Efficient Encoding Algorithm
for Third-Order Spectral-Null Codes*

VITALY SKACHEK Tuvi ETZION RoN M. RoTH

Computer Science Department
Technion — Israel Institute of Technology
Haifa 32000, Israel

e-mail: {vitalys,etzion,ronny}@cs.technion.ac.il

Abstract

An efficient algorithm is presented for encoding unconstrained information se-
quences into a third-order spectral-null code of length n and redundancy 9logyn +
O(loglogn). The encoding can be implemented using O(n) integer additions and
O(nlogn) counter increments.

Keywords: DC-free codes, spectral-null codes.

1 Introduction

Let F be the bipolar alphabet {+1,—1}. A word z = (21, x2,...,2,) in F™ is a k-th order
spectral-null word (at zero frequency) if the respective real polynomial z12 +z92% +. .. +z,2"
is divisible by (2—1)*. We denote by S(n, k) the set of all k-th order spectral-null words
in F". Any subset C of S(n, k) is called a k-th order spectral-null code of length n. The
concatenation of any [words in C yields a word in S(nl, k); so, spectral-null codes can be
used as block codes with a redundancy of n — log, |C| bits (per block of length n).

*This work was supported by grant No. 95-522 from the United-States—Israel Binational Science Foun-
dation (BSF), Jerusalem, Israel.

The set S(n, k) is equivalently characterized by

Stk) = {zeF" : Y (+c)fa;=0, £=01,....k=1}, (1)

7=1
where ¢ is any real constant (see [5], [6, Ch. 9]).

First-order spectral-null codes are also known by the names balanced codes, zero-disparity
codes, or DC-free codes. There are known efficient encoding algorithms for these codes
due to Knuth [3], Al-Bassam and Bose [1], and Tallini, Capocelli, and Bose [8]. Those
algorithms result in codes with redundancy at most [log, n|, where n is the code length. By
‘efficient” we refer to the time and space complexity of the encoding; for example, in one of
Knuth’s algorithms, the complexity amounts to a look-up table of [log,n]? bits and O(n)
increments/decrements of a [log, n|-bit counter (as shown in [3], the space requirement can
be eliminated by increasing the redundancy to log,n + O(loglogn)). The redundancy of
S(n,1) is 5log, n 4+ O(1), and such redundancy can be attained by enumerative coding [6,
p. 117]. In terms of complexity, however, enumerative coding is less efficient than Knuth’s
algorithms or the algorithms in [1] and [8].

Efficient coding algorithms for the second-order spectral-null case were presented in [5]
and [7]. Those algorithms have redundancy of 3 log, n+O(loglogn) bits and time complexity
which amounts to O(n) additions of O(logn)-bit integers. Enumerative coding already turns
out to be impractical for this case [5]. The redundancy of S(n,2) is known to be 2log, n +
o(1) [7].

For higher orders k of spectral null, Karabed and Siegel presented in [2] a coding method
based upon finite-state diagrams (see also Monti and Pierobon [4]). However, since the
rate of their construction is strictly less than 1, the resulting redundancy is linear in the
code length n. It follows that for any fixed k& and sufficiently large n, this redundancy is
significantly larger than the upper bound O(2* - logn) on the redundancy of S(n,k); this
bound is proved in [5] by nonconstructive arguments. A recursive construction is presented
in [5] whose redundancy is O(n'), where 0 < ¢ < 1 and limj_,, ¢, = 0. Yet, this
redundancy is still considerably larger than the actual redundancy of S(n, k).

In this work, we present an efficient algorithm for encoding unconstrained sequences into
a third-order spectral-null code whose redundancy is logarithmic in the code length. More
specifically, for code length n, the redundancy is 91og, n+ O(loglogn) bits and the encoding
complexity is O(n) additions of O(logn)-bit integers and O(nlogn) increments/decrements
of [log, n]-bit counters.

2 A third-order spectral-null encoder

It was shown in [5] that the length n of a third-order spectral-null word is divisible by 4, so
we can write n = 2h for some even integer h. We will use the definition of S(2h,3) that is
obtained from (1) by substituting k¥ = 3 and ¢ = —h—1. It will also be convenient hereafter
to index the entries of a real word z of length 2h by (z_p,2_pi1,...,24-1). We define the
moments of such a word x by

h—1
oo(z) ¥ S jleay, =012,
i=—h

Clearly, a word z € F™ is in §(2h, 3) if and only if og(z) = 01(z) = 02(z) = 0.

The following is an outline of our encoding algorithm. Let n = 2h where h is even and
let m be the integer [log, n| = 14 [log, h]. The input to the algorithm is a balanced word y
over F of length 2h — 6m + 2; namely, y is a word in §(2h —6m +2,1) that is generated from
the raw data by any known DC-free encoder (e.g., [1], [3], or [8]). Our algorithm regards
y as a subword of a word z of length n over F'U {0}, where the remaining entries of z are
initially set to zero; hence, oo(z) = 0. Next, the algorithm reduces to zero the absolute
values of oy(z) and o1(z) (in that order), by a sequence of bit shifts and bit swaps, and by
assigning values of F' to the zero entries of z. At this point, becomes a word in §(2h, 3).
The encoding ends by coding recursively certain counters that were computed in the course
of the algorithm, resulting in a word z' € §(2m + O(logm), 3). The concatenation of x and
2', in turn, will form the output third-order spectral-null word.

The algorithm makes use of the following index sets, all being subsets of S =
{=h,—h+1,...,h—1}:
o Spp = {d;}775° U{e;}775 %, where

(—10- 272 —6 . 2/2) if i is even

(dia 62') = { (_9 . 2(i+1)/2, —7. 2(i+1)/2) if i is odd , 0<9<2m-10, (2)

(dam—9, €2m—9) = (11, 72), and (dom_s, €2m-s) = (—71,7), where 71 is the smallest odd
integer in S that is at least y/(h?/2) + 49, and 7, is the largest odd integer in S that
is at most h/2. We remove {d;, e;} from Spy if d; < —h.!

e Sp3={0,-3,3,-5, 5, 6,—7,-9, 9, 10, —11, 12, —13, 14}.

o Sc={£21}" 2

!This can happen only for i = 2m—10,2m—11. Nevertheless, in those cases where only {d2m—10, €2m—10}
can be removed, then {dan_9,€2m—9} is redundant as well. In fact, it turns out that we will need all the
2(2m — 7) elements of Spa only when h is close in value to a power of 2.

We will assume hereafter that h is large enough, in which case the sets Sgy, Sg3, and S¢
are pairwise disjoint.? We let Sy be the union Sgs U Sz U Sc. Note that |Sy| < 2(2m—7) +
14 +2(m—1) = 6m—2.

For a word z of length n and a subset Y of S, we will use the notation (z)y for the
subword of x that is indexed by Y.

The algorithm is summarized in Figure 1. The input y is of length |S'\ Sp| > 2h —6m+2.

Step A: Initialization of z
Let, (g)g\go < balanced y. Let (z)s, < 0.

Step B: Reduction of |o2(z)]

Step B1: Shift cyclically the entries of (z)g\s,, until the resulting z is such that |o3(z)| < h?. Let
jB be the smallest number of shifts applied until this condition is met.

Step B2: For decreasing values of i = 2m—8,2m—9,...,0, reduce the value of |o2(z)| by assigning
xg, = —T; = —1 if 02(z) > 0 and z4, = —x., = 1 otherwise.

Step B3: Let (z)s,, < the row in Table 1 that corresponds to |o2(z)|. If o2(z) > 0 then let
<£>SB3 A _<£>SB3 (i'e'a negate <£>SB3)'

Step C: Reduction of |0 (z)]

Step C1: For increasing values of indexes j = 1,2,..., swap z; with z_; until |0y (z)| < 2(h—1),
and let jo denote the number of swaps made until this condition is met.

Step C2: For decreasing values of i = m—2,m—3,...,0, reduce the value of |o;(z)| by assigning
Toi = —T_o9i = —1if o9(z) > 0 and z9: = —z_5: = 1 otherwise.

Step D: Recursive encoding

Apply Step A—C recursively to the binary representation of (jg,jc). Concatenate the resulting word,
z', with z to generate the final output of the encoder.

Figure 1: Third-order spectral-null encoder.

3 Analysis of the algorithm

3.1 Validity

We verify step by step that the algorithm indeed terminates with a third-order spectral-null
word.

2As we show in the example of Section 4 and as pointed out in the previous footnote, some elements in
Sp2 may sometimes be excluded. This allows to have h as small as 18.

[Joz@)][\index [0 [=3[3 [=5 5 [6 | —7 [=9 [9 [10 [—I1] 12 [—13] 14 |
T + [+ [- -]+ -1+ -T-1+T7T-T+7] -7+
3 o T e e I e e e I e e e e
5 -+ |- ==+ |+ +]|+|+]|-=-1-14+]-
7 e e e T e e e I [A IS N N I
9 + ===+ |+ |+ -|=-1++|-]-1H%
11 +l+ -+ ===+ -1+ -+]+]-
13 +l+ ==+ |-+ -|+|-=-|=-|-]+]H%
15 e T e e e e e T (S A S I N S
17 + = ===+ +|+]-]++|+]-]|-
19 -l - -+]|+ |+ |-+ -|+]|+]|+]|-]-
21 +l+ - - ==+ +|+]-|-|+]+]-
23 +l+ ===+ +|-|=-1+]|=-|+]-1H%
25 o S B e e e e e I B e e R B
27 +l+ == =-1-=-|=-|+|+]+|+]|+]-]-
29 e e e e e o o I (S I IS NS
31 e e e T O O e I (o e IS IR S I
33 + ==+ |+ |-+ -|=-1+|=-|+]-1H%
35 +l+ |- - -+ + |-+ =] +|+
37 -+ -+ +]+ ==+ =-|-]-]+]|+
39 e e e O T e e e (e A IS N S I
41 +l+ ===+ =-|-|+|+]|+|-]-1H%
43 +l+ - -+ -+ -+ |+]-|+
45 +l+ |-+ +|=-|-=--|-=-1-=-|+|-]+]H+%
a7 -+ |- ==+ |+ +]|+|-+]-1]+]-
49 + ==+ + |+ ===+ |+]-|+
51 +l+ ==+ =-|+|-|=-1+]|=-|-]+]H%
53 + ==+ ==+ |+]+ -+]+]-
55 + ===+ |+ |+ -|=-1+|=-+]-1H%
57 e T e e I e I e e B B e e A s
59 + ==+ =-]-=-|=-|+|+]+|+]|+]-]-
61 + ===+ -+ |+ |+ -+ -]-1+
63 ~l+ -1+l + -0+ =+ =] =] =1+]+

Table 1: Generating odd integers up to 63 by balanced assignments.

Step A ends with a word z with oy(z) = 0. We turn to Step B and first verify that the
shift counter jg is well-defined.

Lemma 3.1 There is always a cyclic shift of (x)s\s, in Step B1 for which |oa(z)| < h%.

Proof. Let x() denote the value of z at the beginning of Step Bl and let z(¥) =
(x(f,)l,x(f,)wl, ..., 2.) be the word obtained from z(® by s right cyclic shifts of (z(°)5\ 5

(note that (z(¢)>50 remains zero for all s).

First, we show that |oo(z (s“)) oy (2)| < 2h? for every s > 0. We say that location j
in z*) contains a sign change if a: 7é T; (1) Let Jj1 < Jo < +++ < j; be the locations of the
sign changes in z(®). It is easy to verlfy that

|22 —0y(@) | = |23 (=1)"- 7 3)

Let r be the smallest index i such that j; > 0. Define 8~ = Y0_{(=1) - j2 and g+ =
St (=1)"- j2 Now, #~ is a sum of integers with alternating signs and decreasing absolute
values, where the first integer in the sum (if any) is negative. Hence,

—h* < —j; < B <0. (4)

On the other hand, 8% is a sum of integers with alternating signs and increasing absolute
values. Furthermore, since t is even, the last integer in the sum is positive. Hence,

0 < g% <4 < (h-1)%. (5)
Combining (3), (4), and (5), we obtain,

7240 = 02(a) | = 2107+ 5% < 20 ©)

Next, we observe that Z!i\(;go‘*l o2(2®) = 0. Indeed, since z(*) is balanced, it follows

that E‘S\S‘” ! (-s) = 0 for every j € S. Hence,

[S\So|—1 [S\So|—1 (s) |S\So|—1 ()
> @) = 3 Y =35 Y 2 =0
5=0 s=0 jeSs jES 5=0

Therefore, there is a ‘zero-crossing’ value of s for which oy (2(®) - 05 (z**V) < 0. By (6), for
such an s we must have either |o2(z(*)| < h? or |oy(z+D)| < h2. O

Each iteration in Step B2 changes the value of o9(z) by an additive term +(d? — €?),
where the negative sign is chosen when oy(z) > 0. This further reduces the absolute value
of o9(x) as follows.

Lemma 3.2 The value of o5(x) after Step B2 is an odd integer between —63 and 63.

Proof. First note that
2(d? | —el) > dF —e?, i=2m—8,2m—9,...,1, (7)

and 2(d3, ¢ — €2 o) > h?. Specifically, for the values in (2) we have d? — e? = 2/%6 for
i < 2m—10, and a simple check reveals that (7) holds also for i € 2m—8,2m—9 (ifd;_; < —h,
then {d;_1,e;—1} is removed from Sgo; nevertheless, it can be verified that (7) still holds if
we replace (d;_1,e;—1) by the pair (d,,e,) of elements in Sgy with the largest index r < 7).
It follows that after iteration ¢ in Step B2, the resulting absolute value of o9(x) is bounded
from above by d? — €?. In particular, for = 0, the value of o,(z) is an integer between —64
and 64. Furthermore, at this stage, the only zero entries of x are those that are indexed by
Spz U Sc. Since S\ (Sps U S¢) contains an odd number of odd indexes, it follows that oy (z)
must be odd. 0

The final reduction of |oy(z)| to zero is done is Step B3, using Table 1. It can be readily
checked that for r = 1,3,...,63, the values in row r in the table contribute r to oq(z) (we
negate those values in Step B3 if the contribution needs to be —r). Note that neither of the
changes made in Step B affects the value of oy(x), which still remains zero.

We now turn to Step C. This step is very similar to “Phase A” of the second-order
spectral-null encoder in [5, Section IV]). We show next that the swap counter jo is well-
defined.

Lemma 3.3 There is always a word x obtained by less than h swaps in Step C1 for
which oy (z)| < 2(h—1).

Proof. Let z[% denote the value of z at the beginning of Step C1 and let zV/! be the
word after the jth swap. First, it is easy to check that |oy(zU*") — o (2V])] < 4(h—1)
for all 5 > 0. Suppose we continue the swaps until j = h—1, and let z[" be the word
obtained from z["~!) by negating the first entry (indexed by —h). In that case we will have
oy (z!") — oy (2"~ 1)| = 2h and

o (z") = —oy(2%) .

Hence, there must be a ‘zero- crossing index j < h for which o;(z/) - o1 (zV+!) < 0. For
such a j we must have either |oy(z))| < 2(h—1) or |oy(2V+Y)| < 2(h, 1). Furthermore if
the zero-crossing index is j = h—1, we have |0y (z[")| < h or |oy(z!")]| = |oy (2I))] < h. O

Turning to Step C2, it can be easily verified that after iteration 7 in that step, the resulting
value of |y (x)| is bounded from above by 2'™1. In particular, for i = 0, the value of o (x)
is an integer between —2 and 2. The following lemma implies that oy (x) is actually zero at
this point.

Lemma 3.4 For n divisible by 4 and every w € F",

o1(w) = oz(w) (mod 4) .

Proof. Let n = 2h and write w = (w_p, w_p41,...,wp_1). Then,
or(w) — o1 (w) = Z?:ihj(j—l) Cw
= Zzﬁ/fhm ((21)(21—1) - wy + (20+1)(21) - w2z+1)
= Zlh/2h/2 (21)((21—1) - wy + (20+1) 'wzz+1) :

The result follows by observing that (20)((20—1) - wy + (21+1) - w41) is divisible by 4 for
every [. (]

Neither of the changes made in Step C affects the values of o¢(z) or oy(x), which still
remain zero. Hence, at the end of Step C we will have oy(z) = 0 (mod 4). And since
-2 < o1(z) < 2, it follows that oy (x) is zero.

Finally, Step D is rather straightforward and is based on the fact that the concatenation
of two k-th order spectral-null words yields a k-th order spectral-null word.

Decoding of y is done by first reconstructing the values jg and jc from z’. Once we have
those two counters, we can reconstruct the values of x at the beginning of Steps C and B
(in that order).

3.2 Redundancy

We now compute the redundancy of the code which is defined by the words generated by
the algorithm for any given length.

Using the algorithms in [1], [3], or [8], the redundancy in Step A due to the balancing of
y is at most m bits.

Steps B and C require |Sp| < 6m—2 bits to reduce |oq(z)| and |0y (z)| to zero. We also
need m bits to represent the shift counter jg and m—1 bits to represent the swap counter

Jc-

In Step D, the encoding procedure is applied recursively to the 2m—1 bits that represent
(jB,Jc), thus generating a word z' € S(m/,3) of length m' = 2m + O(logm). Since m =
[log, n], it follows that the total redundancy of the encoding scheme is 91og, n+O(loglogn)
bits. This expression will be an upper bound on the redundancy also if we replace n by the
overall length, n + m/, of the output word.

3.3 Time and space complexity

Step A can be implemented by O(n) increments/decrements of a [log, n]-bit counter, and a
look-up table of size [log, n]? bits.

As for Step B, we need to have the value of o9(x) for each cyclic shift in Step BI.
Assuming that the squares of the elements between 1 and h are pre-computed in a table,
the initial value of o9(z) in this step can be found in O(n) additions of O(logn)-bit integers.
Now, let Z denote the word obtained from z by one right cyclic shift of (z)s\s,, and let z
be the word obtained from x by one right cyclic shift of the whole word z. We describe
next how o,(z) can be computed efficiently from o,(z), £ = 1,2. Step Bl will then proceed
iteratively by making 2 the new value of z.

Noting that o¢(z) = 0, it is easy to verify that

o1(Z) = o1(x) —2h -z, and o09(z) = oo(z) + 207 (2) -

Therefore, once we have oy(x) and oy(z), it is straightforward to compute o1 (Z) and o2(Z).

Let S; denote the set of all indexes j € Sy such that j—1 € S\ Sy (when j = —h, the
index j—1 should read h—1). For an index j € Sj, let j denote the smallest index in S\ Sy
that is larger than j (if no such index exists, then j is defined as the smallest index in S\ Sp).

For ¢ =1, 2, define
ag(z) = Y (G =5 o
JEST

It can be readily verified that
00(2) = op(Z) + u(z), (=1,2.

The expressions ay(x) can be computed using O(logn) additions of O(logn)-bit integers.
The following discussion outlines how the computation of a,(z) can be accelerated further
through the use of small look-up tables.

Let S; = U; S1(t) be a partition of S; into O(1) subsets S;(t), each of size less than m.
For each subset S;(t), construct a look-up table for computing the expression

ae((@sl(t)) = Z (je - jz) CXjq

jeSl(t)

as a function of the entries z;_;,j € Si(t). Each look-up table consists of less than n
entries and each entry contains an O(logn)-bit integer. Note that these look-up tables can
be computed in time O(n) and that they depend on n, but not on the encoded word. In
order to access the bits z;_q,j € S;(t) within (z)g¢\s,, we will use |S;(¢)| pointers (counters)
that will be decremented after each shift. (In hardware implementations, we can instead
store (z)s\s, in a shift-register.) Once we have computed the O(1) expressions c({z)s, (1)),
we obtain ay(z) as their sum. Note that this computation of oy(z) allows us to find jg
without actually shifting (z)s\s,- This makes the computation efficient also in software
implementations.

Steps B2, B3, and C are rather straightforward and can be implemented using O(n)
integer additions. Hence, the overall time and space complexity of our encoding algorithm
is as follows:

e O(n) additions of O(logn)-bit integers,
e O(n) accesses to O(1) tables, each of size < n, and —

e O(n) increments/decrements of O(logn) counters, each [log, n] bits long.

4 Example

We consider here the case n = 60 (for such a small value of n the redundancy is relatively
big, so this example is given only for the purpose of illustrating the encoding steps). In this
case h = 30 and m = 6, and the set Sy is given by

Spz = {~10,-18,-20,-23} U {~6,-14, 12, 7},

where 71 = 23. Note that we have excluded the elements {ds,e3} = {m, =} = {23,15} from
Sga since they will not be required in Step B2: The value of d2 —e3 = (—20)? — (—12)% = 256
is already greater than half the value of di — €2 = (—23)%> — 7% = 480. The set Sps is of
size 14 and Sc is given by {£2'}} . Hence, |Sp| = 32.

Suppose that the input balanced word y of length n — |Sy| = 28 is given by

- =T L L L L L LI T

After embedding y in z in Step A, we obtain the word

1
————4++—-0——0+04+04+00000000000000000000000004+0—0+0—+++ F+—+ }

(the arrow points at the entry indexed by 0). For this word we have o¢(z) = 0 and
oa(x) = —2047, and when applying the cyclic shifts in Step B1 we produce words x with
oa(x) = —1853, —1755, —1357, and —625. The last value corresponds to

L
+——4———0—4040-0-000000000000000000000000 0—0+0+0++—+—+++——-+1

which is the first word in this step with |o9(z)| < h? = 900; so, jg = 4. The assignment of
values to the entries indexed by Sgo in Step B2 results in

1
+— F——4++ 0—+0—-0+000—-000000000000—-000—0+04+0++—+—+++ -

with o9(z) = 47. In Step B3, we fill in the entries indexed by Sps with the negated entries
of the row that corresponds to 47 in Table 1. This produces the word

1
+—— | 0—+ +—0 +0—0040040+ 0—+—++++0++—+—+++ -+

Step C1 starts with oy (z) = 174 and then continues with iterated swaps that generate words
x with oy(z) = 194,194,182 (9 iterations), 134, 82,82, and 22. The last value corresponds
to

1
+—— | 0++++—+-0 +04+004+00—-0+ 0— F— 0 4++—4—+—++ -+

and this word is the first to occur in this step with |oy(z)| < 2(h—1) = 58, and so jc = 15.
Step C2 fills in the entries indexed by S¢ to produce the word

for which we have oy(z) = 01(z) = o2(z) = 0.

10

Note that we can make the counting of the swaps in Step C more economical by skipping
index pairs (—7,j) with z_; = z; (in which case the swaps become in effect negations of z_;
and z; whenever z_; # x;).

Finally, the counters (jg,jc) are coded into up to 2 -6 — 1 = 11 bits and undergo a
recursive encoding in Step D.

Acknowledgment

We thank the reviewers for their helpful comments and suggestions.

References

1] S. ArL-Bassam, B. BOSE, On balanced codes, IEEE Trans. Inform. Theory, 1T-36
(1990), 406-408.

2] R. KARABED, P.H. SIEGEL, Matched spectral-null codes for partial-response channels,
IEEE Trans. Inform. Theory, IT-37 (1991), 818-855.

3] D.E. KNUTH, Efficient balanced codes, IEEE Trans. Inform. Theory, 1T-32 (1986),
51-53.

[4] C.M. MonTI, G.L. PIEROBON, Codes with a multiple spectral null at zero frequency,
IEEE Trans. Inform. Theory, IT-35 (1989), 463-472.

5] R.M. RotH, P.H. SIEGEL, A. VARDY, High-order spectral-null codes: Constructions
and bounds, IEEE Trans. Inform. Theory, IT-40 (1994), 1826-1840.

6] K.A. SCHOUHAMER IMMINK, Coding Techniques for Digital Recorders, London:
Prentice-Hall, 1991.

[7] L.G. TALLINI, S. AL-BAssAaM, B. BosE, On efficient high-order spectral-null codes,
Proceedings of IEEE International Symposium On Information Theory, Whistler, BC,
Canada (1995), p. 144.

8] L.G. TAaLLINI, R.M. CAPOCELLI, B. BOSE, Design of some new balanced codes, IEEE
Trans. Inform. Theory, 1T-42 (1996), 790-802.

11

