
E�cient Encoding Algorithm

for Third�Order Spectral�Null Codes�

Vitaly Skachek Tuvi Etzion Ron M� Roth

Computer Science Department

Technion � Israel Institute of Technology

Haifa ������ Israel

e�mail� fvitalys�etzion�ronnyg�cs�technion�ac�il

Abstract

An e�cient algorithm is presented for encoding unconstrained information se�

quences into a third�order spectral�null code of length n and redundancy � log� n �

O�log logn�� The encoding can be implemented using O�n� integer additions and

O�n logn� counter increments�

Keywords� DC�free codes� spectral�null codes�

� Introduction

Let F be the bipolar alphabet f�����g� A word x � �x�� x�� � � � � xn� in F n is a k�th order

spectral�null word �at zero frequency� if the respective real polynomial x�z�x�z
�� � � ��xnz

n

is divisible by �z���k� We denote by S�n� k� the set of all k�th order spectral�null words
in F n� Any subset C of S�n� k� is called a k�th order spectral�null code of length n� The
concatenation of any l words in C yields a word in S�nl� k�� so� spectral�null codes can be
used as block codes with a redundancy of n� log� jCj bits �per block of length n��

�This work was supported by grant No� ������ from the United�States�Israel Binational Science Foun�
dation �BSF�� Jerusalem� Israel�

�



The set S�n� k� is equivalently characterized by

S�n� k� �
n
x � F n 	

nX
j��

�j � c��xj � 
 � � � 
� �� � � � � k��
o
� ���

where c is any real constant �see ��� ��� Ch� ���

First�order spectral�null codes are also known by the names balanced codes� zero�disparity
codes� or DC�free codes� There are known e�cient encoding algorithms for these codes
due to Knuth ��� Al�Bassam and Bose ��� and Tallini� Capocelli� and Bose ��� Those
algorithms result in codes with redundancy at most dlog� ne� where n is the code length� By
�e�cient� we refer to the time and space complexity of the encoding� for example� in one of
Knuth�s algorithms� the complexity amounts to a look�up table of dlog� ne

� bits and O�n�
increments�decrements of a dlog� ne�bit counter �as shown in ��� the space requirement can
be eliminated by increasing the redundancy to log� n � O�log logn��� The redundancy of
S�n� �� is �

�
log� n � O���� and such redundancy can be attained by enumerative coding ���

p� ���� In terms of complexity� however� enumerative coding is less e�cient than Knuth�s
algorithms or the algorithms in �� and ���

E�cient coding algorithms for the second�order spectral�null case were presented in ��
and ��� Those algorithms have redundancy of � log� n�O�log logn� bits and time complexity
which amounts to O�n� additions of O�logn��bit integers� Enumerative coding already turns
out to be impractical for this case ��� The redundancy of S�n� �� is known to be � log� n �
O��� ���

For higher orders k of spectral null� Karabed and Siegel presented in �� a coding method
based upon �nite�state diagrams �see also Monti and Pierobon ���� However� since the
rate of their construction is strictly less than �� the resulting redundancy is linear in the
code length n� It follows that for any �xed k and su�ciently large n� this redundancy is
signi�cantly larger than the upper bound O��k � logn� on the redundancy of S�n� k�� this
bound is proved in �� by nonconstructive arguments� A recursive construction is presented
in �� whose redundancy is O�n���k�� where 
 � �k � � and limk�� �k � 
� Yet� this
redundancy is still considerably larger than the actual redundancy of S�n� k��

In this work� we present an e�cient algorithm for encoding unconstrained sequences into
a third�order spectral�null code whose redundancy is logarithmic in the code length� More
speci�cally� for code length n� the redundancy is � log� n�O�log logn� bits and the encoding
complexity is O�n� additions of O�logn��bit integers and O�n logn� increments�decrements
of dlog� ne�bit counters�

�



� A third�order spectral�null encoder

It was shown in �� that the length n of a third�order spectral�null word is divisible by �� so
we can write n � �h for some even integer h� We will use the de�nition of S��h� �� that is
obtained from ��� by substituting k � � and c � �h��� It will also be convenient hereafter
to index the entries of a real word x of length �h by �x�h� x�h��� � � � � xh���� We de�ne the
moments of such a word x by

���x�
def
�

h��X
j��h

j� � xj � � � 
� �� �� � � � �

Clearly� a word x � F n is in S��h� �� if and only if ���x� � ���x� � ���x� � 
�

The following is an outline of our encoding algorithm� Let n � �h where h is even and
let m be the integer dlog� ne � ��dlog� he� The input to the algorithm is a balanced word y
over F of length �h��m��� namely� y is a word in S��h��m��� �� that is generated from
the raw data by any known DC�free encoder �e�g�� ��� ��� or ���� Our algorithm regards
y as a subword of a word x of length n over F � f
g� where the remaining entries of x are
initially set to zero� hence� ���x� � 
� Next� the algorithm reduces to zero the absolute
values of ���x� and ���x� �in that order�� by a sequence of bit shifts and bit swaps� and by
assigning values of F to the zero entries of x� At this point� x becomes a word in S��h� ���
The encoding ends by coding recursively certain counters that were computed in the course
of the algorithm� resulting in a word x� � S��m�O�logm�� ��� The concatenation of x and
x�� in turn� will form the output third�order spectral�null word�

The algorithm makes use of the following index sets� all being subsets of S �
f�h��h��� � � � � h��g	

� SB� � fdig
�m��
i�� � feig

�m��
i�� � where

�di� ei� �

�
���
 � �i����� � �i��� if i is even
��� � ��i�������� � ��i������ if i is odd

� 
 � i � �m��
 � ���

�d�m��� e�m��� � ���� ���� and �d�m��� e�m��� � ����� ��� where �� is the smallest odd

integer in S that is at least
q
�h���� � ��� and �� is the largest odd integer in S that

is at most h��� We remove fdi� eig from SB� if di � �h��

� SB	 � f
���� ����� �� �������� �� �
����� ������� ��g�

� SC � f��igm��i�� �

�This can happen only for i 	 �m�
�� �m�

� Nevertheless� in those cases where only fd�m���� e�m���g
can be removed� then fd�m��� e�m��g is redundant as well� In fact� it turns out that we will need all the
���m� �� elements of SB� only when h is close in value to a power of ��

�



We will assume hereafter that h is large enough� in which case the sets SB�� SB	� and SC

are pairwise disjoint�� We let S� be the union SB� � SB	 � SC� Note that jS�j � ���m��� �
�� � ��m��� � �m���

For a word x of length n and a subset Y of S� we will use the notation hxiY for the
subword of x that is indexed by Y �

The algorithm is summarized in Figure �� The input y is of length jS nS�j � �h��m���

Step A� Initialization of x

Let hxiSnS� � balanced y� Let hxiS� � ��

Step B� Reduction of j���x�j

Step B�� Shift cyclically the entries of hxiSnS� � until the resulting x is such that j���x�j � h�� Let
jB be the smallest number of shifts applied until this condition is met�

Step B�� For decreasing values of i 	 �m�� �m��� � � � � �� reduce the value of j���x�j by assigning
xdi 	 �xei 	 �
 if ���x� � � and xdi 	 �xei 	 
 otherwise�

Step B�� Let hxiSB� � the row in Table 
 that corresponds to j���x�j� If ���x� � � then let
hxiSB� � �hxiSB� �i�e�� negate hxiSB���

Step C� Reduction of j���x�j

Step C�� For increasing values of indexes j 	 
� �� � � � � swap xj with x�j until j���x�j � ��h�
��
and let jC denote the number of swaps made until this condition is met�

Step C�� For decreasing values of i 	 m���m��� � � � � �� reduce the value of j���x�j by assigning
x�i 	 �x��i 	 �
 if ���x� � � and x�i 	 �x��i 	 
 otherwise�

Step D� Recursive encoding

Apply Step A�C recursively to the binary representation of �jB� jC�� Concatenate the resulting word�
x�� with x to generate the �nal output of the encoder�

Figure �	 Third�order spectral�null encoder�

� Analysis of the algorithm

��� Validity

We verify step by step that the algorithm indeed terminates with a third�order spectral�null
word�

�As we show in the example of Section � and as pointed out in the previous footnote� some elements in
SB� may sometimes be excluded� This allows to have h as small as 
�

�



j���x�j n index � �	 	 �
 
 � �� �� � �� ��� �� ��	 �

� � � � � � � � � � � � � � �
	 � � � � � � � � � � � � � �

 � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
�� � � � � � � � � � � � � � �
�	 � � � � � � � � � � � � � �
�
 � � � � � � � � � � � � � �
�� � � � � � � � � � � � � � �
�� � � � � � � � � � � � � � �
�� � � � � � � � � � � � � � �
�	 � � � � � � � � � � � � � �
�
 � � � � � � � � � � � � � �
�� � � � � � � � � � � � � � �
�� � � � � � � � � � � � � � �
	� � � � � � � � � � � � � � �
		 � � � � � � � � � � � � � �
	
 � � � � � � � � � � � � � �
	� � � � � � � � � � � � � � �
	� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
	 � � � � � � � � � � � � � �

 � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

	 � � � � � � � � � � � � � �


 � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �
�� � � � � � � � � � � � � � �
�	 � � � � � � � � � � � � � �

Table �	 Generating odd integers up to �� by balanced assignments�

Step A ends with a word x with ���x� � 
� We turn to Step B and �rst verify that the
shift counter jB is well�de�ned�

Lemma ��� There is always a cyclic shift of hxiSnS� in Step B� for which j���x�j � h��

Proof� Let x��� denote the value of x at the beginning of Step B� and let x�s� �
�x

�s�
�h� x

�s�
�h��� � � � � x

�s�
h��� be the word obtained from x��� by s right cyclic shifts of hx���iSnS�

�note that hx�s�iS� remains zero for all s��

First� we show that j���x
�s����� ���x

�s��j � �h� for every s � 
� We say that location j

in x�s� contains a sign change if x
�s�
j �� x

�s���
j � Let j� � j� � � � � � jt be the locations of the

sign changes in x�s�� It is easy to verify that

��� ���x�s����� ���x
�s��

��� �
��� � tX

i��

����i � j�i
��� � ���

�



Let r be the smallest index i such that ji � 
� De�ne �� �
Pr��

i�� ����i � j�i and �� �Pt
i�r����i � j�i � Now� �

� is a sum of integers with alternating signs and decreasing absolute
values� where the �rst integer in the sum �if any� is negative� Hence�

�h� � �j�� � �� � 
 � ���

On the other hand� �� is a sum of integers with alternating signs and increasing absolute
values� Furthermore� since t is even� the last integer in the sum is positive� Hence�


 � �� � j�t � �h���� � ���

Combining ���� ���� and ���� we obtain�������x�s����� ���x
�s��

��� � � � j�� � ��j � �h� � ���

Next� we observe that
PjSnS�j��

s�� ���x
�s�� � 
� Indeed� since x��� is balanced� it follows

that
PjSnS�j��

s�� x
�s�
j � 
 for every j � S� Hence�

jSnS�j��X
s��

���x
�s�� �

jSnS�j��X
s��

X
j�S

j� � x
�s�
j �

X
j�S

j� �
jSnS�j��X

s��

x
�s�
j � 
 �

Therefore� there is a �zero�crossing� value of s for which ���x
�s�� � ���x

�s���� � 
� By ���� for
such an s we must have either j���x

�s��j � h� or j���x
�s����j � h��

Each iteration in Step B� changes the value of ���x� by an additive term ��d�i � e�i ��
where the negative sign is chosen when ���x� � 
� This further reduces the absolute value
of ���x� as follows�

Lemma ��� The value of ���x� after Step B� is an odd integer between ��� and ���

Proof� First note that

��d�i�� � e�i��� � d�i � e�i � i � �m��� �m��� � � � � � � ���

and ��d��m�� � e��m��� � h�� Speci�cally� for the values in ��� we have d�i � e�i � �i�� for
i � �m��
� and a simple check reveals that ��� holds also for i � �m��� �m�� �if di�� � �h�
then fdi��� ei��g is removed from SB�� nevertheless� it can be veri�ed that ��� still holds if
we replace �di��� ei��� by the pair �dr� er� of elements in SB� with the largest index r � i��
It follows that after iteration i in Step B�� the resulting absolute value of ���x� is bounded
from above by d�i � e�i � In particular� for i � 
� the value of ���x� is an integer between ���
and ��� Furthermore� at this stage� the only zero entries of x are those that are indexed by
SB	 � SC� Since S n �SB	 � SC� contains an odd number of odd indexes� it follows that ���x�
must be odd�

�



The �nal reduction of j���x�j to zero is done is Step B�� using Table �� It can be readily
checked that for r � �� �� � � � � ��� the values in row r in the table contribute r to ���x� �we
negate those values in Step B� if the contribution needs to be �r�� Note that neither of the
changes made in Step B a�ects the value of ���x�� which still remains zero�

We now turn to Step C� This step is very similar to �Phase A� of the second�order
spectral�null encoder in ��� Section IV�� We show next that the swap counter jC is well�
de�ned�

Lemma ��� There is always a word x obtained by less than h swaps in Step C� for

which j���x�j � ��h����

Proof� Let x��� denote the value of x at the beginning of Step C� and let x�j� be the
word after the jth swap� First� it is easy to check that j���x

�j���� � ���x
�j��j � ��h���

for all j � 
� Suppose we continue the swaps until j � h��� and let x�h� be the word
obtained from x�h��� by negating the �rst entry �indexed by �h�� In that case we will have
j���x

�h��� ���x
�h����j � �h and

���x
�h�� � ����x

���� �

Hence� there must be a �zero�crossing� index j � h for which ���x
�j�� � ���x

�j���� � 
� For
such a j we must have either j���x

�j��j � ��h��� or j���x
�j����j � ��h���� Furthermore� if

the zero�crossing index is j � h��� we have j���x
�h����j � h or j���x

�h��j � j���x
����j � h�

Turning to Step C�� it can be easily veri�ed that after iteration i in that step� the resulting
value of j���x�j is bounded from above by �i��� In particular� for i � 
� the value of ���x�
is an integer between �� and �� The following lemma implies that ���x� is actually zero at
this point�

Lemma ��� For n divisible by � and every w � F n�

���w� 	 ���w� �mod �� �

Proof� Let n � �h and write w � �w�h� w�h��� � � � � wh���� Then�

���w�� ���w� �
Ph��

j��hj�j��� � wj

�
P�h�����

l��h��

�
��l���l��� � w�l � ��l�����l� � w�l��

�
�

P�h�����
l��h�� ��l�

�
��l��� � w�l � ��l��� � w�l��

�
�

The result follows by observing that ��l�
�
��l��� � w�l � ��l��� � w�l��

�
is divisible by � for

every l�

�



Neither of the changes made in Step C a�ects the values of ���x� or ���x�� which still
remain zero� Hence� at the end of Step C we will have ���x� 	 
 �mod ��� And since
�� � ���x� � �� it follows that ���x� is zero�

Finally� Step D is rather straightforward and is based on the fact that the concatenation
of two k�th order spectral�null words yields a k�th order spectral�null word�

Decoding of y is done by �rst reconstructing the values jB and jC from x�� Once we have
those two counters� we can reconstruct the values of x at the beginning of Steps C and B
�in that order��

��� Redundancy

We now compute the redundancy of the code which is de�ned by the words generated by
the algorithm for any given length�

Using the algorithms in ��� ��� or ��� the redundancy in Step A due to the balancing of
y is at most m bits�

Steps B and C require jS�j � �m�� bits to reduce j���x�j and j���x�j to zero� We also
need m bits to represent the shift counter jB and m�� bits to represent the swap counter
jC�

In Step D� the encoding procedure is applied recursively to the �m�� bits that represent
�jB� jC�� thus generating a word x� � S�m�� �� of length m� � �m � O�logm�� Since m �
dlog� ne� it follows that the total redundancy of the encoding scheme is � log� n�O�log logn�
bits� This expression will be an upper bound on the redundancy also if we replace n by the
overall length� n�m�� of the output word�

��� Time and space complexity

Step A can be implemented by O�n� increments�decrements of a dlog� ne�bit counter� and a
look�up table of size dlog� ne

� bits�

As for Step B� we need to have the value of ���x� for each cyclic shift in Step B��
Assuming that the squares of the elements between � and h are pre�computed in a table�
the initial value of ���x� in this step can be found in O�n� additions of O�logn��bit integers�
Now� let �x denote the word obtained from x by one right cyclic shift of hxiSnS�� and let �x
be the word obtained from x by one right cyclic shift of the whole word x� We describe
next how ����x� can be computed e�ciently from ���x�� � � �� �� Step B� will then proceed
iteratively by making �x the new value of x�

�



Noting that ���x� � 
� it is easy to verify that

����x� � ���x�� �h � xh�� and ����x� � ���x� � ����x� �

Therefore� once we have ���x� and ���x�� it is straightforward to compute ����x� and ����x��

Let S� denote the set of all indexes j � S� such that j�� � S n S� �when j � �h� the
index j�� should read h���� For an index j � S�� let �	 denote the smallest index in S n S�

that is larger than j �if no such index exists� then �	 is de�ned as the smallest index in S nS���
For � � �� �� de�ne


��x� �
X
j�S�

��	� � j�� � xj�� �

It can be readily veri�ed that

����x� � ����x� � 
��x� � � � �� � �

The expressions 
��x� can be computed using O�logn� additions of O�logn��bit integers�
The following discussion outlines how the computation of 
��x� can be accelerated further
through the use of small look�up tables�

Let S� �
S
t S��t� be a partition of S� into O��� subsets S��t�� each of size less than m�

For each subset S��t�� construct a look�up table for computing the expression


�

�
hxiS��t�

�
�

X
j�S��t�

��	� � j�� � xj�� �

as a function of the entries xj��� j � S��t�� Each look�up table consists of less than n
entries and each entry contains an O�logn��bit integer� Note that these look�up tables can
be computed in time O�n� and that they depend on n� but not on the encoded word� In
order to access the bits xj��� j � S��t� within hxiSnS� � we will use jS��t�j pointers �counters�
that will be decremented after each shift� �In hardware implementations� we can instead
store hxiSnS� in a shift�register�� Once we have computed the O��� expressions 
��hxiS��t���
we obtain 
��x� as their sum� Note that this computation of ���x� allows us to �nd jB
without actually shifting hxiSnS�� This makes the computation e�cient also in software
implementations�

Steps B�� B�� and C are rather straightforward and can be implemented using O�n�
integer additions� Hence� the overall time and space complexity of our encoding algorithm
is as follows	

� O�n� additions of O�logn��bit integers�

� O�n� accesses to O��� tables� each of size � n� and �

� O�n� increments�decrements of O�logn� counters� each dlog� ne bits long�

�



� Example

We consider here the case n � �
 �for such a small value of n the redundancy is relatively
big� so this example is given only for the purpose of illustrating the encoding steps�� In this
case h � �
 and m � �� and the set SB� is given by

SB� � f��
�������
����g � f����������� �g �

where �� � ��� Note that we have excluded the elements fd	� e	g � f��� ��g � f��� ��g from
SB� since they will not be required in Step B�	 The value of d���e�� � ���
��������� � ���
is already greater than half the value of d� � e� � ������ � �� � ��
� The set SB	 is of
size �� and SC is given by f��igi��� Hence� jS�j � ���

Suppose that the input balanced word y of length n� jS�j � �� is given by

����������������������������

After embedding y in x in Step A� we obtain the word

����������������� � � � � � � � � � � � � �
�

� � � � � � � � � � ��������������������

�the arrow points at the entry indexed by 
�� For this word we have ���x� � 
 and
���x� � ��
��� and when applying the cyclic shifts in Step B� we produce words x with
���x� � ������������������ and ����� The last value corresponds to

����������������� � � � � � � � � � � � � �
�

� � � � � � � � � � ��������������������

which is the �rst word in this step with j���x�j � h� � �

� so� jB � �� The assignment of
values to the entries indexed by SB� in Step B� results in

���������������������� � ��� � � � �
�

� � � � � � ��� � ��������������������

with ���x� � ��� In Step B�� we �ll in the entries indexed by SB	 with the negated entries
of the row that corresponds to �� in Table �� This produces the word

����������������������������� �
�
�� ����������������������������

Step C� starts with ���x� � ��� and then continues with iterated swaps that generate words
x with ���x� � ���� ���� ��� �� iterations�� ���� ��� ��� and ��� The last value corresponds
to

����������������������������� �
�
�� ����������������������������

and this word is the �rst to occur in this step with j���x�j � ��h��� � ��� and so jC � ���
Step C� �lls in the entries indexed by SC to produce the word

������������������������������
�
������������������������������

for which we have ���x� � ���x� � ���x� � 
�

�




Note that we can make the counting of the swaps in Step C more economical by skipping
index pairs ��j� j� with x�j � xj �in which case the swaps become in e�ect negations of x�j
and xj whenever x�j �� xj��

Finally� the counters �jB� jC� are coded into up to � � � � � � �� bits and undergo a
recursive encoding in Step D�

Acknowledgment

We thank the reviewers for their helpful comments and suggestions�

References

�� S� Al�Bassam� B� Bose� On balanced codes� IEEE Trans� Inform� Theory� IT���
����
�� �
� �
��

�� R� Karabed� P�H� Siegel�Matched spectral�null codes for partial�response channels�

IEEE Trans� Inform� Theory� IT��� ������� ��� ����

�� D�E� Knuth� E�cient balanced codes� IEEE Trans� Inform� Theory� IT��� �������
�� ���

�� C�M� Monti� G�L� Pierobon� Codes with a multiple spectral null at zero frequency�

IEEE Trans� Inform� Theory� IT��� ������� ��� ����

�� R�M� Roth� P�H� Siegel� A� Vardy� High�order spectral�null codes� Constructions

and bounds� IEEE Trans� Inform� Theory� IT��
 ������� ���� ���
�

�� K�A� Schouhamer Immink� Coding Techniques for Digital Recorders� London	
Prentice�Hall� �����

�� L�G� Tallini� S� Al�Bassam� B� Bose� On e�cient high�order spectral�null codes�

Proceedings of IEEE International Symposium On Information Theory� Whistler� BC�
Canada ������� p� ����

�� L�G� Tallini� R�M� Capocelli� B� Bose� Design of some new balanced codes� IEEE

Trans� Inform� Theory� IT��� ������� ��
 �
��

��


