every constrained system S over an alphabet Σ, presented by a de-
terministic graph G, and for any positive integers q and n ≤ λ(Aq

G), there exists an (Sq, n)-

encoder that can be implemented by a circuit consisting of Poly
(
|VG|, q, log |Σ|

)
gates and

CHAPTER 7. COMPLEXITY OF ENCODERS 205

O(|VG| logn) memory bit-cells. Furthermore, there exists a program on a RAM that generates
the layout of such an implementation in polynomial-time.

Theorems 7.20 and 7.21 apply also to the decoding complexity of the corresponding
encoders.

Problems

Problem 7.1 Prove Theorem 7.3 by modifying the end of the proof of Theorem 7.2.

Problem 7.2 Verify the assertion of Example 7.2.

Problem 7.3 Verify the assertion of Example 7.3.

Problem 7.4 Let S be the constrained system presented by the graph G in Figure 2.24. Is there
a positive integer ℓ for which there exists a deterministic (S2ℓ, 2ℓ)-encoder? If yes, construct such
an encoder; otherwise, explain.

Problem 7.5 Let S be the constrained system presented by the graph G in Figure 7.2.

B D

A C

❄

a

❄
b

❲c ✲
d

❄
a

✻
a

✻
d

✛ a

✗b ✻
c

Figure 7.2: Graph G for Problem 7.5.

1. Compute the capacity of S.

2. Compute an (AG, 2)-approximate eigenvector in which the largest entry is the smallest pos-
sible.

3. For every positive integer ℓ, determine the smallest anticipation of any (Sℓ, 2ℓ)-encoder.

CHAPTER 7. COMPLEXITY OF ENCODERS 206

Problem 7.6 Let S be the constrained system presented by the graph G in Figure 5.27.

1. Find the smallest anticipation possible of any (S, 2)-encoder.

2. Find the smallest number of states of any (S2, 4)-encoder.

Chapter 8

Error Correction and Concatenation

The preceding chapters have addressed properties of constrained systems and construction
of encoders which encode user data sequences into constrained sequences. In practice, these
constrained codes, as applied in data recording systems, may be viewed as part of the
modulation/demodulation process of input/output signals of the system. Most systems
require the use of some form of error-correction coding (ECC) in addition to constrained
coding of the input signal or symbol sequence. It is therefore natural to investigate the
interplay between these two forms of coding and the possibilities for efficiently combining
their functions into a single coding operation, in analogy to the coded-modulation techniques
now in wide use in data transmission.

In this chapter, we give, in the first four sections, a very brief introduction to error-
correcting linear block codes (the rough idea of error-correction coding was discussed briefly
in Section 1.3). This includes description of the basic properties of linear block codes, finite
fields, and culminates with a discussion of the celebrated Reed-Solomon codes.

In Section 8.5, we consider three schemes for concatenating ECC codes and constrained
codes. The third scheme involves a data compression idea. This idea is formalized in
Section 8.6, and the performance in this context of some specific compression codes is given
in Section 8.7. Then, in Section 8.8, we show how a dual version of state-splitting ideas from
Chapter 5 can be used to give a general construction of compression codes that are useful in
this context.

In Chapter 9, we will consider codes which have combined error-correction and con-
strained coding properties—in particular codes that are designed to handle error mechanisms
that arise in magnetic recording.

207

CHAPTER 8. ERROR CORRECTION AND CONCATENATION 208

8.1 Error-Correction Coding

An (n,M) (block) code over a finite alphabet F is a nonempty subset C of size M of F n.
The elements of the alphabet are referred to as symbols. The parameter n is called the code
length and M is the code size. The dimension (or information length) of C is defined by
k = log|F |M , and the rate of C is R = k/n. The elements of a code are called codewords.

In addition to the parameters, code length and code size, there is a third parameter,
called the minimum distance, which gives a rough sense of the robustness of the code to
channel noise. For this we need to define the following notion of distance.

The Hamming distance between two words x,y ∈ F n is the number of coordinates in
which x and y differ. We denote the Hamming distance by ∆(x,y).

It is easy to verify that Hamming distance satisfies the following properties of a metric
for every three words x,y, z ∈ F n:

• ∆(x,y) ≥ 0, with equality if and only if x = y.

• Symmetry: ∆(x,y) = ∆(y,x).

• The triangle inequality: ∆(x,y) ≤ ∆(x, z) + ∆(z,y).

Let C be an (n,M) code over F withM > 1. The minimum distance of C is the minimum
Hamming distance between any two distinct codewords of C. That is, the minimum distance
d is given by

d = min
c1,c2∈C : c1 6=c2

∆(c1, c2) .

An (n,M) code with minimum distance d is called an (n,M, d) code.

Example 8.1 The binary (3, 2, 3) repetition code is the code {000, 111} over F = {0, 1}.
The dimension of the code is log2 2 = 1 and its rate is 1/3.

Example 8.2 The binary (3, 4, 2) parity code is the code {000, 011, 101, 110} over F =
{0, 1}. The dimension is log2 4 = 2 and the code rate is 2/3.

Given an (n,M, d) code C over F , let c ∈ C be a codeword transmitted over a noisy
channel, and let y ∈ F n be the received word. By an error we mean the event of changing
an entry in the codeword c. The number of errors equals ∆(y, c), and the error locations are
the indices of the entries in which c and y differ. The task of error correction is to recover
the error locations and the error values.

The following result shows that for any code with minimum distance d, there is a proce-
dure that can correct up to ⌊(d−1)/2⌋ many errors.

CHAPTER 8. ERROR CORRECTION AND CONCATENATION 209

Proposition 8.1 Let C be a block code over F with code length n and minimum distance
d. For a received word y, let D(y) denote the codeword in C that is closest (with respect to
Hamming distance) to y. If codeword c is transmitted, y is received, and ∆(y, c) ≤ (d−1)/2
then D(y) = c.

Proof. Suppose to the contrary that c′ = D(y) 6= c. By definition,

∆(y, c′) ≤ ∆(y, c) ≤ (d−1)/2 .

So, by the triangle inequality,

d ≤ ∆(c, c′) ≤ ∆(y, c) + ∆(y, c′) ≤ d−1 ,

which is a contradiction.

8.2 Linear Codes

Most of the theory of ECC has focused on linear codes. Such a code is defined as a finite-
dimensional vector space over a finite field. We assume that the reader is familiar, from a
course in elementary linear algebra, with the notion of a vector space or linear space. But
since such a course does not necessarily treat finite fields, we give a brief introduction to
finite fields in Section 8.3; in particular, we give in Section 8.3 a construction of the finite
field GF(q). For a more thorough introduction to ECC, we refer the reader to any of the
excellent textbooks on the subject, such as [LinCo83], [Mcl77] or [Wic95].

8.2.1 Definition

An (n,M, d) code C over a finite field F = GF(q) is called linear if C is a linear sub-space of
F n over F , namely, for every c1, c2 ∈ C and a1, a2 ∈ F we have a1c1 + a2c2 ∈ C.

The dimension of a linear (n,M, d) code C over F is the dimension of C as a linear sub-
space of F n over F . If k is the dimension of C, then we say that C is a linear [n, k, d] code
over F . The difference n− k is called the redundancy of C.

Every basis of a linear [n, k, d] code C over F = GF(q) contains k codewords, the linear
combinations of which are distinct and generate the whole set C. Therefore, |C| = M = qk

and the code rate is R = (logqM)/n = k/n.

Words y = y1y2 . . . yn over a field F—in particular, codewords of a linear [n, k, d] code
over F—will sometimes be denoted by (y1 y2 . . . yn), to emphasize that they are elements
of a vector space F n.

CHAPTER 8. ERROR CORRECTION AND CONCATENATION 210

Example 8.3 The (3, 4, 2) parity code over GF(2) is a linear [3, 2, 2] code since it is
spanned by (1 0 1) and (0 1 1).

The Hamming weight of e ∈ F n is the number of nonzero entries in e. We denote the
Hamming weight by w(e). Note that for every two words x,y ∈ F n,

∆(x,y) = w(y − x) = ∆(y − x, 0),

where 0 denotes the (all-)zero codeword, which is an element of any linear code (since a
linear space always contains the zero vector). The following result characterizes the minimum
distance of a linear code in terms of its minimum Hamming weight.

Proposition 8.2 Let C be a linear [n, k, d] code over F . Then

d = min
c∈C\{0}

w(c) .

Proof. Since C is linear,

c1, c2 ∈ C =⇒ c1 − c2 ∈ C .

Now, ∆(c1, c2) = w(c1 − c2) and, so,

d = min
c1,c2∈C : c1 6=c2

∆(c1, c2) = min
c1,c2∈C : c1 6=c2

w(c1 − c2) = min
c∈C\{0}

w(c) .

8.2.2 Generator Matrix

A generator matrix of a linear [n, k, d] code over F is a k× n matrix whose rows form a basis
of the code.

Example 8.4 The matrix

G =

(
1 0 1
0 1 1

)

is a generator matrix of the [3, 2, 2] parity code over GF(2), and so is the matrix

Ĝ =

(
0 1 1
1 1 0

)
.

CHAPTER 8. ERROR CORRECTION AND CONCATENATION 211

In general, the [n, n−1, 2] parity code over a field F is defined as the code with a generator
matrix

G =

I

−1
−1
...
−1

,

where I is the (n−1)× (n−1) identity matrix.

Example 8.5 The (3, 2, 3) repetition code over GF(2) is a linear [3, 1, 3] code generated
by

G = (1 1 1) .

In general, the [n, 1, n] repetition code over a field F is defined as the code with a generator
matrix

G = (1 1 . . . 1) .

Let C be a linear [n, k, d] code over F and G be a generator matrix of C. We can encode
information words into codewords of C by regarding the former as vectors u ∈ F k and using
a mapping F k → C defined by

u 7→ uG .

Since rank(G) = k, we can apply elementary operations to the rows of G to obtain a k × k

identity matrix as a sub-matrix of G.

A k× n generator matrix is called systematic if it has the form
(
I A

)
,

where I is a k× k identity matrix and A is a k× (n−k) matrix.

Not always does a code C have a systematic generator matrix. However, we can always
permute the code coordinates to obtain an equivalent (although different) code Ĉ for which
the first k columns of any generator matrix are linearly independent, in which case the
code has a systematic generator matrix. The code Ĉ has the same length, dimension, and
minimum distance as the original code C.

When using a systematic generator matrix G = (I |A) for encoding, the mapping u 7→
uG takes the form u 7→ (u |uA); that is, the information vector is part of the encoded
codeword.

CHAPTER 8. ERROR CORRECTION AND CONCATENATION 212

8.2.3 Parity-check matrix

Let C be a linear [n, k, d] code over F . A parity-check matrix of C is an r× n matrix H over
F such that for every c ∈ F n,

c ∈ C ⇐⇒ Hc⊤ = 0 .

In other words, the code C is the (right) kernel, ker(H), of H in F n. We thus have

rank(H) = n− dimker(H) = n− k .

So, in (the most common) case where the rows of H are linearly independent we have
r = n− k.

Let G be a k× n generator matrix of C. The rows of G span ker(H) and, in particular,

HG⊤ = 0 =⇒ GH⊤ = 0 .

Also,
dim ker(G) = n− rank(G) = n− k .

Hence, the rows ofH span ker(G). So, a parity-check matrix of a linear code can be computed
by finding a basis of the kernel of a generator matrix of the code.

In the special case where G is a systematic matrix (I |A), we can take the (n−k) × n

matrix H = (−A⊤ | I) as a parity-check matrix.

Example 8.6 The matrix
(1 1 . . . 1)

is a parity-check matrix of the [n, n−1, 2] parity code over a field F , and

I

−1
−1
...
−1

is a parity-check matrix of the [n, 1, n] repetition code over F .

Example 8.7 The linear [7, 4, 3] Hamming code over GF(2) is defined by the parity-
check matrix

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .

CHAPTER 8. ERROR CORRECTION AND CONCATENATION 213

A corresponding generator matrix is given by

G =

1 1 1 1 1 1 1
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .

One can check exhaustively that the minimum distance of this code is indeed 3.

The following theorem provides a characterization of the minimum distance of a linear
code through any parity-check matrix of the code.

Theorem 8.3 Let H be a parity-check matrix of a linear code C 6= {0}. The minimum
distance of C is the largest integer d such that every set of d−1 columns in H is linearly
independent.

Proof. Write H = (h1 h2 . . . hn) and let c = (c1 c2 . . . cn) be a codeword in C with
Hamming weight t > 0. Let J ⊆ {1, 2, . . . , n} be the set of |J | = t indexes of the nonzero
entries in c. By Hc⊤ = 0 we have ∑

j∈J
cjhj = 0 ,

namely, the t columns of H that are indexed by J are linearly dependent.

Conversely, every set of t linearly dependent columns in H corresponds to at least one
nonzero codeword c ∈ C with w(c) ≤ t.

Given d as defined in the theorem, it follows that no nonzero codeword in C has Hamming
weight less than d, but there is at least one codeword in C whose Hamming weight is d.

Example 8.8 For an integer m > 1, the [2m−1, 2m−1−m, 3] Hamming code over F =
GF(2) is defined by an m × (2m−1) parity-check matrix H whose columns range over all
the nonzero elements of Fm. Every two columns in H are linearly independent and, so, the
minimum distance of the code is at least 3. In fact, the minimum distance is exactly 3, since
there are three dependent columns, e.g., (0 . . . 0 0 1)⊤, (0 . . . 0 1 0)⊤, and (0 . . . 0 1 1)⊤.

8.3 Introduction to Finite Fields

Roughly speaking, a finite field is a finite set of elements in which notions of addition and
multiplication are defined subject to the following conditions:

CHAPTER 8. ERROR CORRECTION AND CONCATENATION 214

• The usual rules (associative, distributive and commutative) of arithmetic hold.

• Each element has an additive inverse (i.e., a “negative” of itself) and a multiplicative
inverse (i.e., a “reciprocal”); in other words, you can subtract and divide elements of
the field and still remain in the field.

The simplest non-trivial field is GF (2), which consists of just two elements: {0, 1} with
modulo-2 arithmetic, i.e.,

0 + 0 = 1 + 1 = 0
0 + 1 = 1 + 0 = 1
0 · 0 = 0
1 · 1 = 1
0 · 1 = 1 · 0 = 0

More generally, for a prime number p, the prime field GF(p) consists of the elements
{0, 1, . . . , p−1}, with arithmetic modulo p. It can be shown that GF(p) contains a primitive
element, defined as an element α such that the powers of α exhaust all nonzero elements of
the field.

Example 8.9 In GF(7) we have

2 · 4 = 3 · 5 = 6 · 6 = 1 · 1 = 1 .

The elements 3 and 5 are primitive elements:

30 = 1 = 50

31 = 3 = 55

32 = 2 = 54

33 = 6 = 53

34 = 4 = 52

35 = 5 = 51

and in fact they are the only primitive elements.

It turns out that the size of any finite field is a power of a prime number q = ph. Such a
field is denoted GF(q) and is defined as the set of all polynomials of degree less than h in an
indeterminate x with coefficients in GF(p). Addition is then defined as the usual polynomial
addition (using arithmetic modulo p).

In order to define multiplication, we make use of an irreducible polynomial, P (x) of degree
exactly h, with coefficients in GF(p), i.e., a polynomial that cannot be factored nontrivially
over GF(p). It can be shown that such a polynomial exists for each prime p and integer h.

Example 8.10 The following are all the irreducible polynomials over GF(2) with degree
at most 4:

degree 1: x, x+ 1

CHAPTER 8. ERROR CORRECTION AND CONCATENATION 215

degree 2: x2 + x+ 1

degree 3: x3 + x+ 1, x3 + x2 + 1

degree 4: x4 + x+ 1, x4 + x3 + 1, x4 + x3 + x2 + x+ 1

We then define multiplication in GF(q) by multiplication of polynomials followed by
reduction by P (x): precisely, to find the product of a(x) and b(x), first form the ordinary
product s(x) = a(x)b(x) and then compute the remainder of s(x) when divided by P (x).
Irreducbility of P (x) is required in order to guarantee that each nonzero element of GF(q)
has a multiplicative inverse.

Example 8.11 Let F = GF(2) and P (x) = x3+x+1. We construct the field GF(23) as
the set of polynomials over F of degree less than 3, resulting in Table 8.1, where the elements
of the field are written as polynomials in the indeterminate x. The third column in the table

000 0 0
001 1 1
010 x x
011 x+ 1 x3

100 x2 x2

101 x2 + 1 x6

110 x2 + x x4

111 x2 + x+ 1 x5

Table 8.1: The field GF(23)

expresses each nonzero element in the field as a power of the monomial x = 0 ·1+1 ·x+0 ·x2.
Indeed,

x3 ≡ x+ 1 (mod P (x)) ,

x4 ≡ x · x3 ≡ x(x+ 1) ≡ x2 + x (mod P (x)) ,

x5 ≡ x · x4 ≡ x(x2 + x) ≡ x3 + x2 ≡ x2 + x+ 1 (mod P (x)) ,

x6 ≡ x · x5 ≡ x(x2 + x+ 1) ≡ x3 + x2 + x ≡ x2 + 1 (mod P (x)) ,

and

x7 ≡ x · x6 ≡ x(x2 + 1) ≡ x3 + x ≡ 1 (mod P (x)) .

Just as for prime fields, any finite field GF(q) contains a primitive element. In the
preceding example, the monomial x is primitive. In general the monomial x may not be

CHAPTER 8. ERROR CORRECTION AND CONCATENATION 216

a primitive element of the field. However, it turns out that there is always a choice of
the irreducible polynomial P (x) such that the monomial x is a primitive element. Such a
polynomial is called a primitive polynomial.

Finally, we mention that elements of GF(q) can be viewed as h-dimensional vectors over
the field GF(p) and this way define a vector space of dimension h over GF(p). In this way,
we may regard the symbols of a code over GF(28) as bytes.

8.4 The Singleton bound and Reed-Solomon codes

Theorem 8.4 (The Singleton bound) For any (n,M, d) code over an alphabet of size q,

d ≤ n− ⌈logqM⌉ + 1 .

Proof. Let ℓ = ⌈logqM⌉ − 1. Since qℓ < M , there must be at least two codewords that
agree in their first ℓ coordinates. Hence, d ≤ n− ℓ.

For a linear [n, k, d] code over GF(q) the Singleton bound becomes

d ≤ n− k+ 1 .

This can also be seen from a parity-check matrix of the code: since the rank of a parity-check
matrix is n−k, every set (so at least one set) of n−k+1 columns in that matrix is linearly
dependent.

For linear codes, the Singleton bound can also be obtained by considering a systematic
generator matrix of the code: the Hamming weight of each row is at most n−k+1.

A code is called maximum distance separable (MDS) if it attains the Singleton bound
with equality. Note that a linear MDS code can correct a certain number, e, of symbols
in error within each codeword if its redundancy, n−k, satisfies n−k = 2e; in other words,
for a linear MDS code, two bytes of redundancy are sufficient (and in fact necessary by the
Singleton bound) to correct each error. So, a code with two bytes of redundancy can correct
one error in each codeword, and a code with four bytes of redundancy can correct two errors
in each codeword, and so on.

The following are simple examples of linear MDS codes over F = GF(q):

• The whole space F n, which is a linear [n, n, 1] code over F .

• The [n, n−1, 2] parity code over F .

• The [n, 1, n] repetition code over F .

CHAPTER 8. ERROR CORRECTION AND CONCATENATION 217

The following family of MDS codes is among the most widely used error-correction codes
today.

Let α1, α2, . . . , αn be distinct elements of F = GF(q). A Reed-Solomon code over F is a
linear [n, k, d] code with the parity-check matrix

H =

1 1 . . . 1
α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

...
...

αn−k−1
1 αn−k−1

2 . . . αn−k−1
n

.

This construction requires n ≤ q.

Proposition 8.5 Every Reed-Solomon code is MDS.

Proof. Every (n−k)× (n−k) sub-matrix of H has a Vandermonde form

B =

1 1 . . . 1
β1 β2 . . . βn−k

β2
1 β2

2 . . . β2
n−k

...
...

...
...

βn−k−1
1 βn−k−1

2 . . . βn−k−1
n−k

,

where β1, β2, . . . , βn−k are distinct elements of the field. Now, the determinant of B is given
by

det(B) =
∏

j>i

(βj − βi)

and, therefore, det(B) 6= 0 and B is nonsingular. It follows that every set of n−k columns
in H is linearly independent and, so, d ≥ n− k+ 1.

Finally, we mention that it is possible to extend Reed-Solomon codes to length q+1; such
a code is called an extended Reed-Solomon code, and these codes are MDS as well [MacS77,
Chapter 10].

8.5 Concatenation of ECC and constrained codes

As mentioned in Section 1.3, an ECC encoder and a constrained encoder are usually con-
catenated as follows: messages are first passed through an error-correction encoder and then
a constrained encoder before being transmitted across the channel. At the receiver, data is

CHAPTER 8. ERROR CORRECTION AND CONCATENATION 218

decoded via the constrained decoder and then the error-correction decoder. This scheme,
illustrated in Figure 8.1(a), is called standard concatenation.

Typically, the ECC code is a Reed-Solomon code, owing to their excellent error-correction
properties and excellent decoding properties. In addition, in order to provide for protection
against bursty errors, the ECC scheme involves m-way-interleaving of codewords, which we
explain as follows. Suppose that the ECC encoder generates m consecutive codewords:

c1 = x11x
1
2 . . . x

1
n

. . . = . . .
cm = xm1 x

m
2 . . . x

m
n

.

Instead of recording these codewords one after another, we first transmit the first symbol of
each codeword:

x11x
2
1 . . . x

m
1

and then the second symbol of each codeword

x12x
2
2 . . . x

m
2 ,

etc. In this way, the errors in a contiguous burst are spread among several codewords,
thereby reducing the likelihood of overwhelming the error correcting capability of the code.

It is natural for the constrained encoder to be nearer the channel since its purpose is
to produce sequences that are designed to pass through the channel with little likelihood
of corruption. On the other hand, standard concatenation requires that the constrained
decoder severely limit error propagation, and this precludes the possibility of constrained
encoders based on long block lengths.

In modified concatenation (sometimes called reversed concatenation) the order of con-
catenation is reversed as shown in Figure 8.1(b). This idea is due to Bliss [Bli81] and
Mansuripur [Man91] and more recently to Immink [Imm97] and Fan and Calderbank [FC98];
the latter demonstrated some advantages of modified concatenation even with constrained
encoders based on relatively short block lengths. A user data sequence u is first encoded
via a high rate encoder E1 into a constrained sequence w. In order to achieve the high rate
(very close to capacity), long block lengths must be used. If w is then transmitted across
a noisy (binary) channel, a small burst error or even a single isolated error in the received
sequence ŵ could affect much or possibly all of the decoded sequence û, yielding enormous
error propagation. To avoid this, error correction is incorporated and used to correct all
errors before decoding ŵ. This is done by computing a sequence r of parity symbols on
w, and then encoding r into a constrained sequence y via a second constrained encoder E2
which is less efficient (namely, has a lower rate) than the first encoder; yet it operates on
shorter blocks. Both constrained sequences w and y are then transmitted across the noisy
channel. The sequence of parity symbols should be chosen to allow correction of a prescribed
typical channel error event in w, such as bursts of errors up to a certain length. The decoder

CHAPTER 8. ERROR CORRECTION AND CONCATENATION 219

attempts to recover u from the possibly corrupted versions ŵ of w and ŷ of y. Since the
constrained encoder E2 uses short block lengths, it is presumably subject to very little error
propagation. Then the decoded version, r̂, of ŷ can be used to correct ŵ, without fear of
error propagation (i.e., the error events in ŵr̂ look roughly like the raw channel error events
in ŵŷ). In this way, w is recovered error-free; decoding w via the first constrained decoder
recovers u error-free.

One of Immink’s key contributions in [Imm97] was the realization that w, being an
encoded version of u, is longer than u, so that it may be necessary to increase the number of
parity symbols r for the error-correcting code to achieve the same performance. In addition,
for long bursts, the effect of a burst of channel errors is magnified relative to the standard
concatenation scheme, since the bursts are not first decoded by the constrained decoder.
Immink’s solution, shown in Figure 8.1(c), to this problem was to compress the sequence w
in a lossless (one-to-one) manner into a sequence s, and then compute the sequence of parity
symbols r based on s; for instance, s (respectively, r) could be the information (respectively,
parity) portions of a Reed-Solomon code. So the parity sequence r, and therefore also the
E2-encoded sequence y, can be made shorter, thereby lowering the overhead of the error-
correction scheme. At the channel output, the received sequence ŵ is compressed to a
sequence ŝ, and the ECC decoder recovers s from r̂ and ŝ. Then the decompressor recovers
w, and the constrained decoder D1 recovers u.

At one extreme, one could compress w back to u (in which case s would be the same
as u). But then a small channel error in ŵ could corrupt all of ŝ before error correction.
Instead, the compression scheme will guarantee that such a channel error can corrupt only
a limited number of bytes in ŝ.

In constrained coding, as we have presented it in this text, unconstrained user sequences
are encoded, in a lossless manner, into a constrained sequences; after being passed through
a channel the constrained sequences are decoded to unconstrained user sequences.

In lossless data compression, the roles of encoder and decoder are reversed: constrained
sequences from a source are encoded into unconstrained sequences where no distortion is
permitted upon decompression. This duality between constrained coding and lossless data
compression has been noted by several authors (see for example [Ari90], [Ker91], [MLT83],
[TLM27]). In these works, data compression techniques such as arithmetic coding have
been applied to constrained coding. In the remainder of this chapter, we apply constrained
coding to lossless data compression, to obtain compressors that can be used in the scheme
of Figure 8.1(c).

CHAPTER 8. ERROR CORRECTION AND CONCATENATION 220

8.6 Block and sliding-block compressible codes

A rate p : q block-compressor for a constrained system S is simply a one-to-one mapping from
the set Sq, of words in length q in S, into the set of unconstrained binary words of length p
(the reader should not confuse Sq with the q-th power system, Sq). Clearly, a necessary and
sufficient condition for the existence of a rate p : q block compressor for S is:

|Sq| ≤ 2p . (8.1)

Immink gives in [Imm97] two simple examples: a rate 8 : 11 block compressor for the
(1, 12)-RLL constraint and a rate 8 : 13 block compressor for the (2, 15)-RLL constraint.
For p = 8, these values of q are optimal: a simple computation reveals that condition (8.1)
would be violated for any rate 8 : 12 block compressor for the (1, 12)-RLL constraint and
any rate 8 : 14 block compressor for the (2, 15)-RLL constraint.

Clearly, p = 8 is a good choice owing to the availability of high performance, high
efficiency, off-the-shelf Reed-Solomon codes. But allowing other values of p can give added
flexibility in the choice of compression schemes (provided that p and the symbol alphabet of
the ECC are somewhat compatible). Clearly, it is desirable to have a small compression rate
p/q, and smaller compression rates can be achieved by larger block lengths p and q. But the
capacity of the constraint imposes a lower bound on the compression rates, as we show next.

Since |Sqm| ≤ |Sq|m for any choice of positive integers q and m, it follows that

cap(S) = lim
m→∞(1/(qm)) · log |Sqm| ≤ (1/q) · log |Sq| ;

that is, the limit in the definition of capacity is taken over elements each of which is an upper
bound on cap(S). Combining this with (8.1) yields

cap(S) ≤ (1/q) · log |Sq| ≤ p/q . (8.2)

Thus, to obtain compression rates p/q close to capacity, we need to take q (and hence p)
sufficiently large so that (1/q) · log |Sq| is close enough to capacity. This approach has several
drawbacks. First, such schemes can be rather complex. Secondly, if the typical burst error
length is short relative to q, then the compression code may actually expand the burst.
Third, even if the typical burst error is of length comparable to q, it may be aligned so
as to affect two or more consecutive q-codewords, and therefore two or more consecutive
unconstrained p-blocks; this “edge-effect” can counteract the benefits of using compression
codes.

The foregoing discussion leads us to consider a more general class of compression codes,
in particular lossless sliding-block compression codes. Such a code consists of a compressor
and an expanding coder (in short, excoder), which acts as a “decompressor”. The compressor
is a sliding-block code from sequences of q-codewords of S to unconstrained sequences of p-
blocks over {0, 1}; that is, a q-codeword w is compressed into a p-block s as a time-invariant

CHAPTER 8. ERROR CORRECTION AND CONCATENATION 221

function of w and perhaps some m preceding and a upcoming q-codewords. The excoder,
on the other hand, will have the form of a finite-state machine. Just as in conventional
constrained coding, the sliding-block window length is defined as the sum m+ a+ 1.

We next present a precise definition of the model of compressors and excoders considered
in this chapter. For the sake of convenience, we start with excoders and then base the
definition of compressors on that of the matching excoders. Let S be a constraint over
an alphabet Σ, let Φ be a set of size n, and let m and a be nonnegative integers. An
(m, a)-sliding-block compressible (S, n)-excoder is a graph E in which the edges are labeled
by elements of Σ and, in addition, each edge is endowed by a tag from Φ so that the following
holds:

(X1) the outgoing edges from each state are assigned distinct tags from Φ; in particular,
each state will have at most n outgoing edges;

(X2) S is contained in the constraint (over Σ) that is presented by E ; and—

(X3) if w is a word in Sm+a+1, and e−me−m+1 . . . e0 . . . ea and e′−me
′
−m+1 . . . e

′
0 . . . e

′
a are se-

quences of edges that form two paths in E both labeled by w, then the tags of e0 and
e′0 agree.

Often we will apply this definition to a constrained system S whose alphabet consists of
q-codewords in another constraint S ′, in which case Sm+a+1 will consist of words of length
(m+ a+ 1)q in S ′ (see the definition below of a rate p : q excoder).

The definition of an (m, a)-sliding-block compressible (S, n)-excoder E bears similarity
to that of a tagged (m, a)-sliding-block decodable (S, n)-encoder: the main difference is in
the containment relationship between S and the constraint presented by E . Here, E must
generate every word in S and, in addition, it may generate words that are not in S; note,
however, that condition (X3) applies only to those paths in E that generate words in S.

One could replace condition (X3) by a weaker condition that would correspond to the
lossless condition for encoders given in Section 4.1. But this may not be adequate for the
compression desired in the scheme of Figure 8.1(c).

Condition (X3) induces a mapping C : Sm+a+1 → Φ, which, in turn, defines the sliding-
block compressor of E as follows. For any positive integer ℓ, the compressor maps every
word

w = w−mw−m+1 . . . w0w1 . . . wℓ−1wℓ . . . wℓ+a−1

in Sm+a+ℓ into a pair (v, s), where v is an initial state in E , which can be the initial state of
any path in E labeled by w0w1 . . . wℓ+a−1, and

s = s0s1 . . . sℓ−1

CHAPTER 8. ERROR CORRECTION AND CONCATENATION 222

is a tag sequence in Φℓ defined by

si = C(wi−mwi−m+1 . . . wi . . . wi+a) , 0 ≤ i < ℓ .

Observe that the excoder can recover the sub-word w0w1 . . . wℓ−1 of w by reading the labels
along the (unique) path of length ℓ in E that starts at v and is tagged by s.

In the examples, given later in this chapter, E will be (m, a)-definite on S: if w is a
word in Sm+a+1, and e−me−m+1 . . . e0 . . . ea and e

′
−me

′
−m+1 . . . e

′
0 . . . e

′
a are two paths in E both

generatingw, then e0 = e′0; note that (m, a)-definiteness on S is stronger than condition (X3).

Next, we show how rate p : q compression codes can be described through (S, n)-excoders
and compressors. Let S be a constrained system that is presented by a labeled graph G. We
now define an (m, a)-sliding-block compressible excoder for S at rate p : q to be an (m, a)-
sliding-block compressible (Sq, 2p)-excoder. The tag set Φ is taken as {0, 1}p, namely, the
set of all possible values of any p-block. So, a rate p : q excoder for S maps p-blocks into q-
codewords in a state-dependent manner; the respective compressor, in turn, maps a sequence
of q-codewords into a sequence of p-blocks, where the i-th q-codeword is compressed into
a p-block through a mapping applied to the i-th q-codeword, as well as m preceding and
a upcoming q-codewords. A block excoder for S at rate p : q is a rate p : q excoder for
S with one state. Note that the corresponding sliding-block compressor is simply a block
compressor, as defined at the beginning of this section.

We next establish a necessary condition for the existence of (S, n)-excoders.

Proposition 8.6 Let S be a constraint. There is an (m, a)-sliding-block compressible
(S, n)-excoder only if cap(S) ≤ log n.

Proof. Let E be an (m, a)-sliding-block compressible (S, n)-excoder and let V and Φ be
the set of states and the set of tags of E , respectively. Suppose that S ′ is an irreducible
constraint contained in S such that cap(S ′) = cap(S).

Let w be a word in S ′
ℓ (and hence in Sℓ). Since S ′ is irreducible, the word w can be

extended to a word w′ww′′ ∈ S ′
m+a+ℓ. The compressor of E maps the word w′ww′′ into a

pair (v, s), where v ∈ V and s ∈ Φℓ, and the (unique) path in E that starts at v and is tagged
by s generates the word w. We have thus obtained through the compressor a one-to-one
mapping from S ′

ℓ into V × Φℓ; so,
|S ′

ℓ| ≤ |V | · nℓ .

The result follows by taking the limit as ℓ→∞ and using the definition of capacity.

Proposition 8.6 implies that there is a sliding-block compressible excoder for S at rate
p : q only if cap(Sq) ≤ p or, equivalently, cap(S) ≤ p/q. The latter inequality is exactly
the reverse of Shannon’s bound on the rate of (conventional) constrained encoders. The
bound (8.2) amounts to the special case of Proposition 8.6 for block excoders.

CHAPTER 8. ERROR CORRECTION AND CONCATENATION 223

The next result, which we establish in Section 8.8, states that for finite-type constraints
the condition in Proposition 8.6 is not only necessary, but also sufficient for the existence of
sliding-block compressible excoders.

Proposition 8.7 Let S be a finite-type constrained system with memory m, and let n be
a positive integer such that cap(S) ≤ log n. Then there is an (m, a)-sliding-block compressible
(S, n)-excoder; in fact, this excoder is (m, a)-definite on S.

Finally, we make some remarks regarding the inclusion of the initial state in the informa-
tion conveyed from the compressor to the excoder. The cost of transmitting this initial state
is quite minimal. Typically, there will be a small number of states and the number of bits
required to represent a state is only the logarithm of that number. Also, in the scheme of Fig-
ure 8.1(c), one does not really need to expand the entire tag sequence after error correction:
since channel decoding takes place after error correction and since the channel decoder has
full knowledge of the received (uncompressed) constrained sequence, it need only re-expand
the corrected p-blocks in the compressed tag sequence; since a previously corrected portion of
the received sequence is very likely to contain state information (for example if the excoder E
is (m, a)-definite on S), no extra state information may be needed at all. Another alternative
is to simply compress only those constrained sequences that can be generated from one fixed
state of the excoder. When incorporated into Immink’s scheme this would entail a loss in
capacity, but the loss is very small since the block lengths are so long. A third solution,
which is applicable to (m, a)-definite excoders, is to include the first m+a+1 q-codewords
of the (non-compressed) constrained sequence in the bit stream that is protected by the
ECC. Thus, the ECC decoder of the receiving end will reconstruct the correct prefix of the
constrained sequence, thereby allowing us to recover the state information.

8.7 Application to burst correction

When used in conjunction with the scheme in Figure 8.1(c), there are a number of factors
that may affect the choice of a compressor-excoder pair such as the complexity of the com-
pression and decompression and the error-propagation associated with the application of the
compression on the receiving end. In particular, we are concerned with how compressors
handle raw channel bursts, and their suitability for use with a symbol-based ECC.

The compressor is applied to the channel bit sequence immediately after the channel,
so that a benefit of using a low-rate excoder is that the length of a raw channel burst will
be roughly decreased by the compression factor p/q, when the length of the burst is long
(relative to q). On the other hand, edge effects in the use of a compressor can expand the
error length, and this error propagation may dominate for short bursts. In addition, for
sliding-block compressible excoders, the sliding-block window length will also extend the

CHAPTER 8. ERROR CORRECTION AND CONCATENATION 224

burst. Ultimately, the choice of a compressor-excoder pair involves a balance of these four
factors:

1. compression rate p : q;

2. edge effects (how many extra p-blocks are affected by the phasing of a burst);

3. effect of the sliding-block window length m+ a+1 (i.e., how many extra p-blocks may
be affected by each error); and —

4. compatibility between the block length p and the symbol alphabet of the ECC.

We consider here the effect of a channel burst of length L bits on the maximum number of
affected p-blocks. Hereafter, by a length of a burst in a sequence over a given symbol alphabet
we mean the number of symbols between (and including) the first and last erroneous symbols.
Our computation will mainly concentrate on the simplified model where any error in the q-
codeword will result in an entirely erroneous p-block upon compression, although in practice
it might be possible to mitigate this effect by a proper tag assignment to the excoder (see
Section 8.8.3).

The maximum number of q-codewords (including the edge effect) that can be affected
by a channel burst of length L bits is either ⌊(L− 1)/q⌋+ 1 or ⌈(L− 1)/q⌉+ 1, depending
on the phasing within a q-codeword where the channel burst starts. For (m, a)-sliding-block
compressible excoders, the effect of the memory and anticipation is to expand the number
of affected p-blocks by m+a, so that we get a maximum of

N = N(L) = ⌈(L− 1)/q⌉+m+a+1 (8.3)

affected p-blocks.

Next, we need to translate from a number of erroneous p-blocks to a corresponding
number of symbol errors for the ECC. Let the symbol alphabet of the ECC in Figure 8.1(c)
be the finite field GF(2B); namely, the sequence of p-blocks is regarded as a long bit-stream
and sub-divided into non-overlapping blocks of length B bits, each such block being a symbol
of the ECC and regarded as a “B-bit byte.” We make the assumption that the boundaries
between p-blocks align with the boundaries between ECC symbols as often as possible, in
particular, every (pB)/ gcd(p, B) bits. We can then calculate the maximum number of ECC
symbols that are in error due to a channel burst of length L bits.

Consider our basic unit to be of size gcd(p, B) bits, so that we are starting with a burst
of length (Np)/ gcd(p, B), and looking for the maximum number of affected blocks of length
B/ gcd(p, B). This is analogous to finding the maximum number of q-codewords affected
by a burst of channel bits, and we obtain the following expression for the number of ECC
symbols in error as a function of L and B:

D(L,B) =

⌈
(Np)/ gcd(p, B)− 1

B/ gcd(p, B)

⌉
+ 1 =

⌈
Np− gcd(p, B)

B

⌉
+ 1 .

CHAPTER 8. ERROR CORRECTION AND CONCATENATION 225

Putting this together with (8.3) yields

D(L,B) =

⌈
(⌈(L− 1)/q⌉+m+a+1)p− gcd(p, B)

B

⌉
+ 1 .

Example 8.12 Consider a (0, 1)-sliding-block compressible excoder for the (2,∞)-RLL
constraint at rate 4 : 7 (such as the excoder that we will present in Example 8.16 in
Section 8.8.2). Table 8.2 contains the respective values of D(L,B) for L = 40 and
B = 4, 5, 6, 7, 8.

B D(40, B) ν ρ κ

4 8 544 64 840
5 8 1, 320 (80) 2, 170
6 6 2, 340 72 3, 969
7 6 5, 418 (84) 9, 334
8 5 10, 280 80 17, 850

Table 8.2: Parameters of an ECC used for burst lengths of up to 40 bits in conjunction with
a (0, 1)-sliding-block compressible excoder for the (2,∞)-RLL constraint at rate 4 : 7.

The last three columns in Table 8.2 show the parameters of an ECC that consists of
D(L,B)-way interleaving of an extended Reed-Solomon code of length 2B + 1 over GF(2B).
The overall block length (in bits) of this ECC scheme equals ν = ν(L,B) = (2B + 1) · B ·
D(L,B); the values of ν are listed in the third column of the table. Since Reed-Solomon
codes are maximum distance separable, each symbol error of GF(2B) can be corrected using
two redundancy symbols. Therefore, the total number of redundant symbols is 2D(L,B).
The redundancy (in bits) of the coding scheme thus equals ρ = ρ(L,B) = 2 ·B ·D(L,B); this
is the length of “Parity” in Figure 8.1(c). The values of ρ are listed in the fourth column of
the table, where numbers in parentheses indicate that smaller redundancy values (and larger
ECC block lengths) can be obtained by using a larger value of B.

A block of ν bits at the output of the ECC encoder in Figure 8.1(c) corresponds to
ν − ρ bits at the input of that encoder; those bits, in turn, correspond to κ = κ(L,B) =
⌊(ν− ρ) · q/p⌋ channel bits at the input of the lossless compressor. The values of κ are listed
in the fifth column of Table 8.2. Clearly, a smaller value of the ratio ρ/κ means a smaller
overhead introduced by the ECC (when combined with the compression).

Using the ECC scheme and the notations of Example 8.12, we can fix a number, κ0, of
channel bits and compute for each (maximal) burst length L the respective redundancy ρ
obtained by optimizing over all values of B for which κ(L,B) ≥ κ0. As an example, consider
a message of 512 user bytes (4, 096 bits) in Figure 8.1(c). Selecting the rate 256 : 466 code

CHAPTER 8. ERROR CORRECTION AND CONCATENATION 226

of [Imm97] as the constrained encoder D1, the message is mapped into 7, 456 channel bits.
Figure 8.2 shows the best redundancy values attained for κ0 = 7, 456 and L ≤ 300 using
a (0, 1)-sliding-block compressible excoder at rate 4 : 7 for the (2,∞)-RLL constraint. The
figure shows the redundancy values also for two other block excoders for this constraint at
rates 8 : 13 and 4 : 6; note that 8 : 13 is the rate of the excoder presented in [Imm97].
Thus we see that for longer bursts, the sliding-block excoder requires less redundancy due
to a better compression of the burst length, in spite of the longer sliding-block window. (We
point out that Figure 8.2 is the same also for κ0 = 7, 427, which is the number we get when
we divide 4, 096 by the capacity (≈ .5515) of the (2,∞)-RLL constraint.)

8.8 Constructing sliding-block compressible excoders

Our construction of excoders (and respective compressors) follows the lines of the state-
splitting algorithm in Figure 5.9 for constructing finite-state encoders.

Recall that in the conventional state-splitting algorithm, we begin with a graph presen-
tation G of the given constraint S. Typically, we assume that G is deterministic, such as
the graph G2,∞ in Figure 8.3 which presents the (2,∞)-RLL constraint. The state-splitting
algorithm generates an encoder for S through a sequence of state splittings, which are guided
by approximate eigenvectors.

The algorithm we present here is very similar; the main difference is that instead of
approximate eigenvectors, we will use what we call super-vectors. Such a vector will lead
us through a sequence of state-splitting operations beginning with the graph G and ending
with a graph H with out-degree at most n (i.e., each state has at most n outgoing edges).
Then one assigns to the edges of H tags taken from the tag alphabet Φ (of size n) such that
at each state all outgoing edges have distinct tags; typically, n = 2p and Φ = {0, 1}p. The
tagged version of H will be the (S, n)-excoder E .

In order to guarantee the sliding-block compressibility of E , we will assume that S has
finite memory m, in which case we take G as a (necessarily deterministic) graph presentation
of S that has memory m. When state splitting is applied to this graph, we are guaranteed
to end up with an excoder E which is (m, a)-definite on S, where a is the number of rounds
of out-splittings; in particular, E will be (m, a)-sliding-block compressible.

8.8.1 Super-vectors

As is the case with approximate eigenvectors, super-vectors will be computed using the
adjacency matrix AG of the graph presentation G of S. Recall that for a deterministic
presentation, the adjacency matrix can be used to compute the capacity of S; namely
cap(S) = log λ(AG), where λ(AG) is the largest (absolute value of any) eigenvalue of AG.

CHAPTER 8. ERROR CORRECTION AND CONCATENATION 227

Recall also that (AG)
q = AGq and, so, (λ(AG))

q = λ(AGq).

Example 8.13 The adjacency matrix of the graph G2,∞ in Figure 8.3 is

AG2,∞ =

0 1 0
0 0 1
1 0 1

 ,

and the capacity of the (2,∞)-RLL constraint is given by log λ(AG2,∞) ≈ log 1.4656 ≈ .5515.
By Proposition 8.6, we will be able to construct a sliding-block compressible excoder for the
(2,∞)-RLL constraint only if its rate p : q satisfies (λ(AG2,∞))q ≤ 2p. In the running example
of this section, we will choose p = 4 and q = 7, in which case (λ(AG))

q ≈ 14.5227 ≤ 16 = 2p.

Let A be a nonnegative integer square matrix and let n be a positive integer; e.g., A = Aq
G

and n = 2p. An (A, n)-super-vector is a nonnegative integer vector x, not identically zero,
such that

Ax ≤ nx .

Note that approximate eigenvectors (from Section 5.2.1) are defined the same way except
that the inequality is reversed (with the benefit of hindsight, approximate eigenvectors should
probably have been called “sub-vectors”).

By a straightforward modification of the corresponding proof for approximate eigenvec-
tors (Theorem 5.4), it follows that for any nonnegative integer square matrix A, there exists
an (A, n)-super-vector if and only if λ(A) ≤ n. The proof suggests ways of finding such a
vector, but a simpler algorithm is presented in Figure 8.4; this algorithm is the analogue of
the Franaszek Algorithm for finding approximate eigenvectors.

Next, we summarize the properties of this algorithm—in particular, the uniqueness of a
minimum (A, n)-super-vector x∗ and the fact that the algorithm always converges to x∗. For
convenience we assume that A is irreducible.

Proposition 8.8 Let A be an irreducible integer matrix and let n be a positive integer
with λ(A) ≤ n. Then the following holds:

(a) Any (A, n)-super-vector is strictly positive.

(b) If x and x′ are (A, n)-super-vectors, then the vector defined by z = min {x,x′} is also
an (A, n)-super-vector (here, min{·, ·} is applied componentwise).

(c) There is a unique minimum (A, n)-super-vector, i.e., a unique (A, n)-super-vector x∗

such that for any (A, n)-super-vector x we have x∗ ≤ x.

(d) The algorithm in Figure 8.4 eventually halts and returns the vector x∗.

CHAPTER 8. ERROR CORRECTION AND CONCATENATION 228

Parts (b) and (d) of the preceding result are analogous to to the corresponding results
for approximate eigenvectors (given in Proposition 5.5). On the other hand, for approximate
eigenvectors, there is no analogous uniqueness result and there is no clear choice of initial
vector for the algorithm.

Proof of Proposition 8.8. (a) Let x = (xu)u be an (A, n)-super-vector. If some entry
xu is 0 then, according to the inequality Ax ≤ nx, we have xv = 0 for all v such that Au,v 6= 0.
By irreducibility of A, this implies that x is identically zero, contrary to the definition of an
(A, n)-super-vector.

(b) Since A is nonnegative, Az ≤ Ax ≤ nx and Az ≤ Ax′ ≤ nx′; so, Az ≤ nz. Clearly z
has only integer entries. By (a), x and x′ are strictly positive, and thus so is z; in particular,
it is not identically zero.

(c) Let x∗ be obtained by taking the componentwise minimum of all (A, n)-super-vectors.
By (b), x∗ is an (A, n)-super-vector, and it is clearly the unique minimum such vector.

(d) Denote by xi the value of x after the i-th iteration of the while loop in Figure 8.4,
with x0 = (1 1 . . . 1)⊤. We show by induction on i that xi ≤ x∗. The induction base i = 0
follows from (a). Now, suppose that xi ≤ x∗ for some i. Since A is nonnegative, we have

1

n
Axi ≤ 1

n
Ax∗ ≤ x∗ .

Therefore, xi+1 = max
{⌈

1
n
Axi

⌉
,xi
}
≤ x∗, thereby establishing the induction step.

Next we verify that the algorithm halts. Observe that x0 ≤ x1 ≤ x2 ≤ . . . ≤ x∗ and that
xi are integer vectors. Now, if the algorithm did not halt, there had to be an index i for
which xi+1 = xi. However, that would imply

⌈
1
n
Axi

⌉
≤ xi (in which case xi would in fact

be a super-vector), so the algorithm had to halt in the i-th iteration.

We therefore conclude that the algorithm halts and returns an (A, n)-super-vector x ≤ x∗;
in fact, we must have x = x∗, since x∗ is the unique minimum (A, n)-super-vector.

Example 8.14 The adjacency matrix of the graph G = G7
2,∞ is given by

AG = A7
G2,∞

=

3 2 4
4 3 6
6 4 9

 .

Now,

x0 = (1 1 1)⊤ ,

x1 = max
{⌈

1
16
AG(1 1 1)⊤

⌉
, (1 1 1)⊤

}
= max

{
(1 1 2)⊤, (1 1 1)⊤

}
= (1 1 2)⊤ ,

x2 = max
{⌈

1
16
AG(1 1 2)⊤

⌉
, (1 1 2)⊤

}
= max

{
(1 2 2)⊤, (1 1 2)⊤

}
= (1 2 2)⊤ ,

CHAPTER 8. ERROR CORRECTION AND CONCATENATION 229

and AGx
2 ≤ 16x2. Hence, by Proposition 8.8(d), the vector (1 2 2)⊤ is the unique minimum

(AG, n)-super-vector x
∗.

8.8.2 Consistent splittings

As mentioned before, the state-splitting construction of a sliding-block compressible (S, n)-
excoder E starts with a deterministic presentation G of S. Typically, S will be a q-th power
of a given constraint S ′ and G will be the q-th power of a graph presentation of S ′; the
integer n will be 2p and E will thus be a sliding-block compressible excoder for S ′ at rate
p : q.

Given S, G, and n, we compute an (AG, n)-super-vector x using the algorithm in Fig-
ure 8.4. Just as in Section 5.2.1, the entry xu in x will be referred to as the weight of state
u. Using the vector x, we will transform the graph G through out-splitting operations into a
graph H such that (1 1 . . . 1)⊤ is an (AH , n)-super-vector (i.e., the weights are all reduced
to 1). It is easy to see that this is equivalent to saying that H has out-degree at most n. An
(S, n)-excoder E will then be obtained by assigning tags to the edges of H .

Next we discuss the role of the (AG, n)-super-vector in more detail. For an edge e in a
graph, recall that τG(e) = τ(e) denotes the terminal state of e.

Given a graph G, a positive integer n, and an (AG, n)-super-vector x = (xu)u, an x-
consistent partition of G is defined by partitioning the set, Eu, of outgoing edges from each
state u in G such that

∑

e∈E(r)
u

xτ(e) ≤ nx(r)u for r = 1, 2, . . . , N = N(u) , (8.4)

where x(r)u are nonnegative integers and

N(u)∑

r=1

x(r)u = xu . (8.5)

The out-splitting based upon such a partition is called an x-consistent splitting. The splitting
is called non-trivial if at least one state u has at least two descendants u(r), u(t) such that
both x(r)u and x(t)u are strictly positive. Note that here we have used the same terminology
as in Section 5.2.3, but the reader should understand that throughout the remainder of this
chapter, the notions of x-consistent partition and x-consistent splitting are as defined in this
paragraph.

Let G′ denote the graph after splitting. It is easy to see that the (AG, n)-super-vector
x gives rise to an induced (AG′, n)-super-vector x′ = (x′u)u; namely, set x′

u(r) = x(r)u . Note
that (8.5) asserts that the weights of the descendants of a state u sum to the weight of u.

CHAPTER 8. ERROR CORRECTION AND CONCATENATION 230

Example 8.15 Let S be presented by the graph G = G7
2,∞. For each state u ∈ {0, 1, 2}

in G, denote by Lu the set of labels of the outgoing edges from state u in G. Note that
the graph G has memory 1, since the label of an edge determines the terminal state of that
edge: edges whose labels end with ‘1’ terminate in state 0, edges whose labels end with
‘10’ terminate in state 1, and the remaining edges terminate in state 2. Hence, each set Lu

completely describes the set, Eu, of outgoing edges from state u. We have

L0 = {0000000, 0000001, 0000010, 0000100, 0001000, 0001001, 0010000, 0010001, 0010010} ;
L1 = {0000000, 0000001, 0000010, 0000100, 0001000, 0001001, 0010000, 0010001, 0010010

0100000, 0100001, 0100010, 0100100} ;
L2 = {0000000, 0000001, 0000010, 0000100, 0001000, 0001001, 0010000, 0010001, 0010010,

0100000, 0100001, 0100010, 0100100, 1000000, 1000001, 1000010, 1000100, 1001000, 1001001} .

We have shown in Example 8.14 that x = (1 2 2)⊤ is an (AG, 16)-super-vector. We next
perform an x-consistent splitting on G which will result in a graph H in which each state
has weight 1. That is, up to tagging, the graph H will be an (S, 16)-excoder, namely, a rate
4 : 7 excoder for the (2,∞)-RLL constraint.

Since state 0 has weight 1, it will not be split (or more precisely, we split it trivially into
one state, namely itself). Since each of the states 1 and 2 has weight 2, we would like to
split each into two states of weight 1. Define the weight of an edge to be the weight of its
terminal state. Now, AG(1 2 2)⊤ = (15 22 32)⊤, indicating that the total weights of outgoing
edges from states 0, 1, and 2 are 15, 22, and 32, respectively. If we can partition the sets
of outgoing edges from state 1 and state 2, each into two subsets of edges of total weight at
most 16, then it follows that the weights in the graph H obtained from the corresponding
out-splitting will all be 1, as desired. This indeed can be done as follows, where each partition
element E(r)

u is represented by the respective label set L(r)
u (labels that correspond to edges

with weight 2 are underlined):

L0 = {0000000, 0000001, 0000010, 0000100, 0001000, 0001001, 0010000, 0010001, 0010010} ;
L(1)

1 = {0000000, 0000001, 0000010, 0000100, 0001000, 0001001, 0010000, 0010001, 0010010} ;
L(2)

1 = {0100000, 0100001, 0100010, 0100100} ;
L(1)

2 = {0000000, 0000001, 0000010, 0000100, 0001000, 0001001, 0010000, 0010001, 0010010, 1001001} ;
L(2)

2 = {0100000, 0100001, 0100010, 0100100, 1000000, 1000001, 1000010, 1000100, 1001000} .

The reader can verify that the sets E0, E
(1)
1 , E

(2)
1 , E

(1)
2 , and E

(2)
2 have total weights 15, 15,

7, 16, and 16, respectively, as desired (in fact, the weights of E
(1)
2 and E

(2)
2 are forced to be

16).

The resulting split graph H will have five states, 0, 1(1), 1(2), 2(1), and 2(2), and the
induced (AH , n)-super-vector is x′ = (1 1 1 1 1)⊤, implying that the row sums of the

CHAPTER 8. ERROR CORRECTION AND CONCATENATION 231

adjacency matrix

AH =

3 2 2 4 4
3 2 2 4 4
1 1 1 2 2
4 2 2 4 4
2 2 2 5 5

are all at most 16.

The following modification of of the corresponding result (Proposition 5.7) for conven-
tional state splitting shows that in general there always is an x-consistent splitting whenever
we need one.

Proposition 8.9 Let G be an irreducible graph which does not have out-degree at most
n and let x be an (AG, n)-super-vector. Then there is a non-trivial x-consistent splitting of
G.

Proof. By the assumption, some state u in G has out-degree greater than n. By the
pigeon-hole principle, there is a subset E of Eu with at most n edges such that n divides∑

e∈E xτ(e). Partition Eu into two sets E(1)
u ∪ E(2)

u where

E(1)
u = E and E(2)

u = Eu \ E ,

and set
x(1)u = (1/n)

(∑

e∈E
xτ(e)

)
and x(2)u = xu − x(1)u .

It can be readily verified that the partition E(1)
u ∪E(2)

u indeed implies a non-trivial x-consistent
splitting of state u.

Passage from the (AG, n)-super-vector x to the induced (AG′ , n)-super-vector x′ always
preserves the super-vector sum and increases the number of states. Since a super-vector
is always a positive integer vector, it follows that repeated applications of Proposition 8.9
beginning with G eventually yield a graph H with an (AH , n)-super-vector (1 1 . . . 1)⊤ and
therefore with out-degree at most n. As mentioned earlier, if the original presentation G has
finite memory m, then H will be (m, a)-definite on S. Finally, we assign tags to the edges of
H , thereby obtaining an (m, a)-sliding-block compressible (S, n)-excoder E . This establishes
Proposition 8.7.

It may well be possible to merge states in H , resulting in a simpler excoder. Suppose
that u and v are states in H such that every word that can be generated in H by paths
starting at u can also be generated by paths starting at v. We can merge state u into state v
by redirecting all incoming edges to u into v and then deleting state u with all its outgoing
edges. This is the direct analogy of merging in Section 5.5.1.

CHAPTER 8. ERROR CORRECTION AND CONCATENATION 232

Merging can add new words to those that are generated by H (and E), and it may also
give rise to new paths that present words of S. In particular, it may destroy definiteness
on S. However, suppose that there are integers m′ ≥ m and a′ ≥ a such that the following
holds: for every word w ∈ Sm′ that can be generated by a path in H that terminates in
u and for every word w′ ∈ Sa′+1 that can be generated in H from v but not from u, we
have ww′ 6∈ Sm′+a′+1. Under this condition, the merged graph is (m′, a′)-definite on S, since
definiteness on S involves only words in S, which may be a proper subset of the constraint
presented by the merged graph.

Example 8.16 Continuing the discussion in Example 8.15, we observe that L(2)
1 ⊂ L(2)

2 ;

furthermore, since G has memory 1, edges with the same label in E
(2)
1 and E

(2)
2 terminate

in the same state of G. It follows that every word that can be generated in H from 1(2) can
also be generated from 2(2).

Let w be a word that is generated by a path in H that terminates in state 1(2). This
word is also generated in G by a path that terminates in state 1 and, so, w ends with ‘10’.
Let w′ be a word that can be generated in H from 2(2) but not from 1(2). The word w′

necessarily starts with ‘1’ since

L(2)
2 \ L(2)

1 = {1000000, 1000001, 1000010, 1000100, 1001000} .

It follows that ww′ contains the sub-word ‘101’; as such, it violates the (2,∞)-RLL
constraint and, therefore, it does not belong to S. We conclude that the definiteness on S
will be preserved upon merging state 1(2) into state 2(2). Similarly, since L0 = L(1)

1 ⊂ L(1)
2

and L(1)
2 \ L0 = {1001001}, we see that states 0 and 1(1) can be merged into state 2(1) while

preserving definiteness on S. Thus, the resulting merged graph, H ′, has only two states,
a ≡ 2(1) and b ≡ 2(2), and it is (1, 1)-definite on S. In fact, H ′ is (0, 1)-definite on S: since

L(1)
2 ∩ L(2)

2 = ∅, the initial state of the edge that generates the current codeword is uniquely
determined by that codeword.

Finally, we assign tags from {0, 1}4 to the edges of H ′ to obtain the (0, 1)-sliding-block
compressible excoder E2,∞ whose transition table is shown in Table 8.3. In that table, the
rows are indexed by the tags (4-blocks) and the columns by the states of E2,∞. Entry (s, u)
in the table contains the label and terminal state of the outgoing edge from state u that is
tagged by s. Observe that the tags have been assigned to the edges of E2,∞ so that tags
of edges that have the same label (and initial state) will differ in only the last bit. Thus,
whenever the compression of the current 4-block depends on the upcoming 7-codeword, such
dependency is limited only to determining the last bit of the 4-block.

In Table 8.4, we list for each p ≤ 16 the largest value of q which allows a block excoder
at rate p : q as well as the largest value of q which allows a (0, 1)-sliding-block compressible
excoder at rate p : q for the (2,∞)-RLL constraint. The values of q for the block excoder

CHAPTER 8. ERROR CORRECTION AND CONCATENATION 233

a b

0000 0000000, a 0100000, a
0001 0000000, b 0100000, b
0010 0000010, a 0100100, a
0011 0000010, b 0100100, b
0100 0000100, a 1000000, a
0101 0000100, b 1000000, b
0110 0001000, a 1000100, a
0111 0001000, b 1000100, b
1000 0010000, a 1001000, a
1001 0010000, b 1001000, b
1010 0010010, a 0100001, a
1011 0010010, b 1000001, a
1100 0000001, a 0100010, a
1101 0001001, a 0100010, b
1110 0010001, a 1000010, a
1111 1001001, a 1000010, b

Table 8.3: Excoder E2,∞.

p 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

q (block) 1 3 4 6 8 10 11 13 15 17 19 21 22 24 26 28
q ((0, 1)-sliding block) 1 3 5 7 9 10 12 14 16 18 19 21 23 25 27 29

Table 8.4: Maximal values of q for existence of block excoders and (0, 1)-sliding-block com-
pressible excoders for the (2,∞)-RLL constraint.

case can be obtained by (8.1), where the values of |Sq| can be computed using the formulas
in [Imm91, Section 5.2] (it can be verified that the same values of q apply also to (0, 0)-sliding-
block compressible excoders). The values of q for the (0, 1)-sliding-block compressible case
were obtained by actually computing (Aq

G2,∞
, 2p)-super-vectors and verifying that excoders

can be obtained by one round of out-splitting. In particular, the rate 4 : 7 is attained by the
excoder E2,∞ in Example 8.16. It is worthwhile pointing out that a rate 5 : 9 = .5555 . . . is
attainable by a (0, 1)-sliding-block compressible excoder with ten states. This rate is above
the capacity (≈ .5515) by less than 1%. The boldface numbers in Table 8.4 indicate values
of q which are larger (by 1) than those attainable by block codes. The results in Table 8.4
remain unaffected if one were to replace the (2,∞)-RLL constraint with the (2, 15)-RLL
constraint.

We also mention here the existence of the following two (0, 1)-sliding-block compressible
excoders that might be of practical interest: a rate 8 : 9 excoder for the (0, 2)-RLL constraint,
and a rate 5 : 7 excoder for the (1, 7)-RLL constraint; there are no block excoders at such
rates for those constraints.

CHAPTER 8. ERROR CORRECTION AND CONCATENATION 234

8.8.3 Reduction of edge effect in error propagation

Recall that in the analysis of Section 8.7, we made the conservative assumption that a p-
block is wholly corrupted even if only one bit in that p-block is in error. Yet, as we know for
block codes, and as we have demonstrated in Example 8.16 for sliding-block compressible
excoders, special care in the assignment of tags can reduce the dependency of certain bits
in p-blocks on certain channel bits, thereby reducing the effect of error. Specifically, when
using the excoder E2,∞ of Example 8.16, a burst of L = 40 channel bits, while affecting up to
eight 4-blocks, can corrupt only up to 29 bits (and not 32 bits) in those blocks. This, in turn,
allows us to modify Table 8.2 to produce Table 8.5 (the modified entries are indicated by
boldface numbers). It follows from Table 8.5 that for the range 841 ≤ κ ≤ 7, 778, the actual

B D(40, B) ν ρ κ

4 8 544 64 840
5 7 1, 155 70 1, 898
6 6 2, 340 (72) 3, 969
7 5 4, 515 70 7, 778
8 5 10, 280 80 17, 850

Table 8.5: Modified Table 8.2.

redundancy that will be required is strictly less than dictated by Table 8.2. In particular,
for 3, 970 ≤ κ ≤ 7, 778, the savings amount to reducing the redundancy from 80 to 70 bits.

Additional savings can be obtained by using an excoder with more states, as we demon-
strate in the next example.

Example 8.17 Looking closely at Table 8.3, one can see that the compression of the
last bit of the current 4-block depends on the first, second, fourth, and seventh bits of the
upcoming 7-codeword. The dependency on the seventh bit has a slight disadvantage in case of
short bursts—in particular isolated bit-shift errors, where an occurrence of ‘1’ in a constrained
sequence is shifted by one position, thereby resulting in two adjacent erroneous bits in the
constrained sequence. If those two bits cross the boundary of adjacent 7-codewords, the
error may propagate through the compression to up to 9 bits in three 4-blocks.

By allowing more states, we are able to present another rate 4 : 7 excoder for the (2,∞)-
RLL constraint, E ′2,∞, where the compression of the last bit of the current 4-block depends
on the first, second, fourth, and fifth bits of the upcoming 7-codeword (whereas the other
bits of the 4-block depend only on the current 7-codeword). Here, one bit-shift error in the
constrained sequence may affect only two 4-blocks. The excoder E ′2,∞ is obtained through

a different out-splitting of state 2 in G (into states 2(1
′) and 2(2

′)), resulting in four states,
α ≡ 0 = 1(1), β ≡ 1(2), γ ≡ 2(1

′), and δ ≡ 2(2
′), with a transition table as shown in

Table 8.6. The excoder E ′2,∞ is (1, 1)-definite (but not (0, 1)-definite) on the constraint; still,

CHAPTER 8. ERROR CORRECTION AND CONCATENATION 235

α β γ δ

0000 0000000, γ 0100010, α 0000000, γ 0100010, α
0001 0000000, δ 0100010, β 0000000, δ 0100010, β
0010 0000010, α 0100000, γ 0000010, α 0100000, γ
0011 0000010, β 0100000, δ 0000010, β 0100000, δ
0100 0000100, γ − 0000100, γ 1000010, α
0101 0000100, δ − 0000100, δ 1000010, β
0110 0010000, γ − 0010000, γ 1000000, γ
0111 0010000, δ − 0010000, δ 1000000, δ
1000 0010010, α − 0010010, α 1001001, α
1001 0010010, β 0100001, α 0010010, β 0100001, α
1010 0001000, γ 0100100, γ 0100100, γ 0001000, γ
1011 0001000, δ 0100100, δ 0100100, δ 0001000, δ
1100 − − 1000100, γ 1000001, α
1101 0001001, α − 1000100, δ 0001001, α
1111 0000001, α − 0000001, α 1001000, γ
1111 0010001, α − 0010001, α 1001000, δ

Table 8.6: Excoder E ′2,∞.

the particular tagging of the edges makes it (0, 1)-sliding-block compressible. Note that
states α and β have less than 16 outgoing edges and, so, certain elements of {0, 1}4 do not
tag those edges.

Problems

To be filled in.

CHAPTER 8. ERROR CORRECTION AND CONCATENATION 236

Message
✲ ✲ Constrained

Encoder
✲Channel Constrained

Decoder
✲ ECC

Decoder
✲ECC Encoder

(a)

Message
✲

u

Constrained
Encoder E1

✲
w

Channel

ŵ

ECC
Decoder

✲
w

Constrained
Decoder D1

✲
u

❄

w

Systematic
ECC Encoder

✲

Parity

r

Constrained
Encoder E2

✲
y

Channel

ŷ

Constrained
Decoder D2 r̂

✻

(b)

Message
✲

u

Constrained
Encoder E1

✲
w

Channel

ŵ

Lossless
Compressor

✲
ŝ

ECC
Decoder

✲
s

Decompressor
(Excoder)

✲
w

Constrained
Decoder D1

✲
u

❄w

Lossless
Compressor

❄s

Systematic
ECC Encoder

✲

Parity

r

Constrained
Encoder E2

✲
y

Channel

ŷ

Constrained
Decoder D2 r̂

✻

(c)

Figure 8.1: (a) Standard concatenation. (b) Modified concatenation. (c) Modified concate-
nation with lossless compression.

CHAPTER 8. ERROR CORRECTION AND CONCATENATION 237

✲
0 50 100 150 200 250 300 L (bits)

✻

50

100

150

200

250

300

350

400

450

ρ (bits)

Rate 4 : 7 excoder
Rate 8 : 13 excoder
Rate 4 : 6 excoder

Figure 8.2: Redundancy for 4, 096 user bits and various burst lengths using three different
excoders for the (2,∞)-RLL constraint.

0 1 2✲0 0
✛ 0

✻
1

Figure 8.3: Graph presentation G2,∞ of the (2,∞)-RLL constraint.

CHAPTER 8. ERROR CORRECTION AND CONCATENATION 238

x← (1 1 . . . 1)⊤;
while (Ax 6≤ nx)

x← max
{⌈

1
n
Ax

⌉
,x
}
; /∗ apply ⌈·⌉ and max{·, ·} componentwise ∗/

return x;

Figure 8.4: Reversed Franaszek algorithm for computing (A, n)-super-vectors.

Chapter 9

Error-Correcting Constrained Coding

In this chapter, we consider codes that have combined error-correction and constrained
properties. We begin with a discussion of error mechanisms in recording systems and the
corresponding error types observed. We then discuss associated metrics imposed on con-
strained systems—primarily the Hamming, Lee, and Euclidean metrics—and we survey the
literature on bounds and code constructions. In addition, we consider two important classes
of combined error-correction/constrained codes: spectral null codes and forbidden list codes.

9.1 Error-mechanisms in recording channels

Magnetic recording systems using peak detection, as described in Chapter 1 of this chapter,
are subject to three predominant types of errors at the peak detector output. The most
frequently observed error is referred to as a bitshift error, where a pair of recorded symbols
01 is detected as 10 (a left bitshift), or the pair 10 is detected as 01 (a right bitshift). Another
commonly occurring error type is called a drop-out error or, sometimes, a missing-bit error,
where a recorded symbol 1 is detected as a 0. Less frequently, a drop-in error or extra-bit
error results in the detection of a recorded 0 as a 1. It is convenient to refer to the drop-in
and drop-out errors as substitution errors.

Hamming-metric constrained codes are most pertinent in recording channels that behave
like a binary symmetric channel, in which drop-in and drop-out errors occur with equal
probability. However, there are alternative models of interest that suggest the use of codes
designed with other criteria in mind beyond optimization of minimum Hamming distance.
Among these models, the two that have received the most attention are: the asymmetric
channel—where only drop-in errors or drop-out errors, but not both, are encountered; and
the bitshift channel—where a symbol 1 is allowed to shift position by up to a prespecified
number of positions.

239

CHAPTER 9. ERROR-CORRECTING CONSTRAINED CODING 240

Another error type we will consider is a synchronization error, resulting in an insertion
or deletion of a symbol 0 in the detected symbol sequence. In practical digital recording
systems on disks and tape, this type of error can have catastrophic consequences with re-
gard to recovery of information that follows the synchronization loss. As a result, recording
devices use synchronization and clock generation techniques in conjunction with code con-
straints, such as the k constraint in RLL codes for peak detection and the G constraint in
PRML (0,G/I) codes, to effectively preclude such errors. Nevertheless, RLL-constrained
synchronization-error-correcting codes have some intrinsic coding-theoretic interest, and we
will discuss them below. Codes capable of correcting more than one insertion and deletion
error may also be used to protect against bitshift errors, which result from the insertion and
deletion of 0’s on either side of a 1. The edit distance, or Levenshtein metric, and the Lee
metric arise naturally in the context of synchronization errors.

In recording systems using partial-response with some form of sequence detection, ex-
emplified by the PRML system described in Chapter 1, the maximum-likelihood detector
tends to generate burst errors whose specific characteristics can be determined from the error
events associated with the underlying trellis structure. We will briefly survey various trellis-
coded modulation approaches for PRML that yield codes which combine (0,G/I) constraints
with enhanced minimum Euclidean distance.

In practice, constrained codes must limit error propagation. Sliding-block decoders of the
most frequently used (d, k)-RLL codes and PRML (0,G/I) codes typically will propagate
a single detector error into a burst of length no more than eight bits. For example, the
maximum error propagation of the industry standard (2, 7)-RLL and (1, 7)-RLL codes are
four bits and five bits, respectively, and the PRML (0, 4/4) code limits errors to a single byte.
The conventional practice in digital recording devices is to detect and correct such errors by
use of an outer error-correcting code, such as a Fire code, interleaved Reed-Solomon code,
or a modification of such a code.

9.2 Gilbert-Varshamov-type lower bounds

9.2.1 Classical bound for the Hamming metric

There are several error metrics that arise in the context of digital recording using constrained
sequences. For substitution-type errors and bitshift errors, possibly propagated into burst
errors by the modulation decoder, it is natural to consider error-correcting codes based upon
the Hamming metric. It is therefore of interest to investigate Hamming distance properties
of constrained sequences.

The Gilbert-Varshamov bound provides for unconstrained sequences over a finite alphabet
Σ a lower bound on the size of codes with prespecified minimum Hamming distance. In this

CHAPTER 9. ERROR-CORRECTING CONSTRAINED CODING 241

section we present bounds of the Gilbert-Varshamov type and apply them to the class of
runlength-limited binary sequences.

Let Σ denote a finite alphabet of size |Σ| and denote the Hamming distance between two
words w,w′ ∈ Σq by ∆Hamming(w,w

′). For a word w ∈ Σq, let BΣq(w; r) be the Hamming
sphere of radius r in Σq centered at w, that is,

BΣq(w; r) = {w′ : ∆Hamming(w,w
′) ≤ r} .

Let VΣq(w; r) be the cardinality or volume of the sphere BΣq(w; r). This quantity is
∑r

i=0

(
q
i

)
(|Σ|−1)i, independent of the center word w, so we will use the shorthand nota-

tion VΣq(r).

The Gilbert-Varshamov bound provides a lower bound on the achievable cardinality M
of a subset of Σq with minimum Hamming distance at least d. We will refer to such a subset
as a (Σq,M, d)-code.

Theorem 9.1 There exists a (Σq,M, d)-code with

M ≥ |Σ|q
VΣq(d−1) .

For future reference, we recall that the proof of this bound is obtained by iteratively
selecting the lth codeword wl in the code from the complement of the union of Hamming
spheres of radius q−1 centered at the previously selected codewords, Σq−∪l−1

i=1BΣq(wi; d−1).
Continuing this procedure until the union of spheres exhausts Σq, an (Σq,M, d)-code is
obtained whose size M satisfies the claimed inequality.

Let δ = d/q denote the relative minimum distance and let H(δ; z) = −δ · log δ − (1 −
δ) · log(1−δ) + δ · log(z−1), for 0 ≤ δ ≤ 1 − (1/z), be a z-ary generalization of the entropy
function. The Gilbert-Varshamov bound in terms of the rate R of the resulting code can be
expressed as

R =
logM

q
≥ log |Σ| − logVΣq(d− 1)

q
≥ log |Σ| −H(δ; |Σ|)

(for the last inequality, we refer the reader to [Berl84, pp. 300–301].

9.2.2 Hamming-metric bound for constrained systems

Any generalization of the Gilbert-Varshamov bound to a constrained system S must take
into account that the volumes of Hamming spheres in S∩Σq are not necessarily independent
of the specified centers. Before deriving such bounds, we require a few more definitions. Let

CHAPTER 9. ERROR-CORRECTING CONSTRAINED CODING 242

X denote an arbitrary subset of Σq. For a word w ∈ X , we define the Hamming sphere of
radius r in X by

BX(w; r) = BΣq(w; r) ∩ X .

The maximum volume of the spheres of radius r in X is

VX,max(r) = max
w∈X
|BX(w; r)| ,

and the average volume of spheres of radius r in X is given by

VX(r) =
1

|X|
∑

w∈X
|BX(w; r)| .

We also define the set BX(r) of pairs (w,w′) of words in X at distance no greater than r,

BX(r) = {(w,w′) : ∆Hamming(w,w
′) ≤ r} .

Note that |BX(r)| = VX(r) · |X|. Finally, we define an (X,M, d)-code to be a (Σq,M, d)-code
that is a subset of X .

A straightforward application of the Gilbert-Varshamov construction yields the following
result.

Lemma 9.2 Let X be a subset of Σq and d be a positive integer. Then, there exists an
(X,M, d)-code with

M ≥ |X|
VX,max(d−1)

.

The following generalization of the Gilbert-Varshamov bound, first proved by Kolesnik
and Krachkovsky [KolK91], is the basis for the more refined bounds derived later in the
section. It provides a bound based upon the average volume of spheres, rather than the
maximum volume, as was used in Lemma 9.2.

Lemma 9.3 Let X be a subset of Σq and d be a positive integer. Then, there exists an
(X,M, d)-code with

M ≥ |X|
4VX(d−1)

=
|X|2

4|BX(d−1)|
.

Proof. Consider the subset X ′ of words w ∈ X whose Hamming spheres of radius d−1
satisfy |BX(w; d−1)| ≤ 2VX(d−1). The subset X ′ must then satisfy |X ′| ≥ |X|/2. If we
iteratively select codewords from X ′, following the procedure used in the derivation of the
Gilbert-Varshamov bound, we obtain an (X,M, d)-code, where

M ≥ |X ′|
2VX(d−1)

≥
1
2
|X|

2VX(d−1)
=

|X|2
4|BX(d−1)|

,

CHAPTER 9. ERROR-CORRECTING CONSTRAINED CODING 243

as desired.

In general, neither of the bounds in the preceding two lemmas is strictly superior to the
other, as observed by Gu and Fuja [GuF93]. However, using an analysis of a new code search
algorithm—dubbed the “altruistic algorithm” to distinguish it from the “greedy algorithm”
that lies at the heart of the standard Gilbert-Varshamov form of bound—they eliminated
the factor of 4 in the denominator of the bound in Lemma 9.3. This improved lower bound,
stated below as Lemma 9.4, is always at least as good as the bound in Lemma 9.2, and a
strict improvement over Lemma 9.3.

The key element of the improved code search algorithm is that, at each codeword selection
step, the remaining potential codeword with the largest number of remaining neighbors at
distance d−1 or less takes itself out of consideration. As noted in [GuF93], a similar approach
was developed independently by Ytrehus [Yt91a], who applied it to compute bounds for
runlength-limited codes with various error detection and correction capabilities [Yt91b].

Lemma 9.4 Let X be a subset of Σq and d be a positive integer. Then, there exists an
(X,M, d)-code with

M ≥ |X|
VX(d−1)

=
|X|2

|BX(d−1)|
.

Kolesnik and Krachkovsky [KolK91] applied Lemma 9.3 to sets X consisting of words
of length q in runlength-limited and charge constrained systems. Their asymptotic lower
bound was based upon an estimate of the average volume of constrained Hamming spheres,
whose centers ranged over all of S ∩ Σq. Their estimate made use of a generating function
for pairwise q-block distances in these families of constrained systems.

9.2.3 Improved Hamming-metric bounds

Marcus and Roth [MR92] found improved bounds by considering subsets X of S ∩Σq where
additional constraints, depending upon the designed relative minimum distance δ, are im-
posed upon the frequency of occurrence of code symbols w ∈ Σ. We now discuss the
derivation of these bounds.

Let S be a constrained system over Σ presented by an irreducible deterministic graph
G = (V,E, L). Denote by ∆(G) the set of all stationary Markov chains onG (see Section 3.5).
The entropy of P ∈ ∆(G) is denoted by H(P).

Given a stationary Markov chain P ∈ ∆(G), along with a vector of real-valued functions
f = (f1 f2 . . . ft) : EG → IRt, we denote by EP(f) the expected value of f with respect to P:

EP(f) =
∑

e∈EG

P(e)f(e) .

CHAPTER 9. ERROR-CORRECTING CONSTRAINED CODING 244

For a subset W = {w1, w2, . . . , wt} of Σ, we define the vector indicator function IW :
EG → IRt by IW = (Iw1, Iw2 , . . . , Iwt

), where Iw : EG → IR is the indicator function for a
symbol w ∈ Σ:

Iw(e) =
{

1 if LG(e) = w
0 otherwise

.

Let G × G denote the labeled product graph defined by VG×G = VG × VG = {(u, u′) :
u, u′ ∈ VG} and EG×G = EG × EG. There is an edge (e, e′) in G × G from state (u, u′) to
state (v, v′) whenever e is an edge in G from state u to state u′ and e′ is an edge in G from
state v to v′. The labeling on G×G is defined by LG×G(e, e

′) = (LG(e), LG(e
′)). We define

on EG×G the coordinate indicator functions I(1)W and I(2)W , given by I(1)W ((e, e′)) = IW (e) and

I(2)W ((e, e′)) = IW (e′). Finally, we define the coordinate distance function D : EG×G → IR by

D((e, e′)) =
{

1 if LG(e) 6= LG(e
′)

0 otherwise
.

For a given symbol subset W of size t and a vector p ∈ [0, 1]t, we now define the quantities

SW (p) = sup
P ∈ ∆(G)
EP (IW) = p

H(P)

and
TW (p, δ) = sup

P ′ ∈ ∆(G×G)
EP ′(I(i)W) = p , i = 1, 2

EP ′(D) ∈ [0, δ]

H(P ′) .

Finally, to concisely state the bounds, we introduce the following function of the relative
designed distance δ:

RW (δ) = sup
p∈[0,1]t

{ 2SW (p)− TW (p, δ) } .

The following theorem is proved in [MR92]. It is obtained by application of Lemma 9.3
to the words in S ∩ Σq generated by cycles in G starting and ending at a specified state
u ∈ G, with frequency of occurrence of the symbols wi ∈ W given approximately by pi, for
i = 1, 2, . . . , t.

Theorem 9.5 Let S be a constrained system over Σ presented by a primitive determinis-
tic graph, let δ > 0, and letW be a subset of Σ of size t. Then there exist (S∩Σq,M, δq)-codes
satisfying

logM

q
≥ RW (δ)− o(1) ,

where o(1) stands for a term that goes to zero as q tends to infinity.

CHAPTER 9. ERROR-CORRECTING CONSTRAINED CODING 245

Computation of the quantities SW (p) and TW (p, δ) requires the solution of a constrained
optimization problem in which the objective function P → H(P) is concave, and the con-
straints are linear. The theory of convex duality based upon Lagrange multipliers provides a
method to translate the problem into an unconstrained optimization with a convex objective
function [MR92].

In order to reformulate the problem, we need to introduce a vector-valued matrix function
that generalizes the adjacency matrix AG. For a function f : EG → IRt and x ∈ IRt, let
AG;f (x) be the matrix defined by

(
AG;f (x)

)
u,v

=
∑

e : σ(e)=u, τ(e)=v

2−x·f(e)

We remark that for any function f , the matrix AG;f (0) is precisely the adjacency matrix of
G.

The following lemma is the main tool in translating the constrained optimization problem
to a more tractable form. It is a consequence of standard results in the theory of convex
duality.

Lemma 9.6 Let G and f be as above. Let g : EG → IRl, and define ψ = [f , g] : EG →
IRt+l. Then, for any r ∈ IRt and s ∈ IRl,

sup
P ∈ ∆(G)
EP(f) = r
EP(g) ≤ s

H(P) = inf
x ∈ IRt

z ∈ (IR+)l

{
x · r+ z · s + log λ(A

G;ψ(x, z))
}
.

Applying Lemma 9.6 to Theorem 9.5, we can derive dual formulas for the lower bounds
RW (δ), for a specified symbol set W and relative minimum distance δ. For the case where
W consists of a single symbol w ∈ Σ, the resulting formula is particularly tractable. To
express it succinctly, we define

Jw =
[
I(1){w} + I

(2)
{w},D

]
: EG×G → IR2

and, to simplify notation, Sw(p) = S{w}
(
(p)
)
, Tw(p, δ) = T{w}

(
(p), δ

)
, and Rw(δ) = R{w}(δ).

The lower bound on attainable rates follows from the following theorem.

Theorem 9.7 Let S be a constrained system over Σ presented by a primitive graph G,
let δ > 0, and let w ∈ Σ. Then

a)
Sw(p) = inf

x∈IR
{px+ log λ(AG;Iw(x))} ;

CHAPTER 9. ERROR-CORRECTING CONSTRAINED CODING 246

b)
Tw(p, δ) = inf

x∈IR,z∈IR+
{2px + δz + log λ(AG×G;Jw

(x, z))} ;

c)

Rw(δ) = sup
p∈[0,1]

{
2 inf
x∈IR

{
px+ log λ(AG;Jw

(x))
}

− inf
x∈IR, z∈IR+

{
2px+ δz + log λ(AG×G;Jw

(x, z))
}}

.

In particular, if P ∈ ∆(G) has maximal entropy rate

H(P) = sup
P ′∈∆(G)

H(P ′) ,

and the symbol probability p equals EP(Iw), then
Sw(p) = log λ(AG)

and, setting x = 0 in part b) of Theorem 9.7,

Tw(p, δ) ≤ inf
z∈IR+

{δz + log λ(AG×G;Jw
(0, z))} .

From Theorem 9.5 and part c) of Theorem 9.7, we recover the lower bound of Kolesnik
and Krachkovsky.

Corollary 9.8
logM

q
≥ RKK(δ)− o(1) ,

where
RKK(δ) = 2 log λ(AG)− inf

z∈IR+
{δz + log λ(AG×G;Jw

(0, z))} .

Better lower bounds can be obtained by prescribing the frequency of occurrence of words
w of arbitrary length, rather than only symbols. See [MR92] for more details.

Example 9.1 For the (0, 1)-RLL constrained system, consider the cases where W =
{11} and W = {111}, with corresponding lower bounds R11 and R111. It is not difficult to
see that R11(δ) must equal R1(δ). Table 9.1 from [MR92] gives the values of RKK(δ), R1(δ),
and R111(δ) for selected values of δ.

We remark that, in some circumstances, one might assign to each edge e ∈ EG a cost
associated to its use in a path generating a sequence in S. Lower bounds on the rate of
codes into S with specified relative minimum distance δ and average cost constraint have
been derived by Winick and Yang [WY93] and Khayrallah and Neuhoff [KN96].

CHAPTER 9. ERROR-CORRECTING CONSTRAINED CODING 247

δ RKK(δ) R1(δ) R111(δ)

0.00 0.6942 0.6942 0.6942
0.05 0.4492 0.4504 0.4507
0.10 0.3055 0.3096 0.3109
0.15 0.2014 0.2094 0.2119
0.20 0.1241 0.1361 0.1399
0.25 0.0679 0.0831 0.0877
0.30 0.0295 0.0461 0.0506
0.35 0.0073 0.0218 0.0254
0.40 0 0.0077 0.0097
0.45 0 0.0013 0.0016
0.50 0 0 0

Table 9.1: Attainable rates for (0, 1)-RLL constrained system.

9.3 Towards sphere-packing upper bounds

In comparison to lower bounds, much less is known about upper bounds on the size of
block codes for constrained systems. We describe here a general technique introduced by
Abdel-Ghaffar and Weber in [AW91]. Let S be a constrained system over Σ and let X be
a nonempty subset of Σq. For a word w ∈ Σq, denote by BX(w; t) the set of words w′ ∈ X
which are at distance t or less from w according to some distance measure ∆(w,w′). If C is
an (S ∩ Σq,M, d = 2t+1) code, then, by the sphere-packing bound, we must have

∑

w∈C
|BX(w; t)| ≤ |X| (9.1)

for any nonempty subset X ⊆ Σq. In the conventional sphere-packing bound, the subset X
is taken to be the whole set Σq. Improved bounds may be obtained by taking X to be a
proper subset of Σq. Specifically, define

N(S,X ; i) = |{w ∈ S ∩ Σq : |BX(w; t)| = i}| .
Now, if X is contained in

⋃
w∈S∩Σq BΣq(w; t), then

|X|∑

i=0

iN(S,X ; i) ≥ |X| ,

so there exists an integer j, 1 ≤ j ≤ |X|, such that

j−1∑

i=0

iN(S,X ; i) < |X| ,

and
j∑

i=0

iN(S,X ; i) ≥ |X| .

CHAPTER 9. ERROR-CORRECTING CONSTRAINED CODING 248

Abdel-Ghaffar and Weber [AW91] used these inequalities to establish the following upper
bound on the code cardinality.

Theorem 9.9 Let C be an (S ∩ Σq,M, d = 2t+1) code and let X be a nonempty subset
of
⋃

w∈S∩Σq BΣq(w; t). Then

|C| ≤
j−1∑

i=0

N(S,X ; i) +

⌊
|X| −∑j−1

i=0 iN(S,X ; i)

j

⌋
.

Proof. If |C| ≤ ∑j−1
i=0 N(S,X ; i), then we are done already. So, we may assume that |C| >∑j−1

i=0 N(S,X ; i). Divide C into two subsets C1, C2 where C1 consists of the
∑j−1

i=0 N(S,X ; i)
elements w of C with the smallest |BX(w; t)|. Then

j−1∑

i=0

iN(S,X ; i) ≤
∑

w∈C1
|BX(w; t)|,

and

j(|C| −
j−1∑

i=0

N(S,X ; i)) ≤
∑

w∈C2
|BX(w; t)|.

Now, use the preceding two inequalities to lower bound the left-hand side of inequality (9.1):

j−1∑

i=0

iN(S,X ; i) + j(|C| −
j−1∑

i=0

N(S,X ; i)) ≤
∑

w∈C
|BX(w; t)| ≤ |X|.

The theorem follows from this.

For the special case of bitshift errors, Abdel-Ghaffar and Weber obtain in [AW91] upper
bounds on single-bitshift correcting codes C for (d, k)-RLL constrained systems S as follows.
First, partition every code C ⊆ S ∩ Σq into constant-weight subsets C = ∪wCw, such that
each element of Cw has Hamming weight w; then apply Theorem 9.9 to the subsets Cw, for
suitably chosen sets X . Table 9.2 shows results for selected RLL constraints and codeword
lengths.

Constructions of codes for channels with substitution, asymmetric, and bitshift errors, as
well as bounds on themaximum cardinality of such codes of fixed length, have been addressed
by numerous other authors, for example Blaum [Blaum91]; Ferreira and Lin [FL91]; Fredrick-
son and Wolf [FW64]; Immink [Imm91]; Kolesnik and Krachkovsky [KolK94]; Kuznetsov and
Vinck [KuV93a], [KuV93b]; Lee and Wolf [Lee88], [LW87], [LW89]; Patapoutian and Ku-
mar [PK92]; Shamai and Zehavi [SZ91]; and Ytrehus [Yt91a], [Yt91b].

CHAPTER 9. ERROR-CORRECTING CONSTRAINED CODING 249

q (d, k) = (2, 7) (d, k) = (3, 10) (d, k) = (4, 12) (d, k) = (5, 15)

3 1
4 1 1
5 1 1 1
6 2 1 1 1
7 2 2 1 1
8 3 3 2 1
9 4 2 2 2
10 5 3 3 2
11 8 5 2 2
12 10 6 3 3
13 14 7 5 3
14 18 9 5 3
15 26 13 7 5
16 35 16 8 6
17 48 21 11 7
18 68 29 14 9
19 91 38 18 11
20 126 49 22 13
21 176 63 28 16
22 239 84 36 21
23 329 110 46 25
24 455 147 57 32
25 627 194 73 40
26 877 255 93 49
27 1204 335 117 61
28 1670 440 151 75
29 2302 581 193 95
30 3206 774 244 117
31 4464 1024 311 143
32 6182 1356 396 179

Table 9.2: Upper bounds on sizes of (d, k)-RLL constrained single shift-error correcting codes
of length 3 ≤ q ≤ 32.

CHAPTER 9. ERROR-CORRECTING CONSTRAINED CODING 250

9.4 Distance properties of spectral-null codes

Finally, we mention that spectral-null constrained codes—in particular, dc-free codes—with
Hamming error-correction capability have received considerable attention. See, for example,
Barg and Litsyn [BL91]; Blaum and van Tilborg [TiBl89]; Blaum, Litsyn, Buskens, and
van Tilborg [BLBT93]; Calderbank, Herro, and Telang [CHT89]; Cohen and Litsyn [CL91];
Etzion [Etz90]; Ferreira [Fe84]; Roth [Roth93]; Roth, Siegel, and Vardy [RSV94]; Waldman
and Nisenbaum [WN95]. Spectral-null codes also have inherent Hamming-distance proper-
ties, as shown by Immink and Beenker [ImmB87]. They considered codes over the alphabet
{+1,−1} in which the order-m moment of every codeword x = (x1 x2 . . . xn) vanishes for
m = 0, 1, . . . , K−1, i.e.,

n∑

i=1

imxi = 0, m = 0, 1, . . . , K−1 .

They referred to a code with this property as a code with order-(K−1) zero-disparity. For
each codeword x, the discrete Fourier transform, given by Φx(f) =

∑n
ℓ=1 xℓe

−2πfℓ, where
 =
√
−1, satisfies

dmΦx(f)

dfm

∣∣∣∣∣
f=0

= 0 for m = 0, 1, . . . , K−1 .

This implies by part 8 of Problem 3.35 that the power spectral density of the ensemble of
sequences generated by randomly concatenating codewords vanishes at f = 0, along with its
order-ℓ derivatives for ℓ = 1, 2, . . . , 2K−1. A code, or more generally a constraint, with this
property is said to have an order-K spectral-null at f = 0.

The following theorem, from [ImmB87], provides a lower bound on the minimum Ham-
ming distance of a code with spectral null at f = 0.

Theorem 9.10 Let C be a code with order-K spectral null at f = 0. Let x,y be distinct
codewords in C. Then, their Hamming distance satisfies

∆Hamming(x,y) ≥ 2K .

This result will play a role in the subsequent discussion of codes for the Lee and Euclidean
metrics.

9.5 Synchronization/bitshift error correction

Synchronization errors, resulting from the insertion or deletion of symbols, and coding meth-
ods for protection against such errors have been the subject of numerous investigations. The

CHAPTER 9. ERROR-CORRECTING CONSTRAINED CODING 251

edit distance, introduced by Levenshtein and often referred to as the Levenshtein metric, is
particularly appropriate in this setting, as it measures the minimum number of symbol in-
sertions and deletions required to derive one finite-length sequence from another. The reader
interested in codes based upon the Levenshtein metric is referred to Bours [Bours94]; Iizuka,
Hasahara, and Namahawa [IKN80]; Kruskal [Krusk83]; Levenshtein [Lev65], [Lev67], [Lev71],
[Lev91]; Levenshtein and Vinck [LV93]; Tanaka and Kasai [TK76]; Tenengolts [Ten76],
[Ten84]; and Ullman [U66], [U67].

When dealing with synchronization errors (insertions and deletions of 0’s) in (d, k)-RLL
constrained systems, it is convenient to represent a constrained sequence as a sequence of
“runs,” where a run corresponds to a symbol 1 along with the subsequent string of con-
tiguous symbols 0 preceding the next consecutive symbol 1. We associate to each run a
positive integer called the “runlength” representing the number of symbols in the run. As an
example, the (1, 7)-RLL sequence 10100000001000100 corresponds to the sequence of runs
with runlengths 2, 8, 4, 3.

Let w be a (d, k)-constrained sequence with n runs and corresponding runlength sequence
s = s1, s2, . . . , sn. Insertion of e symbols 0 in the jth run of w generates the sequence with
runlengths s′ = s1, . . . , sj +e, sj+1, . . . , sn, while deletion of e symbols 0 from run j generates
the sequence of runlengths s′ = s1, . . . , sj − e, sj+1, . . . , sn. (In the latter, e cannot exceed
sj.) An e-synchronization error denotes such a pattern of e insertions or deletions occurring
within a single run. Note, also, that a bitshift error, or more generally, an e-bitshift error
consisting of e left-bitshift errors or e right-bitshift errors occurring at the boundary between
two adjacent runs, may be viewed as a pair of e-synchronization errors in consecutive runs,
one being an insertion error, the other a deletion error.

This “runlength”-oriented viewpoint has been used in the design of RLL codes capable
of detecting and correcting bitshift and synchronization errors. Hilden, Howe, and Wel-
don [Hild91] constructed a class of variable length codes, named Shift-Error-Correcting
Modulation (SECM) codes, capable of correcting up to some prespecified number of ran-
dom e-bitshift errors, for a preselected shift-error size e. The runlengths are regarded as
elements of a finite alphabet F whose size, usually taken to be an odd prime integer, satis-
fies k − d + 1 ≥ |F | ≥ 2e + 1. The binary information string is viewed as a sequence of k
runs r = r1, r2, . . . , rk, satisfying (d, k) constraints, with runlengths s = s1, s2, . . . , sk. The
sequence of transition positions t = t1, t2, . . . , tk is then defined by:

tj =
j∑

i=1

si (mod |F |) , for j = 1, 2, . . . , k .

These values are then applied to a systematic encoder for an [n, k, d] BCH code over a finite
field F of prime size, yielding parity symbols tk+1, tk+2, . . . , tn. A (d, k)-constrained binary
codeword is then generated by appending to the original information runs the sequence of
parity runs rk+1, rk+2, . . . , rn whose runlengths sk+1, sk+2, . . . , sn satisfy

d+ 1 ≤ sj < d+ 1 + |F | , for j = k+1, k+2, . . . , n

CHAPTER 9. ERROR-CORRECTING CONSTRAINED CODING 252

and

tj =
j∑

i=1

si (mod |F |) , for j = k+1, k+2, . . . , n .

In particular, for |F | = 2t+1, the resulting code may be used to correct up to t random
1-bitshift errors, where t is the designed error-correcting capability of the BCH code. Note
that a similar construction provides for correction of random e-synchronization errors by
encoding the runlengths themselves, rather than the transition positions. The interpretation
of bitshift and, more generally, synchronization errors in terms of their effect on runlengths
leads naturally to the consideration of another metric, the Lee metric.

The Lee distance ∆Lee(x, y) of two symbols x, y in a finite field F of prime size is
the smallest absolute value of any integer congruent to the difference x − y modulo |F |.
For vectors x, y in F n, the Lee distance ∆Lee(x,y) is the sum of the component-wise Lee
distances. The Lee weight wLee(x) of a vector x is simply ∆Lee(x, 0), where 0 denotes the
all-zero vector of length n.

Among the families of codes for the Lee-metric are the well-known negacyclic codes
introduced by Berlekamp [Berl84, Ch. 9], the family of cyclic codes devised by Chiang and
Wolf [CW71], and the Lee-metric BCH codes investigated by Roth and Siegel [RS92], [RS94].

All of these Lee-metric code constructions have the property that the redundancy required
for correction of a Lee-metric error vector of weight t is approximately t symbols. In contrast,
codes designed for the Hamming metric require approximately 2t check symbols to correct
t random Hamming errors. In a recording channel subject to e-synchronization errors and
e-bitshift errors, where the predominant errors correspond to small values of e, one might
anticipate reduced overhead using a Lee-metric coding solution. This observation was made
independently by Roth and Siegel [RS94], Saitoh [Sai93a], [Sai93b], and Bours [Bours94] (see
also Davydov [Dav93] and Kabatiansky, Davydov, and Vinck [KDV92]), who have proposed
a variety of constrained code constructions based on the Lee-metric, and have derived bounds
on the efficiency of these constructions, as we now describe.

For bitshift-error correction, Saitoh proposed a construction yielding codes with fixed
binary symbol length. He showed that the construction is asymptotically optimal with
respect to a Hamming bound on the redundancy for single-bitshift error-correcting (d, k)-
RLL codes.

The construction of Saitoh requires that the codewords begin with a symbol 1 and end
with at least d symbols 0. The codewords will have a fixed number of runs and, consequently,
a variable length in terms of binary symbols. The codewords are defined as follows. If the
runlengths are denoted si, i = 0, 1, . . . , n, the sequence of runlengths si, for even values of i,
comprise a codeword in a single-error correcting code over the Lee metric. The sequence of
runlengths si, for i ≡ 3 (mod 4), comprise a codeword in a single error-detecting code for the
Lee metric. It is evident that, in the presence of a single bitshift error, the Lee-metric single
error-correcting code will ensure correct determination of the runlengths si for even values of

CHAPTER 9. ERROR-CORRECTING CONSTRAINED CODING 253

i, indicating if the erroneous runlength, say s2j , suffered an insertion or deletion of a symbol
0. The Lee-metric error-detecting code will then complete the decoding by determining if
the corresponding deletion or insertion applies to runlength s2j−1 or s2j+1.

In the broader context of synchronization errors, Roth and Siegel described and analyzed
a construction of (d, k)-RLL codes for detection and correction of such errors as an application
of a class of Lee-metric BCH codes [RS92]. The shortened BCH code of length n over a finite
prime field F , denoted C(n, r;F), is characterized by the parity-check matrix

H(n, r;F) ≡

1 1 . . . 1
β1 β2 . . . βn
β2
1 β2

2 . . . β2
n

...
... . . .

...
βr−1
1 βr−1

2 . . . βr−1
n

,

where (β1 β2 . . . βn) is the locator vector, consisting of distinct nonzero elements of the
smallest h-dimensional extension field Fh of F of size greater than n.

Hence, a word x = (x1 x2 . . . xn) ∈ F n is in C(n, r;F) if and only if it satisfies the
following r parity-check equations over Fh:

n∑

i=1

xiβ
m
i = 0 , for m = 0, 1, . . . , r−1 .

The following theorem provides a lower bound on the minimum Lee distance of C(n, r;F),
denoted dLee(n, r;F).

Theorem 9.11

dLee(n, r;F) ≥
{

2r for r ≤ (|F | − 1)/2
|F | for (|F |+ 1)/2 ≤ r < |F | .

This bound follows from Newton’s identities [ImmB87],[KS91a] and can be regarded, in
a way, as the analogue of the BCH lower bound r+1 on the minimum Hamming distance
of C(n, r;F), although the proof of the 2r lower bound is slightly more complicated. For
r ≥ |F | we can bound dLee(n, r;F) from below by the minimum Hamming distance r+1.

The 2r lower bound does not hold in general for all values of r; however, it does hold for
all r in the base-field case n ≤ |F |−1. The 2r lower bound for the base-field case takes the
following form.

Theorem 9.12 For r ≤ n ≤ |F |−1,

dLee(n, r;F) ≥ 2r .

CHAPTER 9. ERROR-CORRECTING CONSTRAINED CODING 254

The primitive case corresponds to codes C(n, r;F) for which n = |F |h−1. The redundancy
of such codes is known to be bounded from above by 1 + (r−1)h. This bound, along with
the following lower bound derived by a sphere-packing argument, combine to show that the
primitive codes are near-optimal for sufficiently small values of r.

Lemma 9.13 (Sphere-packing bound, Golomb and Welch [GoW68], [GoW70]) A code
over a finite prime field F of length n, size M , and minimum Lee distance ≥ 2r−1 for some
r ≤ (|F |+ 1)/2 must satisfy the inequality

M ·
r−1∑

i=0

2i
(
n

i

)(
r−1
i

)
≤ |F |n .

Theorem 9.14 A code over a finite prime field F of length n, size M , and minimum
Lee distance ≥ 2r−1 for some r ≤ (|F |+ 1)/2 must satisfy the inequality

(r−1)
(
log|F |(n−r+2)− log|F |(r−1)

)
≤ n − log|F |M .

Proof. By Lemma 9.13 we have

(n−r+2)r−1

(r−1)r−1
· 2r−1 ≤ |F |n/M .

The theorem now follows by taking the logarithm to base |F | of both sides of this inequality.

The construction of synchronization-error correcting codes based upon the Lee-metric
BCH codes is as follows. Given constraints (d, k), we choose |F | ≤ k−d+1. We re-
gard every run of length s in the (d, k)-constrained information sequence as an element
(s−d−1) (mod |F |) of F , and use a systematic encoder for C(n, r;F) to compute the cor-
responding check symbols in F . Each check symbol a, in turn, is associated with a run of
length a + d + 1, where a is the smallest nonnegative integer such that a = a · 1, where
1 stands for the multiplicative unity in F . The code C(n, r;F), with r ≤ (|F | − 1)/2 and
n ≤ |F |h − 1 can simultaneously correct b bitshift errors and s non-bitshift synchronization
errors whenever 2b + s < r. (Observe that, when counting errors, an e-bitshift error is
counted as e bitshift errors; this applies respectively also to synchronization errors. Also,
bitshift or synchronization errors may create runlengths that violate the (d, k)-constraint.
In such a case we can mark the illegal runlength as an erasure rather than an error.) The
redundancy required will be no more than 1 + (r−1)h symbols from the alphabet F , and
we recall that Theorem 9.14 indicates the near-optimality of the Lee-metric primitive BCH
codes C(|F |h − 1, r;F), for values r ≪ |F |h − 1.

Example 9.2 Two typical choices for parameters (d, k) are (1, 7) and (2, 8), both sat-
isfying k − d + 1 = 7. Setting |F | = 7 and r = 3, we obtain a family of codes for these

CHAPTER 9. ERROR-CORRECTING CONSTRAINED CODING 255

constraints, based upon C(n, 3; 7), that can correct any error pattern of Lee weight 2 (and
detect error patterns of Lee weight 3). In particular, the codes will correct one single-bitshift
(1-bitshift) error or any other combination of two insertions/deletions of symbols 0. For
n ≤ |F |h − 1, the required redundancy is no more than 1 + 2h symbols.

As mentioned above, the class of Hamming-metric SECM codes are directed primarily
toward the situation when only bitshift-type errors occur. The constructions based upon Lee-
metric codes can be modified to improve their efficiency in this type of error environment by
recording, instead of the nominal codeword x = (x1 x2 . . . xn), the differentially precoded
word y = (y1 y2 . . . yn) defined by y1 = x1 and yi = xi − xi−1 for 2 ≤ i ≤ n, where all
operations are taken modulo |F |. If y is recorded, and no bitshift errors occur, the original
word x is reconstructed by an “integration” operation:

xi =
i∑

j=1

yj .

If, however, an e-bitshift error occurs at the boundary between runs j and j+1 of y, the
integration operation converts the error into an e-synchronization error in run j of x. In other
words, the original bitshift error pattern of Lee weight 2e is converted into a synchronization
error pattern of Lee weight e. In order to ensure the correctness of the first run y1, it suffices
to require that the code contain the all-one word (1 1 . . . 1) and all of its multiples.

For the Lee-metric BCH codes, this construction provides the capability to correct up
to r−1 bitshift errors and detect up to r bitshift errors, when 2r < |F | ≤ k−d+1. The
construction can be extended to the base-field case as well.

Example 9.3 Let |F | = 7 and r = 3 as in the previous example. The construction above
will generate codes with length n a multiple of 7. For n = 7, the redundancy is 1+(r−1) = 3
runs; for n = 14, 21, . . . , 49 the redundancy is 1+2(r−1) = 5 runs; for n = 56, 63, . . . , 343 the
redundancy is 1 + 3(r−1) = 7 runs. All of these codes will correct up to two single-bitshift
errors or one double-bitshift (2-bitshift) error. By way of comparison, in [Hild91] Hilden et
al. describe SECM codes of lengths 26, 80, and 242 for correcting two single-bitshift errors,
requiring redundancy of 7, 9, and 11 runs, respectively. These SECM codes do not handle
double-bitshift errors.

Example 9.4 As |F | increases, so does the discrepancy in the number of check symbols
(runs) compared to the SECM codes in [Hild91]. For |F | = 11, suitable for representing
(d, k) = (1, 11) for example, and r = 5, the Lee-metric BCH code with n = 11 requires 5 check
symbols; for n = 22, 33, . . . , 121, the redundancy is 9 symbols; for n = 132, 143, . . . , 1331 the
redundancy will be 13 symbols. These codes will correct up to four single-bitshift errors;
two single-bitshift and one double-bitshift errors; or two double-bitshift errors. The codes
presented in [Hild91] for correcting up to four single-bitshift errors have lengths 26, 80, and
242 and require redundancy of 16, 21, and 26, respectively.

CHAPTER 9. ERROR-CORRECTING CONSTRAINED CODING 256

Bours [Bours94] provided a construction of synchronization-error correcting RLL codes
with fixed length over the binary alphabet that also relies on an underlying Lee-metric code.
He did not require the underlying code to be a Lee-metric BCH code, however, and thereby
avoided having the error-correction capability limited by the code alphabet size.

The definition of the Lee metric can also be generalized in a straightforward manner to
integer rings. Orlitsky described in [Or93] a nonlinear construction of codes over the ring
of integers modulo 2h for correcting any prescribed number of Lee errors. His construction
is based on dividing a codeword of a binary BCH code into nonoverlapping h-tuples and
regarding the latter as the Gray-code representations of the integers between 0 and 2h − 1.

It is also worth remarking that all of the Lee-metric codes mentioned above can be
efficiently decoded algebraically.

We close the discussion of Lee-metric codes by noting that the definition of the class of
Lee-metric BCH codes was motivated by a Lee-metric generalization of the result of Immink
and Beenker in Theorem 9.10 to integer-valued spectral-null constraints [KS91a], [EC91].

Theorem 9.15 Let S be a constrained system over an integer alphabet with order-K
spectral null at f = 0, presented by a labeled graph G. Let x,y be distinct sequences in S
generated by paths in G, both of which start at a common state u and end at a common state
v. Then, the Lee distance satisfies

∆Lee(x,y) ≥ 2K .

This result will play an important role in the next section in the context of Euclidean-
metric codes for PRML.

When combining bitshift and synchronization errors, any bitshift error can obviously be
regarded as two consecutive synchronization errors in opposite directions – one e-insertion,
one e-deletion – thus reducing to the synchronization-only model of errors. However, such
an approach is not optimal, and better constructions have been obtained to handle a limited
number of bitshift and synchronization errors (combined). See Hod [Hod95], Kløve [Kl95],
and Kuznetsov and Vinck [KuV93a], [KuV93b].

9.6 Soft-decision decoding through Euclidean metric

Let x and y be sequences of length n over the real numbers. The squared-Euclidean distance
between these sequences, denoted ∆2

Euclid(x,y) is given by

∆2
Euclid(x,y) =

n∑

i=1

(xi − yi)2 .

CHAPTER 9. ERROR-CORRECTING CONSTRAINED CODING 257

The Euclidean metric is most relevant in channels with additive white Gaussian noise
(AWGN). In particular, it is of interest in connection with the model of the magnetic record-
ing channel as a binary input, partial-response system with AWGN. The success of trellis-
coded modulation, as pioneered by Ungerboeck, in improving the reliability of memoryless
channels with AWGN provided the impetus to design coding schemes for channels with
memory, such as partial-response channels, in AWGN. For binary input-restricted partial-
response channels suitable as models for recording channels, such as the Class-4 channel
characterized by the input-output relation yi = xi − xi−2, several approaches have been
proposed that make use of binary convolutional codes. These approaches typically require a
computer search of some kind to determine the codes that are optimal with respect to rate,
Euclidean distance, and maximum-likelihood detector complexity. See, for example, Wolf
and Ungerboeck [WU86]; Calderbank, Heegard, and Lee [CHL86], Hole [Hole91]; and Hole
and Ytrehus [HoY94].

There is another approach, however, that relies upon the concepts and code construction
techniques that have been developed in the previous chapters. The underlying idea is as
follows. First, find a constrained system S, presented by a labeled graph G, that ensures a
certain minimum Euclidean distance between the partial-response channel output sequences
generated when channel inputs are restricted to words in S. Then, apply state-splitting (or
other) methods to construct an efficient encoder from binary sequences to S. Since the graph
structure E underlying the encoder is often more complex (in terms of number of states and
interconnections) than the original graph G, use G rather than E as the starting point for
the trellis-based Viterbi detector of the coded channel.

Karabed and Siegel [KS91a] showed that this approach can be applied to the family of
constrained systems S whose spectral null frequencies coincide with those of the partial-
response channel transfer function. The resulting codes are referred to as matched-spectral-
null codes. We conclude this section with a brief summary of the results that pertain to the
application of this technique to the Class-4 and related partial-response systems. We will
refer to the dicode channel, which is characterized by the input-output relation yi = xi−xi−1,
and has a first-order spectral null at f = 0, and we remark that the Class-4 partial-response
channel may be interpreted as a pair of interleaved dicode channels, one operating on inputs
with even indices, the other on inputs with odd indices.

Lemma 9.16 Let S be a constrained system over an integer alphabet with order-K spec-
tral null at zero frequency. Let S ′ be the constrained system of sequences at the output of
a cascade of N dicode channels, with inputs restricted to words in S. Then, S ′ has an
order-(K+N) spectral null at zero frequency.

Noting that any lower bound on Lee distance provides a lower bound on squared-
Euclidean distance for sequences over integer alphabets, we obtain from the preceding lemma
and Theorem 9.15 the following lower bound on the minimum squared-Euclidean distance of
a binary, matched-spectral-null coded, partial-response channel with spectral null at f = 0.

CHAPTER 9. ERROR-CORRECTING CONSTRAINED CODING 258

Theorem 9.17 Let S be a constrained system over the alphabet {+1,−1}, with order-K
spectral null at zero frequency. Let x and y be distinct sequences in S, differing in a finite
number of positions. If x′ and y′ are the corresponding output sequences of a partial-response
channel consisting of a cascade of N dicode channels, then

∆2
Euclid(x,y) ≥ 8(K +N) .

It is easy to see that the lower bound of Theorem 9.17 remains valid in the presence
of J-way, symbol-wise interleaving of the constrained sequences and the partial-response
channel. In particular, for the Class-4 partial-response channel (i.e., the 2-way interleaved
dicode channel), the application of sequences obtained by 2-way interleaving a code having a
first-order spectral null at zero frequency doubles the minimum squared-Euclidean distance
at the channel output, relative to the uncoded system.

We remark that J-way interleaving of sequences with an order-K spectral null at f = 0
generates sequences with order-K spectral nulls at frequencies f = r/J , for r = 0, 1, . . . , J−1
[MS87]. Thus, a 2-way interleaved, dc-free code has spectral nulls at zero frequency and at
frequency f = 1/2, corresponding to the spectral null frequencies of the Class-4 partial-
response channel.

Graph presentations for spectral null sequences are provided by canonical diagrams, in-
troduced by Marcus and Siegel [MS87] for first-order spectral null constraints and then
extended to high-order constraints by, among others, Monti and Pierobon [MPi89]; Karabed
and Siegel [KS91a]; Eleftheriou and Cideciyan [EC91]; and Kamabe [Kam94].

Discussion of the canonical diagrams requires the notion of a labeled graph with an infinite
number of states. Specifically, a countable-state labeled graph G∞ = (V,E, L) consists of a
countably-infinite set of states V ; a set of edges E, where each edge has an initial state and
a terminal state, both in V , and the states in V have bounded out-degree and in-degree; and
an edge labeling L : E → Σ, where Σ is a finite alphabet.

We say that a countable-state graph G∞ is a period-p canonical diagram for a spectral
null constraint if:

1. Every finite subgraphH ⊂ G∞ generates a set of sequences with the prescribed spectral
null constraint.

2. For any period-p graph G′
∞ that presents a system with the specified spectral null

constraint, there is a label-preserving graph homomorphism of G′
∞ into G∞, meaning

a map from the edges of G′
∞ to the edges of G∞ that preserves initial states, terminal

states, and labels.

The canonical diagram G∞ for a first-order spectral null constraint at zero frequency,
with symbol alphabet {+1,−1}, is shown in Figure 9.1. As mentioned in Example 3.4,

CHAPTER 9. ERROR-CORRECTING CONSTRAINED CODING 259

· · · 0 1 2 3 4 5 6 · · ·✲+1
✛
−1

✲+1
✛
−1

✲+1
✛
−1

✲+1
✛
−1

✲+1
✛
−1

✲+1
✛
−1

Figure 9.1: Canonical diagram for first-order spectral null at f = 0.

the capacity of the constrained system generated by a subgraph GB, consisting of B+1
consecutive states and the edges with beginning and ending states among these, is given by

cap(S(GB)) = log
(
2 cos

π

B+2

)
.

From this expression, it follows that

lim
B→∞

cap(S(GB)) = 1 .

We pointed out in Chapter 2 that the constrained system generated by any finite subgraph
of G∞ is almost-finite-type. Applying Theorem 4.12, we see that by choosing B large enough,
we can construct a sliding-block decodable finite-state encoder for the constrained system
S(GB) at any prespecified rate p : q with p/q < 1.

From the structure of the canonical diagram, it is clear that any constrained system with
first-order spectral null at f = 0 limits the number of consecutive zero samples at the output
of the dicode channel. When the constrained sequences are twice-interleaved and applied to
the Class-4 partial-response channel, the number of zero samples at the output is limited
“globally” as well as in each of the even/odd interleaved subsequences. This condition is
analogous to that achieved by the (0,G/I) constraints for the baseline PRML system.

The subgraph GB chosen for the code construction may be augmented to incorporate
the dicode channel memory, as shown in Figure 9.2 for the case M = 6, providing the
basis for a dynamic programming (Viterbi) detection algorithm for the coded-dicode channel
with AWGN. Each state in the trellis has a label of the form vm, where v is the state in
Figure 9.1 from which it is derived, and the superscript m denotes the sign of the dicode
channel memory. Just as does the uncoded dicode detector graph, represented by the trellis
in Figure 1.20 of Chapter 1, the coded-dicode detector graph supports sequences that can
cause potentially unbounded delays in the merging of survivor sequences and, therefore, in
decoding. The spectral-null code sequences that generate these output sequences are called
quasicatastrophic sequences, and they are characterized in the following proposition.

Proposition 9.18 The quasicatastrophic sequences in the constrained system presented
by GB are those generated by more than one path in GB.

To limit the merging delay, the matched-spectral-null code is designed to avoid these
sequences, and it is shown in [KS91a] that this is always possible without incurring a rate
loss for any GB, with B ≥ 3.

CHAPTER 9. ERROR-CORRECTING CONSTRAINED CODING 260

6+ 5− 6+

4− 5+ 4−

4+ 3− 4+

2− 3+ 2−

2+ 1− 2+

0− 1+ 0−

✲−2 ✲+2

✲+2 ✲−2

✲−2 ✲+2

✲+2 ✲−2

✲−2 ✲+2

✲+2 ✲−2

❃

0

❃

0

❃

0

❃

0

❃

0

⑦

0

⑦

0

⑦

0

⑦

0

⑦

0

Figure 9.2: Graph underlying coded-dicode channel Viterbi detector for G6.

Further details and developments regarding the design and application of matched-
spectral-null codes to PRML systems may be found in [Shung91], [Thap92], [Thap93],
[Fred94], and [Rae94].

9.7 Forbidden list codes for targeted error events

This section (which is yet to be written) will be based on results taken from Karabed-Siegel-
Soljanin [KSS00].

Problems

Problem 9.1 A graph G is called binary if its labels are over the alphabet {0, 1}. The (Hamming)
weight of a word w generated by a binary graph G is the number of 1’s in w. The weight of a path
in a binary graph G is the weight of the word generated by that path.

Given a binary graph G and states u and v in G, denote by τ
(ℓ)
u,v,k the number of paths of length

CHAPTER 9. ERROR-CORRECTING CONSTRAINED CODING 261

ℓ and weight k in G that originate in u and terminate in v. For states u and v in G, define the
length-ℓ weight-distribution polynomial (of paths from u to v), in the indeterminate z, by

P (ℓ)
u,v(z) =

ℓ∑

k=0

τ
(ℓ)
u,v,kz

k .

As an example, for the graph H in Figure 9.3, P
(4)
A,C = z2 + 2z3, since there are three paths of

length 4 that originate in A and terminate in C: one path has weight 2, and the other paths each
has weight 3.

A

B

C

❄
0

✼
1

✇

1

✲0
✛

1

Figure 9.3: Graph H for Problem 9.1.

For a binary graph G = (V,E,L), let BG(z) be the |V | × |V | matrix in the indeterminate z,
where

(BG(z))u,v = P (1)
u,v (z)

for every u, v ∈ V . Each entry in BG(z) is therefore a polynomial in z of degree at most 1.

1. Compute BH(z) for the graph in Figure 9.3.

2. For the matrix BH(z) found in 1, compute (BH(z))2 and (BH(z))4.

3. Let BG(z) be the matrix associated with a binary graph G, and let u and v be states in G.

Given a positive integer ℓ, obtain an expression for the polynomial P
(ℓ)
u,v(z) in terms of BG(z).

4. Identify the matrix BG(1) associated with a binary graph G.

5. Identify the matrix BG(0).

6. Let G be a binary graph and let z0 be a positive real number. Show that G is irreducible if
and only if the matrix BG(z0) is irreducible. Does this hold also when z0 = 0?

Problem 9.2 Recall the definitions from Problem 9.1. Let G be a binary lossless graph and let u

and v be states in G. For positive integers ℓ and d, denote by J
(ℓ)
u,v,d the number of words of length

ℓ and weight ≤ d that can be generated in G by paths that originate in u and terminate in v.

CHAPTER 9. ERROR-CORRECTING CONSTRAINED CODING 262

1. Show that for every 0 ≤ d ≤ ℓ,

J
(ℓ)
u,v,d =

d∑

k=0

τ
(ℓ)
u,v,k .

2. Based on 1, show that for every real z in the range 0 < z ≤ 1,

J
(ℓ)
u,v,d ≤

ℓ∑

k=0

τ
(ℓ)
u,v,kz

k−d

and, therefore,

J
(ℓ)
u,v,d ≤ min

0≤z≤1
z−dP (ℓ)

u,v(z) .

3. Based on 2 and 3, derive an upper bound on the number of words of length ℓ and weight ≤ d
in S(G), as a function of BG(z), ℓ, and d.

Problem 9.3 Recall the definitions from Problem 9.1. Let S be a constrained system presented
by a deterministic binary graph G with finite memoryM. For nonnegative integers ℓ and k, denote

by Y
(ℓ)
k the number of (ordered) pairs (w,w′) of words of length ℓ in S such that w and w′ are at

Hamming distance k; i.e., they differ on exactly k locations. Define the polynomial Y (ℓ)(z) by

Y (ℓ)(z) =
ℓ∑

k=0

Y
(ℓ)
k zk .

1. Show that Y (ℓ)(0) = |S ∩ {0, 1}ℓ|.

2. Show that Y (ℓ)(1) = (Y (ℓ)(0))2.

3. Let S0,1 denote the (0, 1)-RLL constrained system. Show that when S = S0,1, the polynomial
Y (ℓ)(z) can be written as

Y (ℓ)(z) = (1 z z 1) (BG∗G(z))
ℓ−1 1 ,

where 1 is the all-one column vector and

BG∗G(z) =

1 z z 1
1 0 z 0
1 z 0 0
1 0 0 0

 .

4. Compute Y4(z) explicitly for S = S0,1.

5. Find the largest integer n for which there exists a block (S4
0,1, n)-encoder whose codewords

are at Hamming distance at least 2 from each other.

6. Generalize 3 for any constrained system S over {0, 1} with finite memoryM.

Bibliography

[AW91] K.A.S. Abdel-Ghaffar, J.H. Weber, Bounds and constructions for run-
length limited error-control block codes, IEEE Trans. Inform. Theory, 37
(1991), 789–800.

[AbS65] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, Dover
Publications, New York, 1965.

[Ad87] R.L. Adler, The torus and the disk, IBM J. Res. Develop., 31 (1987), 224–234.

[ACH83] R.L. Adler, D. Coppersmith, M. Hassner, Algorithms for sliding block
codes — an application of symbolic dynamics to information theory, IEEE
Trans. Inform. Theory, 29 (1983), 5–22.

[AFKM86] R.L. Adler, J. Friedman, B. Kitchens, B.H. Marcus, State splitting
for variable-length graphs, IEEE Trans. Inform. Theory, 32 (1986), 108–113.

[AGW77] R.L. Adler, L.W. Goodwyn, B. Weiss, Equivalence of topological Markov
shifts, Israel J. Math., 27 (1977), 49–63.

[AHM82] R.L. Adler, M. Hassner, J. Moussouris, Method and apparatus for gen-
erating a noiseless sliding block code for a (1, 7) channel with rate 2/3, US
patent 4,413,251 (1982).

[AHU74] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, Massachusetts, 1974.

[Ari90] E. Arikan, An implementation of Elias coding for input-restricted channel,
IEEE Trans. Inform. Theory, 36 (1990), 162–165.

[Ash87a] J.J. Ashley, On the Perron-Frobenius eigenvector for non-negative integral
matrices whose largest eigenvalue is integral, Linear Algebra Appl., 94 (1987),
103–108.

[Ash87b] J.J. Ashley, Performance Bounds in Constrained Sequence Coding, Ph.D.
Thesis, University of California, Santa Cruz, 1987.

263

BIBLIOGRAPHY 264

[Ash88] J.J. Ashley, A linear bound for sliding block decoder window size, IEEE
Trans. Inform. Theory, 34 (1988), 389–399.

[Ash92] J.J. Ashley, LR conjugacies of shifts of finite type are uniquely so, Contemp.
Math., 135 (1992), 57–84.

[Ash93] J.J. Ashley, An extension theorem for closing maps of shifts of finite type,
Trans. AMS, 336 (1993), 389–420.

[Ash96] J.J. Ashley, A linear bound for sliding block decoder window size, II, IEEE
Trans. Inform. Theory, 42 (1996), 1913–1924.

[AB94] J.J. Ashley, M.-P. Béal, A note on the method of poles for code construc-
tion, IEEE Trans. Inform. Theory, 40 (1994).

[AJMS99] J.J. Ashley, G. Jaquette, B. Marcus, P. Seger, Run length limited
encoding/decoding with robust resync, U.S. Patent 5,969,649 (1999).

[AKS96] J.J. Ashley, R. Karabed, P.H. Siegel, Complexity and sliding block de-
codability, IEEE Trans. Inform. Theory, 42 (1996), 1925–1947.

[AM95] J.J. Ashley, B.H. Marcus, Canonical encoders for sliding block decoders,
SIAM J. Discrete Math., 8 (1995), 555-605.

[AM98] J. J. Ashley, B. H. Marcus, Two-dimensional lowpass filtering codes for
holographic storage, IEEE Trans. Commun., 46 (1998), 724–727.

[AM97] J. Ashley and B. Marcus, A generalized state splitting algorithm, IEEE
Trans. Inform. Theory, 43 (1997), 1326–1338.

[AM00] J. Ashley and B. Marcus, Time-varying encoders for constrained systems:
an approach to limiting error propagation, IEEE Trans. Inform. Theory, 46
(2000), 1038–1043.

[AMR95] J.J. Ashley, B.H. Marcus, R.M. Roth, Construction of encoders with
small decoding look-ahead for input-constrained channels, IEEE Trans. Inform.
Theory, 41 (1995), 55–76.

[AMR96] J.J. Ashley, B.H. Marcus, R.M. Roth, On the decoding delay of encoders
for input-constrained channels, IEEE Trans. Inform. Theory, 42 (1996), 1948–
1956.

[AS87] J.J. Ashley, P.H. Siegel, A note on the Shannon capacity of runlength-
limited codes, IEEE Trans. Inform. Theory, 33 (1987), 601–605.

[AHPS93] J.J. Ashley, M. Hilden, P. Perry, P.H. Siegel, Correction to ‘A note on
the Shannon capacity of runlength-limited codes’, IEEE Trans. Inform. Theory,
39 (1993), 1110–1112.

BIBLIOGRAPHY 265

[BL91] A.M. Barg, S.N. Litsyn, DC-constrained codes from Hadamard matrices,
IEEE Trans. Inform. Theory, 37 (1991), 801–807.

[Béal90a] M.-P. Béal, The method of poles: a coding method for constrained channels,
IEEE Trans. Inform. Theory, IT-36 (1990), 763–772.

[Béal90b] M.-P. Béal, La méthode des pôles dans le cas des systèmes sofiques, preprint,
LITP Report, 29 (1990).

[Béal93a] M.-P. Béal, Codage Symbolique, Masson, Paris, 1993.

[Béal93b] M.-P. Béal, A new optimization condition in the method of poles for code
construction, preprint, 1993.

[BI83] G.F.M. Beenker, K.A.S. Immink, A generalized method for encoding and
decoding run-length-limited binary sequences, IEEE Trans. Inform. Theory, 29
(1983), 751–754.

[Berg96] J.W.M. Bergmans, Digital Baseband Transmission and Recording, Kluwer
Academic Publishers, The Netherlands, 1996.

[Berl80] E.R. Berlekamp, Technology of error-correcting codes, Proc. IEEE, 68
(1980), 564–593.

[Berl84] E.R. Berlekamp, Algebraic Coding Theory, Revised Edition, Aegean Park
Press, Laguna Hills, California, 1984.

[Blah83] R.E. Blahut, Theory and Practice of Error-Control Codes, Addison-Wesley,
Reading, Massachusetts, 1983.

[BM75] I.F. Blake, R.C. Mullin, The Mathematical Theory of Coding, Academic
Press, New York, 1975.

[Blaum91] M. Blaum, Combining ECC with modulation: performance comparisons,
IEEE Trans. Inform. Theory, 37 (1991), 945–949.

[BLBT93] M. Blaum, S. Litsyn, V. Buskens, H.C.A. van Tilborg, Error-correcting
codes with bounded running digital sum, IEEE Trans. Inform. Theory, 39
(1993), 216–227.

[Bli81] W.G. Bliss, Circuitry for performing error correction calculations on baseband
encoded data to eliminate error propagation, IBM Tech. Discl. Bull., 23 (1981),
4633–4634.

[BLG97] E. Boltt, Y-C Lai, and C. Grebogi, Coding, channel capacity and noise
resistance in communicating with chaos”, Physics Review Letters, 79 (1997),
3787–3790.

BIBLIOGRAPHY 266

[Bours94] P.A.H. Bours, Codes for correcting insertion and deletion errors, Ph.D. dis-
sertation, Department of Mathematics and Computing Science, Eindhoven Uni-
versity of Technology, Eindhoven, The Netherlands, June 1994.

[Bouw85] G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen,
K.A.S. Immink, Principles of Optical Disc Systems, Adam Hilger, Bristol and
Boston, 1985.

[BKM85] M. Boyle, B. Kitchens, B.H. Marcus, A note on minimal covers for sofic
systems, Proc. AMS, 95 (1985), 403–411.

[BMT87] M. Boyle, B.H. Marcus, P. Trow, Resolving maps and the dimension
group for shifts of finite type, Memoirs AMS, 377 (1987).

[BM99] G. W. Burr and B. H. Marcus, Coding tradeoffs for high-density holo-
graphic data storage, Proc. SPIE, Vol. 3802-06 (1999), 18–29.

[CHL86] A.R. Calderbank, C. Heegard, T.-A. Lee, Binary convolutional codes
with application to magnetic recording, IEEE Trans. Inform. Theory, 32 (1986),
797–815.

[CHT89] A.R. Calderbank, M.A. Herro, V. Telang, A multilevel approach to
the design of dc-free codes, IEEE Trans. Inform. Theory, 35 (1989), 579–583.

[CW71] J.C.-Y. Chiang, J.K. Wolf, On channels and codes for the Lee metric,
Inform. Control, 19 (1971), 159–173.

[C70] T.M. Chien, Upper bound on the efficiency of DC-constrained codes, Bell
Syst. Tech. J., (1970), 2267–2287.

[Cid92] R. Cideciyan, F. Dolivo, R. Hermann, W. Hirt, W. Schott, A PRML
system for digital magnetic recording, IEEE J. Sel. Areas Commun., 10 (1992),
38–56.

[CL91] G.D. Cohen, S.N. Litsyn, DC-constrained error-correcting codes with small
running digital sum, IEEE Trans. Inform. Theory, 37 (1991), 801–807.

[Cov73] T.M. Cover, Enumerative source encoding, IEEE Trans. Inform. Theory, IT-
19 (1973), 73–77.

[Dav93] V.A. Davydov, Error correcting codes in module metric, Lee metric, and
operator errors, Problemy Perdachi Informatssii, 29 (1993) 10–20 (in Russian).

[Dol89] F. Dolivo, Signal processing for high density digital magnetic recoding, in
Proc. COMPEURO’89, Hamburg, Germany, 1989.

BIBLIOGRAPHY 267

[DMU79] F. Dolivo, D. Maiwald, G. Ungerboeck, Partial-response class-IV signal-
ing with Viterbi decoding versus conventional modified frequency modulation
in magnetic recording, IBM Res. Zurich Lab., IBM Res. Rep. RZ 973–33865
(1979).

[EH78] J. Eggenberger, P. Hodges, Sequential encoding and decoding of variable
length, fixed rate data codes, US patent 4,115,768 (1978).

[EC91] E. Eleftheriou, R. Cideciyan, On codes satisfying Mth order running
digital sum constraints, IEEE Trans. Inform. Theory, 37 (1991), 1294–1313.

[Etz90] T. Etzion, Constructions of error-correcting DC-free block codes, IEEE Trans.
Inform. Theory, 36 (1990), 899–905.

[Even65] S. Even, On information lossless automata of finite order, IEEE Trans. Elect.
Comput., 14 (1965), 561–569.

[Even79] S. Even, Graph Algorithms, Computer Science Press, Potomac, Maryland,
1979.

[FC98] J. Fan and R. Calderbank, A modified concatenated coding scheme, with
applications to magnetic data storage, IEEE Trans. on Inform. Theory, 44
(1998), 1565–1574.

[FMR00] J. Fan, B. Marcus and R. Roth, Lossles sliding-block compression of con-
strained systems, IEEE Trans. Inform. Theory, 46 (2000), 624–633.

[Ferg72] M.J. Ferguson, Optimal reception for binary partial response channels, Bell
Sys. Tech. J., 51 (1972), 493–505.

[Fe84] H.C. Ferreira, Lower bounds on the minimum-Hamming distance achievable
with runlength constrained or DC-free block codes and the synthesis of a (16, 8)
dmin = 4 DC-free block code, IEEE Trans. Magnetics, 20 (1984), 881–883.

[FL91] H.C. Ferreira, S. Lin, Error and erasure control (d, k) block codes, IEEE
Trans. Inform. Theory, 37 (1991), 1399–1408.

[Fi75a] R. Fischer, Sofic systems and graphs, Monats. fur Math. 80 (1975), 179–186.

[Fi75b] R. Fischer, Graphs and symbolic dynamics, Colloq. Math. Soc. János Bólyai,
Topics in Information Theory, 16 (1975), 229–243

[For72] G.D. Forney, Jr., Maximum likelihood sequence detection in the presence
of intersymbol interference, IEEE Trans. Inform. Theory, 18 (1972), 363–378.

[FC89] G.D. Forney, Jr., A.R. Calderbank, Coset codes for partial response
channels; or, cosets codes with spectral nulls, IEEE Trans. Inform. Theory, 35
(1989), 925–943.

BIBLIOGRAPHY 268

[ForsB88] K. Forsberg, I.F. Blake, The enumeration of (d, k) sequences, Proc. 26th
Allerton Conference on Communications, Control, and Computing, Urbana-
Champaign, Illinois (1988), 471–472.

[Fra68] P.A. Franaszek, Sequence-state coding for digital transmission, Bell Sys.
Tech. J., 47 (1968), 143–155.

[Fra69] P.A. Franaszek, On synchronous variable length coding for discrete noiseless
channels, Inform. Control, 15 (1969), 155–164.

[Fra70] P.A. Franaszek, Sequence-state methods for run-length-limited coding, IBM
J. Res. Develop., 14 (1970), 376–383.

[Fra72] P.A. Franaszek, Run-length-limited variable length coding with error prop-
agation limitation, US patent 3,689,899 (1972).

[Fra79] P.A. Franaszek, On future-dependent block coding for input-restricted chan-
nels, IBM J. Res. Develop., 23 (1979), 75–81.

[Fra80a] P.A. Franaszek, Synchronous bounded delay coding for input restricted
channels, IBM J. Res. Develop., 24 (1980), 43–48.

[Fra80b] P.A. Franaszek, A general method for channel coding, IBM J. Res. Develop.,
24 (1980), 638–641.

[Fra82] P.A. Franaszek, Construction of bounded delay codes for discrete noiseless
channels, IBM J. Res. Develop., 26 (1982), 506–514.

[Fra89] P.A. Franaszek, Coding for constrained channels: a comparison of two ap-
proaches, IBM J. Res. Dev., 33 (1989), 602–607.

[FT93] P.A. Franaszek, J.A. Thomas, On the optimization of constrained channel
codes, IBM Research Report 19303 (1993). See also Proc. 1993 IEEE Int’l Symp.
Inform. Theory, San Antonio, Texas (1993), p. 3.

[Fred89] L.J. Fredrickson, J.K. Wolf, Error-detecting multiple block (d, k) codes,
IEEE Trans. Magn., 25 (1989), 4096–4098.

[Fred94] L. Fredrickson, R. Karabed, P. Siegel, H. Thapar, R. Wood, Im-
proved trellis-coding for partial-response channels, Proc. IEEE Magn. Rec.
Conf., San Diego, California (1994), IEEE Trans. Magn., 31 (1995), 1141–1148.

[FW64] C. Freiman, A. Wyner, Optimum block codes for noiseless input restricted
channels, Inform. Control, 7 (1964), 398–415.

[Fri84] J. Friedman, A note on state splitting, Proc. AMS, 92 (1984), 206–208.

BIBLIOGRAPHY 269

[Fri90] J. Friedman, On the road coloring problem, Proc. Amer. Math. Soc., 110
(1990), 1133–1135.

[Funk82] P. Funk, Run-length-limited codes with multiple spacing, IEEE Trans. Mag-
netics, 18 (1982), 772–775.

[Gant60] F.R. Gantmacher, Matrix Theory, Volume II, Chelsea Publishing Company,
New York, 1960.

[GHW92] R.D. Gitlin, J.F. Hayes and S.B. Weinstein, Data Communications
Principles, Plenum Press, New York, 1992.

[GoW68] S.W. Golomb, L.R. Welch, Algebraic coding and the Lee metric, in: Error
Correcting Codes, H.B. Mann (Editor), John Wiley, 1968, pp. 175–194.

[GoW70] S.W. Golomb, L.R. Welch, Perfect codes in the Lee metric and the packing
of polyominoes, SIAM J. Appl. Math., 18 (1970), 302–317.

[GuF93] J. Gu, T. Fuja, A generalized Gilbert-Varshamov bound derived via analysis
of a code-search algorithm, IEEE Trans. Inform. Theory, 39 (1993), 1089–1093.

[GuF94] J. Gu, T. Fuja, A new approach to constructing optimal block codes for
runlength-limited channels, IEEE Trans. Inform. Theory, 40 (1994), 774–785.

[HRuHC] R. Haeb, D. Rugar, T. Howell and P.Coleman, Coding and signal
processing for a magnetooptic resonant bias coil overwrite experiment, IBM
Research Report, RJ 6962 (66499), 1989.

[HGO93] S. Hayes, C. Grebogi and E. Ott, Communicationg with chaos, Physics
Review Letters, 70 (1993), 3031–3034.

[HHH00] W. Hirt, M. Hassner, N. Heise, IrDA-VFIr (16 Mb/s): Modulation Code
and System Design, IEEE Personal Communications, to appear.

[HBH94] J. F. Heanue, M. C. Bashaw, and L. Hesselink, Volume holographic
storage and retrieval of digital data, Science, 265 (1994), 749–752.

[Heeg91] C.D. Heegard, B.H. Marcus, P.H. Siegel, Variable-length state splitting
with applications to average runlength-constrained (ARC) codes, IEEE Trans.
Inform. Theory, 37 (1991), 759–777.

[Heem82] J.P.J. Heemskerk, K.A.S. Immink, Compact disc: system aspects and mod-
ulation, Philips Techn. Review, 40 (1982), 157–164.

[Hild91] H.M. Hilden, D.G. Howe, E.J. Weldon, Jr., Shift error correcting mod-
ulation codes, IEEE Trans. Magn., 27 (1991), 4600–4605.

BIBLIOGRAPHY 270

[Hod95] R. Hod, Coding Methods for Input-Constrained Channels, M.Sc. Thesis (in
Hebrew), Technion, Haifa, Israel, 1995.

[Hole91] K.J. Hole, Punctured convolutional codes for the 1−D partial-response chan-
nel, IEEE Trans. Inform. Theory, 37 (1991), 808–817.

[HoY94] K.J. Hole, Ø. Ytrehus, Improved coding techniques for partial-response
channels, IEEE Trans. Inform. Theory, 40 (1994), 482–493.

[Holl94] H.D.L. Hollmann, A block-decodable (1, 8) runlength-limited rate 8/12 code,
IEEE Trans. Inform. Theory, 40 (1994), 1292–1296.

[Holl95] H.D.L. Hollmann, On the construction of bounded-delay encodable codes for
constrained systems, IEEE Trans. Inform. Theory, 41 (1995), 1354–1378.

[Holl96] H.D.L. Hollmann, Bounded-delay-encodable, block-decodable codes for con-
strained systems, IEEE Trans. Inform. Theory, 42 (1996), 1957–1970.

[Holl97] H.D.L. Hollmann, On an approximate eigenvector associated with a modu-
lation code, IEEE Trans. Inform. Theory, 43 1997), 1672–1678.

[Hopc79] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages,
and Computation, Addison-Wesley, Reading, Massachusetts, 1979.

[HorM76] J.E. T. Horiguchi, K. Morita, An optimization of modulation codes in
magnetic recording, IEEE Trans. Magnetics, 12 (1976), 740–746.

[How84] T.D. Howell, Analysis of correctable errors in the IBM 3380 disk file, IBM
J. Res. Develop., 28 (1984), 206–211.

[How89] T.D. Howell, Statistical properties of selected recording codes, IBM J. Res.
Dev., 32 (1989), 60–73.

[Huff54] D.A. Huffman, The synthesis of sequential switching circuits, J. Franklin
Inst., 257 (1954), 161–190 and 275–303.

[Huff59] D.A. Huffman, Canonical forms for information lossless finite-state machine,
IRE Trans. Circuit Theory, 6, (1959, Special Supplement), 41–59.

[IKN80] I. Iizuka, M. Kasahara, T. Namekawa, Block codes capable of correcting
both additive and timing errors, IEEE Trans. Inform. Theory, 26 (1980), 393–
400.

[Imm90] K.A.S. Immink, Runlength-limited sequences, Proc. IEEE, 78 (1990), 1745–
1759.

[Imm91] K.A.S. Immink, Coding Techniques for Digital Recorders, Prentice Hall, New
York, 1991.

BIBLIOGRAPHY 271

[Imm92] K.A.S. Immink, Block-decodable runlength-limited codes via look-ahead tech-
nique, Philips J. Res., 46 (1992), 293–310.

[Imm95a] K.A.S. Immink, Constructions of almost block-decodable runlength-limited
codes, IEEE Trans. Inform. Theory, 41 (1995), 284–287.

[Imm95b] K.A.S. Immink, EFMPlus: The coding format of the multimedia compact
disc, IEEE Trans. Consum. Electron., 41 (1995), 491–497.

[Imm99] K.A.S. Immink, Codes for Mass Data Storage Systems, Shannon Foundation
Publishers, The Netherlands, 1999.

[Imm97] K.A.S. Immink, A practical method for approaching the channel capacity of
constrained channels, IEEE Trans. Inform. Theory, 43 (1997), 1389–1399.

[ImmB87] K.A.S. Immink, G.F.M. Beenker, Binary transmission codes with higher
order spectral zeros at zero frequency, IEEE Trans. Inform. Theory, 33 (1987),
452–454.

[IO85] K.A.S. Immink, H. Ogawa, Method for encoding binary data, US patent
4,501,000 (1985).

[Jon95] N. Jonoska, Sofic shifts with synchronizing presentations, Theoretical Com-
puter Science, 158 (1996), 81–115.

[Jus82] J. Justesen, Information rates and power spectra of digital codes, IEEE Trans.
Inform. Theory, 28 (1982), 457–472.

[JusH84] J. Justesen, T. Høholdt, Maxentropic Markov chains, IEEE Trans. Inform.
Theory, 30 (1984), 665–667.

[KDV92] G.A. Kabatiansky, V.A. Davydov, A.J.H. Vinck, On error correcting
codes for three types of channels, Proc. Int’l Workshop Algebraic Combin. and
Coding Theory, Bulgaria (1992), 101–103.

[Kam89] H. Kamabe, Minimum scope for sliding block decoder mappings, IEEE Trans.
Inform. Theory, 35 (1989), 1335–1340.

[Kam94] H. Kamabe, Irreducible components of canonical diagrams for spectral nulls,
IEEE Trans. Inform. Theory, 40 (1994), 1375–1391.

[KarM88] R. Karabed, B.H. Marcus, Sliding-block coding for input-restricted chan-
nels, IEEE Trans. Inform. Theory, 34 (1988), 2–26.

[KS91a] R. Karabed, P.H. Siegel, Matched spectral null codes for partial response
channels, IEEE Trans. Inform. Theory, 37 (1991), 818–855.

BIBLIOGRAPHY 272

[KS91b] R. Karabed, P.H. Siegel, A 100% efficient sliding-block code for the charge-
constrained, runlength-limited channel with parameters (d, k; c) = (1, 3; 3),
Proc. 1991 IEEE Int’l Symp. Inform. Theory, Budapest, Hungary (1991),
p. 229.

[KSS00] R. Karabed, P.H. Siegel, E. Soljanin, Constrained coding for binary
channels with high intersymbol interference, IEEE Trans. Inform. Theory, 45
(1999), 1777–1797.

[KZ98] A. Kato, K. Zeger, On the capacity of two dimensional run length con-
strained channels, IEEE Trans. Inform. Theory, 45 (1999), 1527–1540.

[Ker91] K.J. Kerpez, Runlength codes from source codes, IEEE Trans. Inform. The-
ory, 37 (1991), 682–687.

[Khay89] Z.-A. Khayrallah, Finite-State Codes and Input-Constrained Channels,
Ph.D. Thesis, University of Michigan, 1989.

[KN90] Z.-A. Khayrallah, D. Neuhoff, Subshift models and finite-state codes
for input-constrained noiseless channels: a tutorial, Udel-EE Technical Report
Number 90-9-1, 1990.

[KN96] Z.-A. Khayrallah, D. Neuhoff, Coding for channels with cost constraints,
IEEE Trans. Inform. Theory, 42 (1996), 854–867.

[KN99] B. King and M. Neifeld, Unequal a priori probabilities for holographic
storage, Proc. SPIE, Vol. 3802-08 (1999), 40–43.

[Kit81] B. Kitchens, Continuity Properties of Factor Maps in Ergodic Theory, Ph.D.
Thesis, University of North Carolina, Chapel Hill, 1981.

[Kl95] T. Kløve, Codes correcting a single insertion/deletion of a zero or a single
peak-shift, IEEE Trans. Inform. Theory, 41 (1995), 279–283.

[Koba71] H. Kobayashi, Application of probabilistic decoding to digital magnetic
recording systems, IBM J. Res. Develop., 15 (1971), 64-74.

[Koba72] H. Kobayashi, Correlative level coding and maximum-likelihood decoding,
IEEE Trans. Inform. Theory, 18 (1972), 363–378.

[KobT70] H. Kobayashi, D.T. Tang, Application of partial-response channel coding
to magnetic recording systems, IBM J. Res. Develop., 14 (1970), 368–374.

[Koh78] Z. Kohavi, Switching and Finite Automata Theory, Second Edition, Tata
McGraw-Hill, New Delhi, 1978.

BIBLIOGRAPHY 273

[KolK91] V.D. Kolesnik, V.Yu. Krachkovsky, Generating functions and lower
bounds on rates for limited error-correcting codes, IEEE Trans. Inform. Theory,
37 (1991), 778–788.

[KolK94] V.D. Kolesnik, V.Yu. Krachkovsky, Lower bounds on the achievable
rates for limited bitshift-correcting codes, IEEE Trans. Inform. Theory, 40
(1994), 1443–1458.

[Kretz67] E.R. Kretzmer, Generalization of a technique for binary data transmission,
IEEE Trans. Commun. Technol., 14 (1967), 67.

[Krusk83] J.B. Kruskal, An overview of sequence comparison: Time warps, string edits,
and macromolecules, Siam Review, 25 (1983), 201–237.

[KuV93a] A.V. Kuznetsov, A.J.H. Vinck, A coding scheme for single peak-shift cor-
rection in (d, k)-constrained channels, IEEE Trans. Inform. Theory, 39 (1993),
1444–1450.

[KuV93b] A.V. Kuznetsov, A.J.H. Vinck, The application of q-ary codes for the
correction of single peak-shifts, deletions and insertions of zeros, Proc. 1993
IEEE Int’l Symp. Inform. Theory, San Antonio, Texas (1993), p. 128.

[Lee88] P. Lee, Combined error-correcting/modulation codes, Ph.D. dissertation, Uni-
versity of California, San Diego, USA, 1988.

[LW87] P. Lee, J.K. Wolf, Combined error-correction/modulation codes, IEEE
Trans. Magnetics, 23 (1987), 3681–3683.

[LW89] P. Lee, J.K. Wolf, A general error-correcting code construction for run-
length limited binary channels, IEEE Trans. Inform. Theory, 35 (1989), 1330–
1335.

[LemCo82] A. Lempel, M. Cohn, Look-ahead coding for input-restricted channels, IEEE
Trans. Inform. Theory, 28 (1982), 933–937.

[Lev65] V.I. Levenshtein, Binary codes capable of correcting deletions, insertions,
and reversals, (Russian), Doklady Akademii Nauk SSSR, 163 (1965), 845–848.
(English), Soviet Physics Doklady, 10 (1966), 707–710.

[Lev67] V.I. Levenshtein, Asymptotically optimum binary code with correction for
losses of one or two ajacent bits, Problems of Cybernetics, 19 (1967), 298–304.

[Lev71] V.I. Levenshtein, One method of constructing quasilinear codes providing
synchronization in the presence of errors, (Russian), Problemy Peredachi In-
formatsii, 7 (1971), 30–40. (English), Problems of Information Transmission, 7
(1971), 215–222.

BIBLIOGRAPHY 274

[Lev91] V.I. Levenshtein, On perfect codes in deletion and insertion metric, (Rus-
sian), Discretnaya. Mathematika, 3 (1991), 3–20. (English), Discrete Mathemat-
ics and Applications, 2 (1992), 241–258.

[LV93] V.I. Levenshtein, A.J.H. Vinck, Perfect (d, k)-codes capable of correcting
single peak-shifts, IEEE Trans. Inform. Theory, 39 (1993), 656–662.

[LinCo83] S. Lin, D.J. Costello, Jr., Error Control Coding, Fundamentals and Ap-
plications, Prentice-Hall, Englewood Cliffs, New Jersey, 1983.

[LM95] D. Lind, B. Marcus, An Introduction to Symbolic Dynamics and Coding,
Cambridge University Press, 1995.

[MacS77] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes,
North-Holland, Amsterdam, 1977.

[Man91] M. Mansuripur, Enumerative modulation coding with arbitrary constraints
and post-modulation error correction coding and data storage systems, Proc.
SPIE, Vol. 1499 (1991), 72–86.

[MM77] J.C. Mallinson, J.W. Miller, Optimal codes for digital magnetic recording,
Radio and Elec. Eng., 47 (1977), 172–176.

[Mar85] B.H. Marcus, Sofic systems and encoding data, IEEE Trans. Inform. Theory,
31 (1985), 366–377.

[MR91] B.H. Marcus, R.M. Roth, Bounds on the number of states in encoder graphs
for input-constrained channels, IEEE Trans. Inform. Theory, IT-37 (1991), 742–
758.

[MR92] B.H. Marcus, R.M. Roth, Improved Gilbert-Varshamov bound for con-
strained systems, IEEE Trans. Inform. Theory, 38 (1992), 1213–1221.

[MS87] B.H. Marcus, P.H. Siegel, On codes with spectral nulls at rational sub-
multiples of the symbol frequency, IEEE Trans. Inform. Theory, 33 (1987),
557–568.

[MS88] B. Marcus, P.H. Siegel, Constrained codes for partial response channels,
Proc. Beijing Int’l Workshop on Information Theory (1988), DI-1.1–1.4.

[MSW92] B.H. Marcus, P.H. Siegel, J.K. Wolf, Finite-state modulation codes for
data storage, IEEE J. Sel. Areas Comm., 10 (1992), 5–37.

[MLT83] G.N.N. Martin, G.G. Langdon, S.J.P. Todd, Arithmetic codes for con-
strained channels, IBM J. Res. Develop., 27 (1983), 94–106.

BIBLIOGRAPHY 275

[Mcl77] R.J. McEliece, The Theory of Information and Coding, Addison-Wesley,
Reading, Massachusetts, 1977.

[Mill63] A. Miller, Transmission system, US patent 3,108,261 (1963).

[Mill77] J.W. Miller, DC free encoding for data transmission system, US patent
4,027,335 (1977).

[Minc88] H. Minc, Nonnegative Matrices, Wiley, New York, 1988.

[MoMa01] D.S. Modha, B.H. Marcus, Art of constructing low complexity en-
coders/decoders for constrained block codes, IEEE J. Sel. Areas in Comm.,
(2001), to appear.

[MPi89] C.M. Monti, G.L. Pierobon, Codes with a multiple spectral null at zero
frequency, IEEE Trans. Inform. Theory, 35 (1989), 463–472.

[Moore56] E.F. Moore, Gedanken-experiments on sequential machines, Automata Stud-
ies, Princeton University Press, Princeton, New Jersey, 1956, 129–153.

[NB81] K. Norris, D.S. Bloomberg, Channel capacity of charge-constrained run-
length limited systems, IEEE Trans. Magnetics, 17 (1981), 3452–3455.

[Obr81] G.L. O’Brien, The road coloring problem, Israel J. Math., 39 (1981), 145–154

[Or93] A. Orlitsky, Interactive communication of balanced distributions and of cor-
related files, SIAM J. Discr. Math., 6 (1993), 548–564.

[Ott93] E. Ott, Chaos in Dynamical Systems, Cambridge Univ. Press, 1993.

[OGY90] E. Ott, C. Grebogi, J. York, Controlling Chaos, Physics Review Letters,
64 (1990), 1196–1199.

[Par64] W. Parry, Intrinsic Markov chains, Transactions AMS, 112 (1964) 55-66.

[PT82] W. Parry, S. Tuncel Classification Problems in Ergodic Theory, Cambridge
University Press, 1982.

[PK92] A. Patapoutian, P. V. Kumar, The (d, k) subcode of a linear block code,
IEEE Trans. Inform. Theory, 38 (1992), 1375–1382.

[Patel75] A.M. Patel, Zero-modulation encoding in magnetic recording, IBM J. Res.
Develop., 19 (1975), 366–378.

[PRS63] M. Perles, M.O. Rabin, E. Shamir, The theory of definite automata,
IEEE. Trans. Electron. Computers, 12 (1963), 233–243.

BIBLIOGRAPHY 276

[PS92] D. Perrin, M.-P. Schutzenberger, Synchronizing prefix codes and au-
tomata and the road coloring problem, in Symbolic Dynamics and Its Applica-
tions, Contemporary Mathematics 135 (1992), P. Walters (Editor), 295–318.

[PW72] W.W. Peterson, E.J. Weldon, Jr., Error-Correcting Codes, Second Edi-
tion, MIT Press, Cambridge, Massachusetts, 1972.

[Pie84] G.L. Pierobon, Codes for zero spectral density at zero frequency, IEEE Trans.
Inform. Theory, 30 (1984), 435–439.

[Pl89] V. Pless, Introduction to the Theory of Error Correcting Codes, Second Edi-
tion, John Wiley, New York, 1989.

[PH98] V.S Pless, W.C. Huffman Handbook of Coding Theory, Elsevier, Amster-
dam, 1998.

[Pohl92] K.C. Pohlmann, The Compact Disc Handbook, Second Edition, A–R Editions,
Madison, Wisconsin, 1992.

[Rae94] J.W. Rae, G.S. Christiansen, P. Siegel, R. Karabed, H. Thapar,
S. Shih, Design and performance of a VLSI 120 Mb/s trellis-coded partial
response channel, Proc. IEEE Magn. Rec. Conf., San Diego, California (1994),
IEEE Trans. Magn., 31 (1995), 1208–1214.

[Roth00] R.M. Roth, On runlength-limited coding with DC control, IEEE Trans. Com-
mun., (2000), 351–358.

[RS92] R.M. Roth, P.H. Siegel, A family of BCH codes for the Lee metric, Proc.
Thirtieth Annual Allerton Conf. on Communication, Control, and Computing,
Urbana-Champaign, Illinois, September 1992, 1–10.

[RS94] R.M. Roth, P.H. Siegel, Lee-metric BCH codes and their application to
constrained and partial-response channels, IEEE Trans. Inform. Theory, 40
(1994), 1083–1096.

[RSV94] R.M. Roth, P.H. Siegel, A. Vardy, High-order spectral-null codes: con-
structions and bounds, IEEE Trans. Inform. Theory, 40 (1994), 1826–1840.

[RSW00] R.M. Roth, P.H. Siegel, J.K. Wolf, Efficient coding of two-dimensional
runlength-limited constraints, Proc. SPIE, Vol. 3802 (1999), 8–17.

[Roth93] R.M. Roth, Spectral-null codes and null spaces of Hadamard submatrices, De-
signs, Codes, and Cryptography, 9 (1996), 177–191. See also Proc. First French–
Israeli Workshop on Algebraic Coding, Paris (1993), G. Cohen, S. Litsyn, A.
Lobstein, G. Zémor (Editors), Springer (LNCS 781, 1994), 141–153.

BIBLIOGRAPHY 277

[Ru96] G. Ruckenstein (Sadeh), Encoding for Input-Constrained Channels, M.Sc.
Thesis, Technion, Haifa, Israel, 1996.

[RuR01] G. Ruckenstein (Sadeh) and R. Roth, Lower bounds on the anticipation
of encoders for input-constrained channels, IEEE Trans. Inform. Theory, 47
(2001), 1796–1812.

[RuS89] D. Rugar, P.H. Siegel, Recording results and coding considerations for the
resonant bias coil overwrite technique, Optical Data Storage Topical Meeting,
G.R. Knight, C.N. Kurtz (Editors), Proc. SPIE, Vol. 1078 (1989), 265–270.

[Sai93a] Y. Saitoh, Theory and design of error-control codes for byte-organized/ input-
restricted storage devices where unidirectional/peak-shift errors are predomi-
nant, Ph.D. dissertation, Division of Electrical and Computer Engineering,
Yokohama National University, Yokohama, Japan, February 1993.

[Sai93b] Y. Saitoh, T. Ohno, H. Imai, Construction techniques for error-control
runlength-limited block codes, IEICE Trans. Fundamentals, E76-A (1993), 453–
458.

[Sen80] E. Seneta, Non-negative Matrices and Markov Chains, Second Edition,
Springer, New York, 1980.

[SZ91] S. Shamai, E. Zehavi, Bounds on the capacity of the bit-shift magnetic
recording channel, IEEE Trans. Inform. Theory, 37 (1991), 863–871.

[Sha48] C.E. Shannon, The mathematical theory of communication, Bell Sys. Tech.
J., 27 (1948), 379–423.

[ST93] D.B. Shmoys, É. Tardos, Computational complexity, in The Handbook of
Combinatorics, L. Lovász, R.L. Graham, M. Grötschel (Editors), North Hol-
land, Amsterdam (to appear).

[Shung91] C. Shung, P. Siegel, H. Thapar, R. Karabed, A 30 MHz trellis codec
chip for partial-response channels, IEEE J. Solid-State Circ., 26 (1991), 1981–
1987. San Francisco, February 1991, pp. 132–133.

[Sie85a] P.H. Siegel, Recording codes for digital magnetic storage, IEEE Trans. Mag-
netics, 21 (1985), 1344–1349.

[Sie85b] P.H. Siegel, On the complexity of limiting error propagation in sliding block
codes, Proc. 2nd IBM Symp. on Coding and Error Control, San Jose, California,
January 1985.

[SW91] P.H. Siegel, J.K. Wolf, Modulation and coding for information storage,
IEEE Commun. Magazine, 29 (1991), 68–86.

BIBLIOGRAPHY 278

[Sklar88] B. Sklar, Digital Communications: Fundamentals and Applications, Prentice-
Hall, 1988.

[SC95] N. Swenson, J. M. Cioffi, Sliding block line codes to increase dispersion-
limited distance of optical fiber channels, IEEE J. Select. Areas Commun., 13
(1995), 485–498.

[TK76] E. Tanaka, T. Kasai, Synchronization and substitution error-correcting
codes for the Levenshtein metric, IEEE Trans. Inform. Theory, 22 (1976), 156–
162.

[TB70] D.T. Tang, L.R. Bahl, Block codes for a class of constrained noiseless chan-
nels, Inform. Control, 17 (1970), 436–461.

[Ten76] G.M. Tenengolts, Class of codes correcting bit loss and errors in the preced-
ing bit, (Russian), Avtomatika i Telemekhanika, 37 (1976), 174–179. (English),
Automation and Remote Control, 37 (1976), 797–802.

[Ten84] G.M. Tenengolts, Nonbinary codes, correcting single deletion or insertion,
IEEE Trans. Inform. Theory, 30 (1984), 766–769.

[TiBl89] H.C.A. van Tilborg, M. Blaum On error-correcting balanced codes, IEEE
Trans. Inform. Theory, 35 (1989), 1091–1093.

[Tja94] T.J. Tjalkens, On the principal state method for runlength limited sequences,
IEEE Trans. Inform. Theory, 40 (1994), 934–941.

[Thap92] H.K. Thapar, J. Rae, C.B. Shung, R. Karabed, P.H. Siegel, Perfor-
mance evaluation of a rate 8/10 matched spectral null code for class-4 partial
response, IEEE Trans. Magn., 28 (1992), 2884–2889.

[Thap93] H. Thapar, C. Shung, J. Rae, R. Karabed, P.H. Siegel, Real-time
recording results for a trellis-coded partial response (TCPR) system, IEEE
Trans. Magn., 29 (1993), 4009–4011.

[TLM27] S.J.P. Todd, G.N.N. Martin, G.G. Langdon, A general fixed rate arith-
metic coding method for constrained channels, IBM J. Res. Develop., 27 (1983),
107–115.

[U66] J.D. Ullman, Near-optimal, single-synchronization error-correcting code,
IEEE Trans. Inform. Theory, 12 (1966), 418–424.

[U67] J.D. Ullman, On the capabilities of codes to correct synchronization errors,
IEEE Trans. Inform. Theory, 13 (1967), 95–105.

[Var62] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New
Jersey, 1962.

BIBLIOGRAPHY 279

[WN95] H. Waldman, E. Nisenbaum, Upper bounds and Hamming spheres under
the DC constraint, IEEE Trans. Inform. Theory, 41 (1995), 1138–1145.

[WT99] S.X. Wang, A. M. Taratorin, Magnetic Information Storage Technology,
Academic Press, 1999.

[WW91] A.D. Weathers, J.K. Wolf, A new 2/3 sliding block code for the (1,7)
runlength constraint with the minimal number of encoder states, IEEE Trans.
Inform. Theory, 37 (1991), 908–913.

[Weig88] T. Weigandt, Magneto-optic recording using a (2,18,2) runlength limited
code, S.M. Thesis, MIT, Cambridge, MA, 1991.

[Wic95] S.B. Wicker, Error Control Coding in Digital Communication and Storage,
Prentice-Hall, 1995.

[WF83] A. Widmer and P. Franaszek, A DC-balanced, partitioned-block 8b/10b
transmission code, IBM J. Res. Develop., 27 (1983), 440–451.

[Will73] R.F. Williams, Classification of subshifts of finite type, Annals Math., 98
(1973), 120–153; errata: Annals Math., 99 (1974), 380–381.

[Will88] S. Williams, Covers of non-almost-finite-type systems, Proc. AMS, 104 (1988),
245–252.

[WY93] K. Winick, S.-H. Yang, Bounds on the size of error correcting runlength-
limited codes, preprint, 1993.

[WU86] J.K. Wolf, G. Ungerboeck, Trellis coding for partial-response channels,
IEEE Trans. Commun., 34 (1986), 765–773.

[Wood90] R. Wood, Denser magnetic memory, IEEE Spectrum, 27, No. 5 (May 1990),
32–39.

[WoodP86] R. Wood, D. Peterson, Viterbi detection of class IV partial response on a
magnetic recoding channel, IEEE Trans. Commun., 34 (1986), 454–461.

[YY76] S. Yoshida, S. Yajima, On the relation between an encoding automaton and
the power spectrum of its output sequence, Trans. IECE Japan, 59 (1976), 1–7.

[Yt91a] Ø. Ytrehus, Upper bounds on error-correcting runlength-limited block codes,
IEEE Trans. Inform. Theory, 37 (1991), 941–945.

[Yt91b] Ø. Ytrehus, Runlength-limited codes for mixed-error channels, IEEE Trans.
Inform. Theory, 37 (1991), 1577–1585.

[Ze87] E. Zehavi, Coding for Magnetic Recording, Ph.D. Thesis, University of Cali-
fornia, San Diego, 1987.

BIBLIOGRAPHY 280

[ZW88] E. Zehavi, J.K. Wolf, On runlength codes, IEEE Trans. Inform. Theory,
34 (1988), 45–54.

