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Abstract

We derive lower bounds on the capacity of certain two�dimensional constraints by

considering bounds on the entropy of measures induced by bit�stu�ng encoders� A

more detailed analysis of a previously proposed bit�stu�ng encoder for �d����RLL

constraints on the square lattice yields improved lower bounds on the capacity for

all d � �� This encoding approach is extended to �d����RLL constraints on the
hexagonal lattice� and a similar analysis yields lower bounds on capacity for d � �� For

the hexagonal ������RLL constraint� the exact coding ratio of the bit�stu�ng encoder

is calculated and is shown to be within ��	
 of the �known� capacity� Finally� a lower

bound is presented on the coding ratio of a bit�stu�ng encoder for the constraint on

the square lattice where each bit is equal to at least one of its four closest neighbors�

thereby providing a lower bound on the capacity of this constraint�

Keywords� Bit�stu�ng encoder� Hexagonal constraint� Runlength�limited con�

straints� Two�dimensional constraints�

� Introduction

Many data storage systems� such as those based upon magnetic and optical recording tech�
nology� require the use of constrained modulation codes� These codes transform� in a lossless
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manner� streams of arbitrary binary data into binary sequences that satisfy certain prescribed
constraints� The set of words from which the code sequences may be drawn is referred to as
a constrained system� or simply a constraint�

Historically� many digital recording applications have required that the binary recorded
sequences belong to a �d� k��runlength�limited �RLL� constraint� The parameters �d� k� rep�
resent� respectively� the minimum and maximum admissible number of ��s separating consec�
utive ��s in any allowable sequence� With the advent of page�oriented storage technologies�
such as holographic storage� interest in constrained arrays in two or more dimensions has
arisen� see Brady and Psaltis 	
�� Heanue� Bashaw� and Hesselink 	����	���� and Psaltis and
Mok 	�
�� Among the constraints of theoretical and possible practical interest are two�
dimensional �d� k��RLL constraints� When dened over the square lattice� each such con�
straint consists of all binary arrays in which the one�dimensional ���D� �d� k��RLL constraint
is satised along each row and column� In both one and two dimensions� the relevant range
of parameters is � � d � k � ��

Runlength constraints can be dened also over the hexagonal lattice 	��� Using a simple
transformation from the hexagonal lattice into the square lattice 	���� one can dene the
two�dimensional �d� k��RLL hexagonal constraint as the set of all binary arrays in which the
��D �d� k��RLL constraint is satised along each row� each column� and each �northeast�to�
southwest� �i�e�� upper�right to lower�left� diagonal�

Another example is the two�dimensional �no isolated bits� constraint �in short� the n�i�b�
constraint�� which consists of all binary arrays that contain neither the pattern

�
� � �

�

nor its complement� Observe that the n�i�b� constraint is the natural generalization to two
dimensions of the ��D constraint that consists of all binary sequences in which every bit�
except possibly for the rst and last bits�is equal to at least one of its adjacent bits� this
constraint� in turn� can be described as a precoding of the ��D ������RLL constraint� see 	���
Section ���

The n�i�b� constraint �and generalizations thereof� may be found in future optical disks�
Attempts to increase the recording density have been made recently by exploiting the fact
that the recording device is typically a surface� the recorded data is regarded as two�
dimensional� as opposed to the track�oriented one�dimensional recording model� When
recording on the disk� �pits� and �lands� on the recording surface must be large enough
so that they can be detected from the re�ection beam 	��� Ch� ��� This� in turn� dictates
that the recorded data belongs to the n�i�b� constraint� See also Psaltis et al� 	��� and Weeks
and Blahut 	����

In general� a two�dimensional ���D� constraint S over an alphabet � is dened by two
state�labeled nite directed graphs� G � �V�EG� L� and H � �V�EH � L�� with the same set
of states V and the same state labeling L � V � �� The constraint S consists of all nite
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rectangular arrays x � �xi�j� over � for which one can associate arrays ��x� � �vi�j� over V
that satisfy the following three conditions� �a� L�vi�j� � xi�j for all i and j� �b� each row in
��x� is a path in G� and �c� each column in ��x� is a path in H�

The �d� k��RLL constraints on the square and hexagonal lattices will be denoted by Sd�ksq
and Sd�khex� respectively� while the n�i�b� constraint will be denoted by Snib�

Let U be a nite subset of Z� and let � be a nite alphabet� A U�con�guration is a
mapping � � U � �� Given a ��D constraint S over �� we denote by S�U� the set of all
U �congurations � for which there exists an array �xi�j� � S such that

��i� j� � xi�j for every �i� j� � U �

that is� the images of � at the elements �i� j� � U can be extended to an array in S�

For a U �conguration x� we denote by xi�j the value of x at location �i� j� � U � Given two
nite subsets U � � U of Z� and a U �conguration x� we denote by x�U �� the U ��conguration
x� which is the restriction of x to U �� namely� xi�j � x�i�j for every �i� j� � U ��

The subsets U � Z
� considered in this work will mainly be rectangles

Bm�n � f�i� j� � Z� � � � i � m� � � j � ng

or parallelograms

�m�n � f�i� j� � Z� � � � i � m� � � i � j � ng ���

�see Figure ���
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Figure �� Parallelogram �m�n�

The capacity of the ��D constraint S is dened by

cap�S� � lim
m�n��

�

mn
log� jS�Bm�n�j �

i�e�� it measures the growth rate of the number of m� n arrays in S� By sub�additivity the
limit indeed exists �see 	��� 	���� 	�
�� 	���� 	����� It is easy to verify that we also have

cap�S� � lim
m�n��

�

mn
log� jS��m�n�j �
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One can readily verify that cap�Sd�ksq � � cap�Sd�k�� where cap�Sd�k� stands for the capacity
of the ��D �d� k��RLL constraint 	��� p� ������ However� the corresponding ��D and ��D
capacities may be quite di�erent� For example 	��� the capacity of the ��D ��� ���RLL con�
straint satises cap�S���� � ����
�� whereas the capacity of the corresponding ��D constraint
is cap�S���sq � � �� This result has been generalized to a complete characterization of the �d� k��
RLL constraints in two dimensions and higher with zero capacity 	���� 	�
�� Specically� for
every r � �� the capacity of the r�dimensional �d� k��RLL constraint is zero if and only if
d � � and k � d � �� Partial characterizations exist also when the horizontal and vertical
runlength constraints are not necessarily the same 	����

The determination of whether cap�S� � � for a given ��D constraint S is known to be
an undecidable problem 	��� 	���� As for the special case of ��D �d� k��RLL constraints� no
e�cient algorithms are known for approximating their capacity� The case �d� k� � �����
�or equivalently �d� k� � ��� ��� has arisen in various forms in statistical mechanics and
combinatorics� as well as in the information�theoretic context� Engel 	�� and Calkin and
Wilf 	�� used an adjacency matrix method to derive a technique for obtaining close lower
and upper bounds for this constraint� Using this technique� it has been shown that cap�S���sq �
agrees with ��
�������� up to the rst nine decimal places 	���� 	����

Kato and Zeger 	�
� used the bounds on cap�S���sq � to derive lower bounds on cap�Sd��sq ��
for d � �� and cap�S��ksq � for k � �� �They noted that Talyansky 	��� and Talyansky� et
al� 	��� described a construction that yields a lower bound on cap�S��ksq � that is stronger than
the Kato�Zeger bound for all k � ��� The lower bounds on cap�S��ksq � were then used to
derive lower bounds on cap�Sd�ksq � for the remaining cases where k 	� d � �� Upper bounds
on cap�Sd��sq � and cap�S��ksq � were also derived 	�
�� Together with the lower bounds� they
imply that� as d grows� cap�Sd��sq � converges to � exactly at the rate �log� d��d� and they give
asymptotic bounds on how fast� as k grows� cap�S��ksq � converges to ��

Siegel and Wolf 	��� �see also 	���� used a di�erent approach to derive lower bounds on
cap�Sd��sq �� for d � �� They computed a simple lower bound on the average coding ratio
of a variable�rate� bit�stu�ng encoding algorithm that creates ��D �d����RLL constrained
arrays from a ��D sequence produced by a possibly biased binary source� These lower
bounds were then optimized with respect to the ��D binary source probability� We review
the technique of Siegel and Wolf in Section � and ll in some details of the proof that were
missing from 	��� and 	���� The bit�stu�ng approach is closely related to one introduced by
Lee 	��� and Bender and Wolf 	�� for ��D� RLL� charge�constrained �d� k� c� sequences 	����
Roth� Siegel� and Wolf 	��� have recently improved the results of 	��� for the constraint S���sq �
The improvement has been obtained by applying a more generalized model of a bit�stu�ng
encoder and by a renement of the analysis� the coding ratio thus obtained is approximately
��
������ i�e�� only ���� below cap�S���sq ��

In Section �� we present improved lower bounds on the coding ratio of a bit�stu�ng
encoder for Sd��sq � Then� in Section �� we adapt the bit�stu�ng encoder to the Sd��hex and use a

similar analysis to derive lower bounds on its coding ratio� for d � �� For S���hex � we compute
the exact coding ratio of the bit�stu�ng encoder using results in 	��� and we show that it
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lies within ��
� of the �known� capacity�

Finally� in Section 
� we present a bit�stu�ng coding scheme for Snib� We show that the
encoding ratio of this scheme�and hence the value cap�Snib��is at least �������� this value
is fairly close to our empirical estimate �� ������ on the true coding ratio of this scheme �yet
cap�Snib� is believed to be bigger� see the discussion at the end of Section 
�� In comparison�
Ashley and Marcus estimated in 	�� the value cap�Snib� to be around �����

As was the case in 	���� the bit�stu�ng encoders that we consider induce probability
measures �m�n on the corresponding constraints� A lower bound on the coding ratio is then
obtained by computing a lower bound on the �measure�theoretic� entropy of �m�n�

H��m�n� � 

�

mn

X
x�S��m�n�

�m�n�x� log� �m�n�x� � ���

in the limit when both m and n go to innity� Recall� however� that the analysis of the
encoder in 	��� was based on the very strong Markovian stationary properties of the measure
induced by the encoder upon S

���
sq � Unfortunately� such properties do not seem to hold

in general� in particular� they do not hold for the measures �m�n induced by the encoders
discussed here� Nevertheless� we can still derive lower bounds on the coding ratio based
upon much weaker global properties of �m�n� �These properties support the  stationarity!
assumption underlying the analysis in 	����� Specically� we obtain lower bounds as a function
of expected values of the number of occurrences of certain events in the generated outputs for
the constraints considered� By further establishing relations between those expected values�
we have ended up with numerical lower bounds�

As an alternative approach� one can guarantee a �quasi�stationary� induced measure by
a proper initialization of the boundary values in the generated output� We discuss this in
Section ��

� Bit�stu�ng lower bounds on cap�Sd��sq �

We describe next a bit�stu�ng encoder that maps unconstrained data into Sd��sq ��m�n�� where
�m�n is the parallelogram dened in ��� and shown in Figure ��

We will use the following terms� Row i in �m�n consists of all locations �i� j� such that

i � j � n
i� Diagonal r consists of all locations �i� r
i� such that � � i � m� The rst

M rows and diagonals in �m�n form its boundary of width M and will be denoted by ��
�M�
m�n �

that is�
���M�

m�n � f�i� j� � �m�n � i � M or i�j � Mg �

The bit�stu�ng encoder rst applies a distribution transformer E that bijectively converts
the binary data sequence into a sequence of statistically independent bits which is p�biased for
some real p � 	�� ��� the probability of a � equal to p and the probability of a � equal to �
p�






This conversion occurs at a rate penalty of h�p�� where h�p� � 
p log��p�
 ��
p� log���
p�
is the binary entropy function� The purpose of creating a p�biased sequence will be to write
more ��s than ��s� The optimal value of p will be chosen later� We now write the p�biased
sequence �without further coding� down successive diagonals� skipping all positions that
contain  stu�ed! ��s� which arise in a manner which will now be explained� Whenever a � in
the p�biased source sequence is written� d ��s are inserted�or  stu�ed!�in the d positions
to the right of it and in the d positions below it� It will sometimes occur that a � has already
been stu�ed in some of the positions to the right of the � or �when d � �� below it� in which
case it is not necessary to stu� another �� In writing the p�biased sequence down diagonals�
any position already lled by a previously stu�ed � is skipped�

To dene the encoding process also for the boundary of �m�n of width d� we assume
identically�zero entries at all locations �i� j� such that i � � or i� j � ��

�We mention that the coding can alternatively be done into elements of Sd��sq �Bm�n�� where
entries are generated row by row or column by column��

Decoding the array is accomplished by reading down diagonals in a similar manner� The
bits of the p�biased sequence are read successively from the array� with certain � bits being
ignored� Specically� whenever a � is read from the array� the stu�ed ��s to the right of it
and below it are normally deleted� It may occur that stu�ed ��s to the right of the � or
below it have already been deleted� in which case only the remaining stu�ed ��s to the right
and the stu�ed ��s below it are deleted� This procedure reproduces the encoded p�biased
sequence� The original binary data is then obtained from the p�biased stream by the inverse
of the mapping used to create the p�biased stream of bits�

The bit�stu�ng encoder induces a probability measure on Sd��sq ��m�n�� We denote this
measure by �m�n � �d��sq�m�n and we have

�m�n�x� �
Y

i�j��m�n

�sq�xi�j j xi�j��� xi�j��� � � � � xi�j�d� xi���j� xi���j� � � � � xi�d�j� � ���

where the function �sq � f�� �g
�d�� � 	�� �� is dened by

�sq�� j y�� y�� � � � � y�d� �

�
p if y� � y� � � � � y�d � �
� otherwise

�

and
�sq�� j y�� y�� � � � � y�d� � �
 �sq�� j y�� y�� � � � � y�d� �

and xi�j is assumed to be zero whenever i � � or i � j � ��

Given a random element X � S
d��
sq ��m�n� that is generated by the bit�stu�ng encoder

�according to the probability measure �m�n�� denote by Xi�j the event �Xi�j � �� �this event
never occurs when i � � or i � j � �� and let the event Ci�j be dened for �i� j� � �m�n by

Ci�j �
Sd

s��Xi�s�j �

�



namely� Ci�j stands for the event� �location �i� j� in X is a stu�ed � as a result of one of the
d locations above �i� j� being equal to ��� Similarly� dene

Ri�j �
Sd

t��Xi�j�t

and
Bi�j � Ci�j �Ri�j �

where the bar stands for complementation� that is� Bi�j is the event that location �i� j� in
X is lled by a bit of the p�biased sequence� We denote by C� �respectively� R and B� the
random variable that stands for the number of indexes �i� j� � �m�n where the event Ci�j
�respectively� Ri�j and Bi�j� occurs� Clearly�

EfCg �
X

�i�j���m�n

PrfCi�jg � EfRg �
X

�i�j���m�n

PrfRi�jg �

and
EfBg �

X
�i�j���m�n

PrfBi�jg �

The following lemma easily follows from ��� and ����

Lemma ���

H��m�n� �
�

mn
� h�p� � EfBg �

Lemma ���

EfCg � dp � EfBg and EfRg � dp � EfBg �

Proof� For every �i� j� � �m�n�

PrfCi�jg �

minfd�igX
s��

PrfXi�s�jg and PrfRi�jg �

minfd�i�jgX
t��

PrfXi�j�tg

and
PrfXi�jg � PrfXi�j j Bi�jg � PrfBi�jg � p � PrfBi�jg �

Therefore� for every �i� j� � �m�n�

PrfCi�jg � p �

minfd�igX
s��

PrfBi�s�jg and PrfRi�jg � p �

minfd�i�jgX
t��

PrfBi�j�tg �

Summing over all �i� j� � �m�n we have

EfCg �
X

�i�j���m�n

PrfCi�jg �
X

�i�j���m�n

p �

minfd�igX
s��

PrfBi�s�jg � dp
X

�i�j���m�n

PrfBi�jg � dp �EfBg �

The inequality EfRg � dp � EfBg is obtained in a similar manner�
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d From 	�
� Proposition ��� Proposition ��� Improved Bounds

� ���
�� ����
� ������ ������
� ������ ������ ������ ������
� ������ ������ �����
 ����
�

 ������ ������ ������ "

Table �� Lower bounds on the rate of a bit�stu�ng encoder for Sd��sq �

Lemma ��� For d � � and any � � p � ��

H��m�n� �
h�p�

� � �dp
�

Proof� Taking expectations of both sides of the inequality

B � mn
R
 C �

we obtain by Lemma ����
EfBg � mn
 �dp � EfBg �

and� so�
EfBg

mn
�

�

� � �dp
�

The proof now follows from Lemma ����

It was shown in 	����	��� that when ranging over p � 	�� ��� the maximum value of h�p�����
�dp� equals the capacity of the ��D constraint S�d��� Thus we obtain the following lower
bound�

Proposition ��� For d � ��

H��m�n� � cap�S�d��� �

Table � shows the lower bound of Proposition ��� for small values of d� Also shown are
lower bounds computed numerically using Theorems 
 and � in 	�
��

� Improved bounds for Sd��sq

Our improvement on the results of Section � will be obtained by accounting for some of the
patterns that give rise to an  overlap! of stu�ed ��s in the encoded output�

Let �m�n denote the probability measure induced on Sd��sq ��m�n� by the bit�stu�ng en�
coder of Section �� Also� for a random element X � S

d��
sq ��m�n�� we let the notations Xi�j�

C� R� Bi�j� and B be as in Section ��
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Lemma ��� For a random element X � S
d��
sq ��m�n� and an index �i� j� � �m�n� let A

denote an event that is a function of the random variables Xs�t� where s � i or t � j� Then�

PrfXi�j j Bi�j  Ag � PrfXi�j j Bi�jg � p �

Proof� Dene the sets

Ui�j � �m�n  f�s� t� � Z
� � s � i and t � j and �s� t� 	� �i� j�g

and
Vi�j � �m�n  f�s� t� � Z

� � s � i or t � jg�

In Figure �� set Vi�j corresponds to the lattice points marked with dots �lled or unlled��
while Ui�j corresponds to the subset of Vi�j marked with lled dots� The following two facts

r r r r r r b b b b b b b

r r r r r r r b b b b b b

r r r r r r r r b b b b b

r r r r r r r r r b b b b

r r r r r r r r r

b b b b b b b b b b

b b b b b b b b b b b

b b b b b b b b b b b b

� � j n���������m���

�

�

i

m��

Figure �� Subsets Ui�j and Vi�j in �m�n�

follow from the particular encoding process applied by the bit�stu�ng algorithm�

�� The Ui�j�conguration X�Ui�j� �which is the restriction of X to Ui�j� completely de�
termines whether the event Bi�j occurs� so� we can regard Bi�j as the set of all Ui�j�
congurations y that imply Bi�j�

�� Given the conguration X�Ui�j�� the entries in X�Vi�j n Ui�j� �corresponding to the
locations marked with unlled dots in Figure �� are statistically independent of the
event Xi�j �regardless of whether any of those values is encoded prior to location �i� j���

Therefore�

PrfXi�j  A  Bi�jg �
X
y�Bi�j

PrfXi�j  A  �X�Ui�j� � y�g

�
X
y�Bi�j

PrfXi�j jX�Ui�j� � yg � PrfA jX�Ui�j� � yg � PrfX�Ui�j� � yg

� p �
X
y�Bi�j

PrfA jX�Ui�j� � yg � PrfX�Ui�j� � yg

� p � PrfA  Bi�jg �

�



where the rst equality follows from Fact � and the second equality from Fact ��

Let #�i� j� and $�i� j� be subsets of Z� dened by

#�i� j� �
n
�i
a� j
a�

od��
a��

Sn
�i
d
a� j�d��
a�

od
a��

���

and
$�i� j� �

n
�s� t� � Z� � i
d � s � i and j � t � j�d

o
�

respectively� and let Si�j for �i� j� � �m�n denote the event

Si�j �
T

�s�t��	�i�j�Xs�t �

Figure ��a� depicts the event Si�j for d � �� In the gure� the entries indexed by #�i� j� are
marked by ��s and the entries indexed by $�i� j� are marked by thick dots�

j
�

�
�

�
� � �

� � � �
� � � �

i�

�a�

j
�

�
� �
� � �

� � � �
� � � � � �

� � � � �
i� � � �

�b�

Figure �� �a� Event Si�j and �b� Event Bi�j  Si�j for d � ��

Lemma ��� For �i� j� � �m�n n ��
��d�
m�n�

�Bi�j n Si�j� � Bi�j 
�S

�s�t��
�i�j�Bs�t
�
�

Proof� We need to show that

�Bi�j  Si�j� � Bi�j 
S

�s�t��
�i�j�Bs�t � �
�

The event Bi�jSi�j in the left�hand side of �
� is shown in Figure ��b� for d � �� the event in
the right�hand side of �
� states that location �i� j� contains a p�biased bit� while all locations
�s� t� � $�i� j� are stu�ed with ��s�

It is easy to see that Bi�j Si�j is a subset of the event in the right�hand side of �
�� Next
we show the inclusion in the other direction�

��



Let X be an array that belongs to the event in the right�hand side of �
�� In particular�
X contains ��s in all locations that are indexed by the d� �d��� rectangle

%$�i� j� � f�s� t� � Z� � i
d � s � i and j � t � j�dg �

as shown in Figure ��a� for the case d � � �the thick dots� which represent the entries that
are indexed by $�i� j�� are all ��� The entry Xi���j�d can be stu�ed only if Xi�d���j�d � ��

j
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� � � �
� � � �
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j
�

� � � �
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j
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� � � � �
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� � � � �

i�

�c�

Figure �� Patterns for the proof of Lemma ��� for d � ��

This� in turn� implies that Xi�d���t � � for all j � t � j�d� thereby reaching the pattern
shown in Figure ��b� for the case d � ��

Next we turn to location �i
�� j�d
��� Since Xs�t � � for all i
d
� � s � i
� and
j � t � j�d
�� the entry Xi���j�d�� can be stu�ed only if Xi���j�� � �� this brings us to
the pattern in Figure ��c��

We conclude that Xs�t � � for all locations �s� t� within the d � �d��� rectangle
%$�i
�� j
��� The proof now re�iterates for this shifted rectangle�

In the sequel� we assume some xed linear ordering on the elements of Z� that satises
the following condition� if �	� 
� precedes �s� t� �denoted �	� 
� � �s� t��� then 	 � s or 
 � t�
For example� the standard lexicographic ordering�

�	� 
� � �s� t� �� ��	 � s� or �	 � s and 
 � t�� �

satises this condition�

Hereafter� the notation O�t� stands for a real expression f�t� such that limt��jf�t�j�t �
�� and ot��� stands for an expression f�t� such that limt��jf�t�j � ��

Proposition ���

H��m�n� � max
��p��

h�p�

� � �dp
 p���
 p�d���

 o�minfm�ng��d��� �

��
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Figure 
� Neighborhood of an entry set to � for the case d � ��

Proof� Consider a portion of X in the neighborhood of an index �i� j� � �m�n n ��
��d�
m�n

where Xi�j � �� as shown in Figure 
 for the case d � �� Clearly� the value Xi�j � � requires

that the entries indexed by f�i� t�gj�dt�j�� be stu�ed with ��s �and so be the entries indexed by

f�s� j�gi�ds�i���� Now� entries indexed by f�i� t�gj�dt�j�� may be stu�ed with ��s also because of
some other entries in X that are set to �� yet� the latter entries are limited to the locations
indexed by $�i� j�� Our improvement of the lower bound on H��m�n� will be obtained by
taking into account such a  double�stu�ng�!

As a rst step� we bound from below the probability of the event �Bi�j n Si�j�� Denote
by �u� v� � �ui�j� vi�j� the smallest element �with respect to the ordering �� in the set #�i� j�
dened by ���� The probability of the event Si�j can be written as a product of �d
� terms�

PrfSi�jg � PrfXu�vg �
Y

�s�t��	�i�j�nf�u�v�g

Pr
n
Xs�t

��� T������	�i�j� � �������s�t�X���

o
�

The rst term in the right�hand side of the latter equation is given by

PrfXu�vg � PrfXu�v j Bu�vg � PrfBu�vg � p � PrfBu�vg �

and for any other term therein we have

Pr

n
Xs�t

��� T�������s�t�X���

o
� Pr

n
Xs�t

��� Bs�t T�������s�t�X���

o
� Pr

n
Bs�t

��� T�������s�t�X���

o
� Pr

n
Xs�t

��� Bs�t T�������s�t�X���

o
� p �

where the last step follows from Lemma ���� Hence�

PrfSi�jg � p�d�� � PrfBu�vg ���

and� so�
PrfBi�j n Si�jg � PrfBi�jg 
 PrfSi�jg � PrfBi�jg 
 p�d�� � PrfBu�vg � ���

��



We now turn to bounding from below the probability of the  double�stu�ng! event

Mi�j � Xi�j 
�S

�s�t��
�i�j�Xs�t

�
�

namely� the event of having � at location �i� j� and at one or more of the d� locations that
are indexed by $�i� j�� Since

Mi�j � �Bi�j n Si�j� �

it follows that

PrfMi�jg � PrfMi�j j �Bi�j n Si�j�g � PrfBi�j n Si�jg

� PrfMi�j j �Bi�j n Si�j�g � �PrfBi�jg 
 p�d�� � PrfBu�vg� � ���

where the inequality follows from ����

As our next step� we show that

PrfMi�j j �Bi�j n Si�j�g � p� � ���

By Lemma ��� and de Morgan laws 	��� Section ���� we have

�Bi�j n Si�j� �
S

�s�t��
�i�j��Bi�j  Bs�t� �

So� we can partition the event Bi�j nSi�j into d
� disjoint events fAs�tg�s�t��
�i�j� that are dened

inductively for successive indexes �s� t� � $�i� j� �according to the ordering �� as follows�

As�t � �Bi�j  Bs�t� n
�S

������
�i�j� � �������s�t�A���

�
� �s� t� � $�i� j� �

To prove ���� it su�ces to show that

PrfMi�j j As�tg � p� � �s� t� � $�i� j� �

And� indeed� for every �s� t� � $�i� j� we have�

PrfMi�j j As�tg � Prf�Xi�j  Xs�t� j As�tg

� PrfXi�j j As�tg � PrfXs�t j �Xi�j  As�t�g

� PrfXi�j j Bi�jg � PrfXs�t j Bs�tg

� p� �

where the penultimate equality follows from Lemma ���� This proves ����

Combining ��� and ��� we thus obtain�

PrfMi�jg � p� � �PrfBi�jg 
 p�d�� � PrfBu�vg� �

Summing the latter inequality over all �i� j� � �m�n n ��
��d�
m�n yields

EfMg � p���
 p�d��� � EfBg 
 O�d�m� n�� � ����

��



with M standing for the number of locations �i� j� � �m�n where the event Mi�j occurs�

We now recall that
B � mn
 C 
R�M �

Taking expectations� by Lemma ��� and ���� we obtain

EfBg � mn

�
�dp� p���
 p�d���

�
� EfBg 
 O�d�m� n�� �

Hence�
EfBg

mn
�

�

� � �dp
 p���
 p�d���

 o�minfm�ng��d��� �

and the result follows from Lemma ����

The probability p that maximizes the coding ratio can be found numerically� Table �
presents the improved bit�stu�ng lower bounds for � � d � 
�

For small d�s� we can further improve the bound by an even more precise enumeration of
patterns that cause an  overlap�! The numerical results are in the right column of Table ��
and the detailed derivation can be found in the Appendix�

� Bit�stu�ng bounds for S
d��
hex

The constraint Sd��hex consists of all binary arrays in which all rows� columns� and �northeast�
to�southwest� diagonals belong to the ��D �d����RLL constraint� see 	���	����

A bit�stu�ng encoder that maps unconstrained data into Sd��hex ��m�n� �or into S
d��
hex �Bm�n��

operates similarly to that used for Sd��sq � When a p�biased bit � is written into �m�n �or Bm�n��
we should stu� ��s into the d positions to the right� the d positions below and the d positions
along the diagonal below the bit ��

We note that the bit�stu�ng encoder for S���hex is a special case of the encoder analyzed
in 	���� We can apply the result in 	��� directly to compute the maximum coding ratio of
�������� Baxter 	�� has derived the exact value of cap�S���hex �� which� to nine decimal places�
is ������������ The maximum coding ratio of the bit�stu�ng encoder is only ��
� below
the capacity�

For d � �� we can obtain a simple lower bound on the rate of a bit�stu�ng encoder for
S
d��
hex following a similar procedure as in Section �� Specically� denote by �m�n � �d��hex�m�n

the probability measure induced by the bit�stu�ng encoder on Sd��hex ��m�n�� the next lemma

is then a counterpart of Lemma ��� for the constraint Sd��hex �

Lemma ��� For d � � and any � � p � ��

H��m�n� �
h�p�

� � �dp
�

��



We can further improve the lower bound by accounting for the  double�stu�ng! event�
Let the notations Xi�j� Ci�j� Ri�j� be as in Section �� Similarly� dene

Di�j �
Sd

s��Xi�s�j�s

and
Bhex
i�j � Ci�j � Ri�j � Di�j �

That is� Bhex
i�j is the event that location �i� j� is lled by a bit of the p�biased sequence on a

hexagonal lattice� We also dene a region

$hex�i� j� �
n
�s� t� � Z� � i
d � s � i and j � t � j�d�i
s

o
n
n
�i
 a� j � a�

od
a��

�

Figure � depicts the event Bhex
i�j for d � �� and the entries indexed by $hex�i� j� are marked

in the gure by thick dots�

j
�
� � � � � � �
� � � � � �
� � � � �

i� � � �

Figure �� Event Bhex
i�j and the region $hex�i� j� for d � ��

The following lemma plays the role of Lemma ��� for the constraint Sd��hex �

Lemma ��� For �i� j� � �m�n n ��
��d�
m�n�

Bhex
i�j � Bhex

i�j 
�S

�s�t��
hex�i�j�
Bhex
s�t

�
�

Proof� We will prove the following equivalent relationship

Bhex
i�j 

�S
�s�t��
hex�i�j�

Bhex
s�t

�
� � �

Let X be an array that belongs to the left�hand side of the above equation� Region $hex�i� j�
in X should be all stu�ed ��s� Let�s consider entry Xi���j�d� It can be stu�ed either due to
the event Xi�d���j�d or the event Xi�d���j��d�

If Xi���j�d is stu�ed due to Xi�d���j�d� then Xi���j�d�� can only be stu�ed due to
Xi�d���j��d��� as shown in Figure ��a�� However� Xi���j�d�� cannot be stu�ed in this pat�
tern� On the other hand� if Xi���j�d is stu�ed due to Xi�d���j��d� then Xi���j�d�� cannot be
stu�ed� as shown in Figure ��b�� Therefore we conclude that

Bhex
i�j 

�S
�s�t��
hex�i�j�

Bhex
s�t

�
� � �

�
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Figure �� Patterns for the proof of Lemma ��� for d � ��

Proposition ���

H��m�n� � max
��p��

h�p�

� � �dp
 p�

 o�minfm�ng��d��� �

Proof� Dene the  double�stu�ng! event

Mhex
i�j � Xi�j 

�S
�s�t��
hex�i�j�

Xs�t

�
�

It is clear by denition that Mhex
i�j � Bhex

i�j and� so�

PrfMhex
i�j g � PrfMhex

i�j j B
hex
i�j g � PrfB

hex
i�j g

�compare with ����� Applying Lemma ��� and proceeding as in the proof of Proposition ����
we can obtain the following counterpart of ����

PrfMhex
i�j j B

hex
i�j g � p� �

Hence�
PrfMhex

i�j g � p� � PrfBhex
i�j g �

and by summing the latter inequality over all �i� j� � �m�n n ��
��d�
m�n we obtain

EfMhexg � p� � EfBhexg 
O�d�m� n�� �

with Bhex �respectively� Mhex� standing for the number of locations �i� j� � �m�n where the
event Bhex

i�j �respectively� Mhex
i�j � occurs �compare with ������ The result is nally deduced by

following along the remaining lines of the proof of Proposition ����

��



d From 	��� Proposition ��� Improved Bound

� ������ ������ ������
� ������ ������ �
� ������ ������ �

 ������ ������ �

Table �� Lower bounds on the rate of a bit�stu�ng encoder for Sd��hex �

The probability p that maximizes the coding ratio is found numerically and the capacity
lower bounds are summarized in Table � for � � d � 
� Also shown in the table are the
numerically computed values of the lower bounds presented in 	����

As in the case of the constraint Sd��sq � we can tighten the lower bound by enumerating
certain patterns that cause an overlap of stu�ed bits� The numerical result for d � � is
shown in Table �� and details of the derivation are presented in the Appendix�

� Bit�stu�ng bounds for Snib

The description of our bit�stu�ng encoder for Snib makes use of the following denitions�

Let X be a random element in Snib��m�n�� For �i� j� � �m�n� denote by Hi�j the event
Xi�j � Xi�j�� and by Vi�j the event Xi�j � Xi���j� We hereafter assume thatXi�j � � whenever
i � � or i� j � �� hence� for i � � �respectively� i� j � ��� the event Vi�j �respectively� Hi�j�
holds for each element X � Snib��m�n��

Also dene

Fi�j � Hi�j � Vi�j � Ni�j � Hi�j � Vi�j � Hi�j�� � and Li�j � Fi�j n Fi���j�� �

The events Fi�j and Ni�j correspond to the patterns in Figure ��a� and �b�� respectively�
where x � f�� �g and x stands for the complement of x� The event Li�j stands for any of the

j
�
x

i� x x

�a�

j
�
x

i� x x x

�b�

Figure �� �a� Event Fi�j and �b� Event Ni�j�

two patterns in Figure ��

��
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Figure �� Event Li�j�

The bit�stu�ng encoder is fed by two streams of independent Bernoulli random variables�
the rst stream consists of unbiased bits �fair coins�� while in the second stream� the prob�
ability of having � is �

�
�the latter stream is generated by applying a respective distribution

transformer on bits of the user data sequence�� The bit�stu�ng encoder generates an output
X � Snib��m�n�� diagonal by diagonal �or row by row�� by assuming that Xi�j � � whenever
i � � or i� j � � and applying the following rule to every location �i� j� � �m�n�

NIB��� If Li�j�� occurs then Xi�j is set to Xi�j�� with probability �
�
� i�e�� the event Hi�j will

occur depending on the biased stream�

NIB��� If Ni���j occurs then Xi�j is set to the value of Xi���j� i�e�� the event Vi�j is forced�

NIB��� Otherwise� Xi�j is set to � with probability �
�
� i�e�� the event Hi�j �alternatively� Vi�j�

will occur depending on the unbiased stream�

Denote by �m�n � �nib�m�n the probability measure on Snib��m�n� that is induced by the
bit�stu�ng encoder� Similarly to what we had in Section �� the measure �m�n�x� takes for
every x � Snib��m�n� the form

�m�n�x� �
Y

i�j��m�n

�nib�xi�j j xi�j��� xi�j��� xi���j� xi���j��� xi���j� xi���j��� � ����

where �nib � f�� �g � 	�� �� is given by

�nib�x j x� y� z� u� v� w� �

��
�

�
�

if u � y 	� x and either u 	� v or u � z
� if u � v � w 	� z
�
�

otherwise
�

and �nib�x j x� �� � � 
 �nib�x j x� ��� Furthermore� similarly to the encoders of previous
sections� the coding rule of the encoder herein �yet not necessarily the measure �m�n&� is
shift�invariant in the sense that it does not depend on the particular location �i� j� � �m�n�

The rest of this section is devoted to proving the following lower bound on H��m�n��

Proposition ���

H��m�n� � ������
 ominfm�ng��� �

��



Let F �respectively� L� be the number of locations �i� j� � �m�n in which the event Fi�j

�respectively� Li�j� occurs within a random element X � Snib��m�n�� Proposition 
�� will be
proved by rst showing a lower bound on H��m�n� in terms of EfFg and EfLg� The proof
will then continue with obtaining upper bounds on EfFg and EfLg� using simple properties
of the probability measure �m�n�

We mention that the technique presented herein can be rened to obtain the stronger
bound

H��m�n� � �������
 ominfm�ng��� � ����

yet the proof of this inequality is rather long and hence omitted� the full proof can be found
in 	����

For a nonnegative integer r � n� let

Ur � �m�n  f�s� t� � Z
� � s � t � rg �

The random Ui�j�conguration X�Ui�j� �namely� the restriction of X to Ui�j� completely
determines whether the event Fi�j occurs� hence� we can regard the latter event as the set of
all Ui�j�congurations y that imply Fi�j�

The following sequence of lemmas present several properties of the probability measure
�m�n� these properties will lead to the proof of Proposition 
���

Lemma ��� The following holds for every location �i� j� � �m���n���

�a� PrfHi�j�� jX�Ui�j� � Fi�jg �
�
�
	

�b� PrfVi���j jX�Ui�j� � Fi�jg �
�
�
	

�c� PrfHi�j�� jX�Ui�j� � Fi�j � Fi���j��g �
�
�
	

�d� PrfHi�j��  Vi���j jX�Ui�j� � Fi�jg �
�
�
	

�e� PrfHi�j�� � Vi���j jX�Ui�j� � Fi�jg � ��

Proof� We start with part �a� and x a diagonal r� We prove by induction on i that
PrfHi�r���i jX�Ur� � yg � �

�
for every Ur�conguration y � Fi�r�i� The proof distinguishes

between two cases� where the rst case serves also as the induction basis� hereafter Yr stands
for X�Ur��

Case 
� y � Fi�r�i F i���r���i� In this case y belongs to Li�r�i� so� by Step NIB"� of the
encoding process we obtain PrfHi�r���i jYr � yg � �

�
�

Case �� y � Fi�r�i  Fi���r���i� Write

PrfHi�r���i jYr � yg � PrfHi�r���i j �Yr � y�  Hi���r���ig � PrfHi���r���i jYr � yg

� PrfHi�r���i j �Yr � y�  Hi���r���ig � PrfHi���r���i jYr � yg �

��



By the induction hypothesis we have

PrfHi���r���i jYr � yg � �
 PrfHi���r���i jYr � yg � �
�
�

Observing that y � Fi�r�i  Fi���r���i implies yi�r�i � yi���r���i� we obtain by Step NIB"�
of the encoding process that

PrfHi�r���i j �Yr � y�  Hi���r���ig � � �

and by Step NIB"� that

PrfHi�r���i j �Yr � y�  Hi���r���ig �
�
�
�

It follows from the last four equations that

PrfHi�r���i jYr � yg � �
�
� �
�
� � � �

�
� �

�
�

thus completing the proof of part �a��

Now� from part �a� and Step NIB"� we have�

PrfVi���j Hi�j�� jYi�j � Fi�jg

� PrfVi���j j �Yi�j � Fi�j� Hi�j��g � PrfHi�j�� jYi�j � Fi�jg �
�
�
� �
�
� �

�
�

and from Step NIB"��

PrfVi���j Hi�j�� jYi�j � Fi�jg

� PrfVi���j j �Yi�j � Fi�j�  Hi�j��g � PrfHi�j�� jYi�j � Fi�jg � � � �
�
� �

�
�

The last two equations yield parts �b�� �d�� and �e�� Finally� part �c� follows immediately
from Step NIB"��

Lemma ��� For every location �i� j� � �m���n�� and Ui�j�con�guration y � F i�j�

PrfXi�j�� � Xi���j jX�Ui�j� � yg

�
X

x�f���g

PrfXi�j�� � x jX�Ui�j� � yg � PrfXi���j � x jX�Ui�j� � yg �

Proof� Given that X�Ui�j� � y for some xed y � F i�j� the value Xi���j is determined
by one of the steps� NIB"� or NIB"�� of the encoding process� In either case� the value of
Xi���j is statistically independent of Xi�j���

Lemma ��� For every �i� j� � �m���n���

PrfFi���j�� j Fi�jg �
�
�
�

��
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Figure ��� Two events in Lemma 
���

Proof� We rst observe that Fi���j��  Fi�j is a union of two events�

Hi�j��  Vi���j Hi���j��  Fi�j and �Hi�j�� � Vi���j�  Hi���j��  Fi�j

�see Figure ���� Yet� by Lemma 
���e�� the second event has probability �� Therefore�

PrfFi���j�� j Fi�jg � PrfHi���j�� j Hi�j��  Vi���j  Fi�jg � PrfHi�j��  Vi���j j Fi�jg �

Now� by Lemma 
���d� we have

PrfHi�j��  Vi���j j Fi�jg �
�
�
�

and from the inclusion �Hi�j��  Vi���j� � Fi�j�� � Fi���j and Lemma 
���c� we get

PrfHi���j�� j Hi�j��  Vi���j  Fi�jg �
�
�
�

The last three equations imply the result�

Proposition ���

H��m�n� � �


�
�
 h��

�
�
�
� EfLg� �

�
� EfFg

mn

 ominfm�ng��� �

Proof� By the expression for �m�n in ���� we have

mn � H��m�n� � h��
�
� �
�X

i�j

PrfLi�j��g
�
� h��

�
� �
�X

i�j

PrfLi�j�� � Ni���jg
�

� h��
�
� �
�X

i�j

PrfLi�j��g
�
�
�X

i�j

��
 PrfLi�j��g 
 PrfNi���jg�
�
�

where �i� j� ranges in the summations over the elements of �m�n� Now� from Lemma 
���a�
we get

PrfNi�jg � PrfFi�j Hi�j��g � PrfHi�j�� j Fi�jg � PrfFi�jg � PrfFi�jg �
�
�
�

Hence�

mn � H��m�n� � h��
�
� �
�X

i�j

PrfLi�j��g
�
�
�X

i�j

��
 PrfLi�j��g 

�
�
� PrfFi���jg�

�
� mn
 ��
 h��

�
�� � EfLg 
 �

�
� EfFg 
O�m� n� �

��



thereby yielding the result�

We next turn to obtaining an upper bound on EfFg� such a bound� combined with the
inequality L � F and with Proposition 
�
� will lead to a lower bound on H��m�n��

For �i� j� � �m���n let the event Qi�j be dened by

Qi�j � Hi�j  Vi�j  Fi���j��  Fi���j��

�see Figure ����

j
�

x
x x

i� x x
x x

Figure ��� Event Qi�j�

Lemma ��� For �i� j� � �m���n���

PrfFi���j�� j Qi�jg �
�
��
�

Proof� Let y be a particular Ui�j�conguration in Qi�j� By Lemma 
���a�"�b� we have

PrfXi�j�� � yi���j�� jX�Ui�j� � yg � PrfXi���j � yi���j�� jX�Ui�j� � yg � �
�
�

Noting that y � F i�j and yi���j�� � yi���j��� it follows by Lemma 
�� that

PrfXi�j�� � Xi���j jX�Ui�j� � yg �
�
�
�

��
�
�
�
�

��
� �

�
�

In addition� X�Ui�j� � Qi�j implies that X�Ui�j��� � Fi���j � Fi�j��� hence� by applying
Lemma 
���c� to X�Ui�j��� we get

PrfHi���j�� j �Xi�j�� � Xi���j�  �X�Ui�j� � y�g � �
�
�

The result follows from the last two equations and by recalling that the event Fi���j�� is
identical to �Xi�j�� � Xi���j� Hi���j���

Lemma ��	 For �i� j� � �m���n���

PrfXi�j�� � Xi���j j Fi�j � Qi�jg �
�
�
�

��



Proof� Let y be a particular Ui�j�conguration in Fi�j � Qi�j� We distinguish between
three cases�

Case 
� y � F i���j��� By Lemma 
���c� we get PrfXi�j�� � � jX�Ui�j� � yg � �
�
� and

by Lemma 
�� we obtain PrfXi�j�� � Xi���j jX�Ui�j� � yg � �
�
�

Case �� y � F i���j��� Here PrfXi���j � � jX�Ui�j� � yg � �
�
and we get the same result

as in Case ��

Case �� y � Fi���j��  Fi���j��� By Lemma 
���a�"�b��

PrfXi���j � yi���j�� jX�Ui�j� � yg � PrfXi�j�� � yi���j�� jX�Ui�j� � yg � �
�
�

On the other hand� y � Fi�j � Qi�j implies yi���j�� 	� yi���j�� �see Figure ���� we thus obtain

j
�

x
x x

i� x
x x

Figure ��� Event �Fi�j �Qi�j�  Fi���j��  Fi���j���

from Lemma 
�� that

PrfXi�j�� � Xi���j jX�Ui�j� � yg � � � �
�
� �
�
� �

�
� �

�
�

thus completing the proof�

Lemma ��
 For �i� j� � �m���n���

PrfFi���j�� j Fi�j � Qi�jg �
�
�
�

Proof� Recall that Fi���j�� equals �Xi�j�� � Xi���j�  Hi���j�� and write

PrfFi���j�� j Fi�j �Qi�jg

� PrfHi���j�� j �Xi�j�� � Xi���j�  �Fi�j � Qi�j�g � PrfXi�j�� � Xi���j j Fi�j �Qi�jg

� �
�
� PrfHi���j�� j �Xi�j�� � Xi���j�  �Fi�j � Qi�j�g

� �
�
�max

y
PrfHi���j�� jX�Ui�j��� � yg �

where the rst inequality follows from Lemma 
�� and y ranges over all Ui�j���congurations
in Fi�j �Qi�j such that yi�j�� � yi���j� By Lemma 
���a�"�c� we have for every such y�

PrfHi���j�� jX�Ui�j��� � yg � PrfV i���j�� jX�Ui�j��� � yg � f�
�
� �
�
g �

thereby implying the result�

We are now ready to prove an upper bound on EfFg�

��



Proposition ���

EfFg � �
��
�mn�O�m� n� �

Proof� Noting that Fi�j  Qi�j � �� for every �i� j� � �m���n�� we have

PrfFi���j��g �
P

A�fFi�j �Qi�j�Fi�j�Qi�jg
PrfFi���j�� j Ag � PrfAg

� �
�
� PrfFi�jg�

�
��
� PrfQi�jg�

�
�
� ��
 PrfFi�jg 
 PrfQi�jg�

� �
��
� PrfQi�jg 


�
��
� PrfFi�jg�

�
�

� �
��
� PrfFi���j��g 


�
��
� PrfFi�jg�

�
�
�

where the rst inequality follows from Lemmas 
��� 
��� and 
��� and the second inequality
follows from the inclusion Qi�j � Fi���j��� Summing over �i� j� � �m���n�� we obtain

EfFg � �
��
� EfFg 
 �

��
� EfFg� �

�
�mn�O�m� n� �

The result follows�

Proof of Proposition ���� Combine Propositions 
�
 and 
�� with the inequality
L � F �

The stronger bound ���� is obtained in 	��� through Proposition 
�
� using an improved
version of Proposition 
�� and showing that EfLg is bounded from above by �

��
EfFg�

By looking at the growth rate of jS�Bm�n�j for xed m while n increases� one can easily
obtain an upper bound on the capacity of a ��D constraint� see Weeks and Blahut 	����
Applying this method to Snib with m � � yields an upper bound of ������
� Similarly�
one can obtain lower bounds on cap�Snib� by considering the growth rate �with n� of the
number of elements in S�Bm�n� that can be freely concatenated vertically while satisfying
the constraint 	��� Thus� we can obtain a sequence of upper bounds and a sequence of
lower bounds on the capacity of the constraint� as a function of m� By computing those
sequences for Snib up to m � � and applying a rst�order Richardson extrapolation to each
sequence 	���� we have discovered that the extrapolated values agree in their rst ten decimal
places with ������������ � � � � and we conjecture that so does the value cap�Snib��

� Quasi�stationary measures

The probability measure �m�n induced by the bit�stu�ng encoders in the previous sections
does not seem to possess any stationary �shift�invariant� properties� Still� since the coding
rule is shift�invariant� one can guarantee a �quasi�stationary� induced measure by a proper
initialization of the boundary entries in the generated output array� We show this next�

Given any subset U � Z
�� denote by �r�s�U� the shifted subset

�r�s�U� � f�i�r� j�s� � �i� j� � Ug

��



and by 
U the inverted subset


U � f�
i�
j� � �i� j� � Ug �

For a U �conguration x we let �r�s�x� denote the shifted �r�s�U��conguration y� where
yi�r�j�s � xi�j for every �i� j� � U �

Let S be a ��D constraint and ��m�n�
�
m�n�� be a �two�dimensional� sequence of probability

measures� where each measure �m�n is dened on S��m�n� �the use of parallelograms here is
arbitrary� we could use rectangles Bm�n instead�� We say that the sequence ��m�n� is nested
if for every � � m � m�� � � n � n�� and x � S��m�n��

�m�n�x� �
X

y�S��
m��n�

� �

y��m�n��x

�m��n��y� �

One can verify that the probability measures that are induced by the bit�stu�ng encoders
in this paper form nested sequences �see ��� and ������

Let �� denote the set f�i� j� � Z
� � i � �� i�j � �g� Also� denote by S� the union

�US�U�� taken over all nite subsets U � ��� The nesting property allows to associate with
��m�n�

�
m�n�� a function � � S�� 	�� ��� which is dened for every U � �� and x � S�U� by

��x� �
X

y�S��m�n� �

y�U��x

�m�n�y� �

where �m�n� is such that U � �m�n� indeed� the nesting property guarantees that the value
��x� is independent of the choice of m or n� as long as U � �m�n� In addition� � denes
a probability measure on S�U� for every nite subset U � ��� We will hereafter represent
the sequence ��m�n�

�
m�n�� by the function � and call the latter a nested probability function

on S��

Given a nested probability function � on S� and a positive number N � dene the function
�N � S�� 	�� �� by

�N�x� �
�

N�

X
�r�s��BN�N

���r�s�x�� �

It can be easily seen that �N also denes a nested probability function on S
�� The next

result establishes the �quasi�stationary� property of �N�x��

Proposition ��� For �xed nonnegative integers m� m�� n� and n� and every x � S�����N��m�n�x��
 �N��m��n��x��
�� � �

N

�
jm
m�j� jn
n�j

�
� oN��� �

Proof� By denition�

�N��m�n�x�� �
�

N�

X
�r�s��BN�N

���r�s��m�n�x�� �
�

N�

X
�r�s��BN�N

���m�r�n�s�x�� �

�




Similarly�

�N��m��n��x�� �
�

N�

X
�r�s��BN�N

���m��r�n��s�x�� �

Therefore����N��m�n�x��
 �N��m��n��x��
��

�
�

N�

����P�r�s��BN�N
���m�r�n�s�x��

�


�P

�r��s���BN�N
���m��r��n��s��x��

���� �
The two sums in the right�hand side include �N� terms� yet all but at most �N�jm
m�j �
jn
n�j� terms cancel out� The result follows�

Let � be a nested probability function on S
�� We say that � is local if there exist a

nite subset W � Z
� and a conditional probability function � � �jW j � 	�� �� such that the

following three conditions hold�

L��� W � 
�� and ��� �� � W � Hereafter� we let the integer M be such that W �

�M���M�� and dene W � � W n f��� ��g �see Figure ����

r r r r

r r r r

r r r r

r r r re M

�

�M

�M

Figure ��� Set 
�M���M�� which contains W �

L��� For every y � S�W ��� X
x�S�W ��x�W ���y

�
�
x j �xu�v��u�v��W �

�
� � �

L��� For every m�n � M and x � S��m�n�� the value ��x� �� �m�n�x�� takes the form

��x� � �
�
x
�
���M�

m�n

��
�

Y
�i�j���m�nn��

�M�
m�n

�
�
xi�j j �xu�v��u�v���i�j �W ��

�
�

Observe that L"� implies that every element y � S�W �� can be extended to at least one
element x � S�W � such that x�W �� � y�

A local probability function is also causal 	��� it can be simulated �e�g�� during encoding�

by rst setting the entries at the boundary ��
�M�
m�n � and then scanning �m�n diagonal by

��



diagonal �or row by row� or alternating between diagonal and row scans� and setting the
entries according to the output of biased sequences� The measure ��� is local with M � d�
and the measure ���� is local with M � �� While we do make here assumptions about the
shape ofW � we point out that these assumptions can be relaxed by� say� using parallelograms
whose diagonals have slopes other than ��

Proposition ��� Let � be a local probability function on S� with a respective set W and
conditional probability function �� Given a positive integer N � de�ne the nested probability
function �N � S�� 	�� �� by

�N�x� �
�

N�

X
�r�s��BN�N

���r�s�x�� �

Then �N is local with the same set W and function ��

Proof� LetM be such thatW � 
�M���M��� We need to show that for every m�n �M
and x � S��m�n��

�N�x� � �N
�
x
�
���M�

m�n

��
�

Y
�i�j���m�nn��

�M�
m�n

�
�
xi�j j �xu�v��u�v���i�j �W ��

�
� ����

Fix x � S��m�n� and �r� s� � BN�N and dene the sets

C � �r�s
�
�m�n n ��

�M�
m�n

�
� D � �r�s

�
���M�

m�n

�
� and E � �m�r�n�s n �C �D�

�see Figure ���� As � satises L"�� it follows that for every y � S��m�r�n�s��

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b r r r r r r r r r

b b b b r r r r r r r r r

b b b b r r r r r r r r r

b b b b r r r a a a a a a

b b b b r r r a a a a a a

b b b b r r r a a a a a a

b b b b r r r a a a a a a

s n�s�����m�r���

r

�
m�r��

E D

C

��
�M rows

Figure ��� Sets C� D� and E�

��y� � ��y�D � E�� �
Y

�i�j��C

�
�
yi�j j �yu�v��u�v���i�j �W ��

�
� ����

��



Now�

���r�s�x�� �
X
y�J

��y� �

where
J �

n
y � S��m�r�n�s� � y�C �D� � �r�s�x�

o
�

Hence�

���r�s�x�� �
X
y�J

��y�D � E�� �
Y

�i�j��C

�
�
yi�j j �yu�v��u�v���i�j �W ��

�
	 
z �



� ��
�

and one can verify that

 �
Y

�i�j���m�nn��
�M�
m�n

�
�
xi�j j �xu�v��u�v���i�j �W ��

�
�

namely�  depends neither on the particular element y � J nor on �r� s� � BN�N �

Assume rst that  � �� Let z belong to the set

K �
n
z � S�D� E� � z�D� � �r�s

�
x����M�

m�n�
�o

and suppose further that ��z� � �� Let y be a �m�r�n�s�conguration such that y�D�E� � z
and y�C�D� � �r�s�x�� The right�hand side of ����� being equal to ��z��� is strictly positive�
hence� y is necessarily in S��m�r�n�s�� It follows that every element z � K with ��z� � �
can be extended to an element y � J � Therefore�X

y�J

��y�D � E�� �
X
z�K

��z� � �
�
�r�s

�
x����M�

m�n�
��

�

and� so� from ��
� we get

���r�s�x�� � �
�
�r�s

�
x����M�

m�n�
��
�  � ����

furthermore� ��
� implies that ���� holds also when  � �� The equality ���� is nally
obtained by averaging both sides of ���� over �r� s� � BN�N �

Given a local probability function � on S�� it follows from Propositions ��� and ��� that
the function �N is both quasi�stationary and local� and it shares with � the same set W
and conditional probability function �� that is� �N di�ers from � only due to the measure
on the boundary ��

�M�
m�n � Note that in ��� or ����� the conditional probability function � is

determined by the coding rule� this means that once we set the entries at the boundary� the
probability function �N can be simulated by the very same coding rule which induces ��

The proofs in Sections �"
 were based on global properties of �� such as bounds on
the expected values of the number of occurrences of a given event throughout �m�n� The

��



quasi�stationary property allows to obtain local properties as well� For example� by using
�N instead of �� we can strengthen Lemma ��� to

PrfCi�jg � dp � PrfBi�jg�O�d��N� and PrfRi�jg � dp � PrfBi�jg�O�d��N� �

both inequalities holding for every �i� j� � �m�n n ��
�d�
m�n�
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Appendix� Improved lower bounds for small d

We can further improve the bounds in Sections � and � by bounding the  double�stu�ng!
probability PrfMi�jg

�
PrfMhex

i�j g
�
more carefully� The following derivation is based on the

square lattice� and we use the same notations as in Section �� similar results can be obtained
for the hexagonal lattice�

For r � �� �� � � � � d�� denote by T �r�
i�j the event that Bi�j occurs and there are �exactly� r

locations �s� t� � $�i� j� which are not stu�ed from the locations outside of $�i� j�� Since

Mi�j �
�S

r	�T
�r�
i�j

�
� it follows that

PrfMi�jg �
X
r	�

PrfMi�j j T
�r�
i�j g � PrfT

�r�
i�j g �

Given the event T �r�
i�j � there will be no  double�stu�ng! from $�i� j� only when all the r

locations therein are set to �� this� in turn� occurs with probability ��
p�r� Thus

PrfMi�j j T
�r�
i�j g � p ��
 ��
p�r� �

and

PrfMi�jg �
X
r	�

p ��
 ��
p�r�PrfT �r�
i�j g

� p� PrfT ���
i�j g� p

�
�
 ��
p��

� X
r	�

PrfT �r�
i�j g

� p�
X
r	�

PrfT �r�
i�j g�

�
p
�
�
 ��
p��

�

 p�

� X
r	�

PrfT �r�
i�j g

� p�
X
r	�

PrfT
�r�
i�j g� p���
 p�

��X
r	�

PrfT �r�
i�j g

�

 PrfT ���

i�j g


�

��



where the inequality comes from the fact that p ��
 ��
p�r� � p ��
 ��
p��� for r � ��
Now� by Lemma ��� and ��� we haveX

r	�

PrfT �r�
i�j g � PrfBi�j n Si�jg � PrfBi�jg 
 p�d�� � PrfBu�vg

�see the denition of �u� v� in Section ��� Therefore� we conclude that

PrfMi�jg � p�
�
PrfBi�jg 
 p�d�� � PrfBu�vg

�
� p���
 p�

��
PrfBi�jg 
 p�d�� � PrfBu�vg

�

 PrfT ���

i�j g
�
� ����

We next derive an upper bound on PrfT
���
i�j g by identifying the patterns that result in

the event T ���
i�j � In what follows� we conne ourselves to the special case d � � and dene the

following four events�

Z���
i�j � �Bi�j  Xi���j��  Xi���j���

Z���
i�j � �Bi�j  Xi���j��  Xi���j���

Z���
i�j � �Bi�j  Xi���j��  Xi���j���

Z���
i�j � �Bi�j  Xi���j��  Xi���j���

�see Figure �
��

j
�

�
� � � �
� � � �
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j
�

� � � �
� � � �

� � � �

i� � �

Z���
i�j

j
�

� �
� � �
� � �

� � � �

i� � �

Z���
i�j
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�
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� � �
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� � �
i� � �

Z���
i�j

Figure �
� Events Z���
i�j � entries indexed by $�i� j� that are stu�ed are marked by  �!�

The next lemma can be easily veried�

Lemma A�� The following holds when d � � for all �i� j� � �m�n n ��
���
m�n�

�a� Z���
i�j � Bi�j  Bi���j��  Bi���j��  Bi���j��  Bi���j��	

�b� Z���
i�j � Z

���
i�j � Bi�j  Bi���j��  Bi���j��  Bi���j��  Bi���j��	

��



�c� Z���
i�j � Bi�j  Bi���j��  Bi���j��  Bi���j��  Bi���j��	

�d� Bi�j  Bi���j��  Bi���j��  Bi���j��  Bi���j�� � ��

It follows from Lemma A�� that T ���
i�j �

S�
���Z

���
i�j � By a procedure similar to the one that

develops inequality ���� we get for � � �� �� �� � that

PrfZ���
i�j g � p� � PrfBu����v���g

for some �u�� v�� � �u���i�j � v
���
i�j � � �m�n� Therefore�

PrfT ���
i�j g � Pr

nS�
���Z

���
i�j

o
�

�X
���

PrfZ���
i�j g � p�

�X
���

PrfBu����v���g �

Plugging this bound into ���� and setting d � �� we obtain

PrfMi�jg � p�
�
PrfBi�jg 
 p� � PrfBu�vg

�
� p���
 p�

��
PrfBi�jg 
 p� � PrfBu�vg

�

 p�

�X
���

PrfBu����v���g


�

Summing over all �i� j� � �m�n n ��
���
m�n yields

EfMg � p�	��
 p�� � ��
 p���
 �p� 
 p��� � EfBg 
 O�m� n� �

which leads to the improved lower bound for d � ��

H�����sq�m�n� � max
��p��

h�p�

� � �p
 p�	��
 p�� � ��
 p���
 �p� 
 p���

 ominfm�ng��� �

Similarly� we can derive improved lower bounds for d � � and d � � on the square lattice�

H�����sq�m�n� � max
��p��

h�p�

� � �p
 p�	��
 p�� � ��
 p���
 �p� 
 
p���
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and

H�����sq�m�n� � max
��p��

h�p�

� � �p
 p�	��
 p� � ��
 p���
 �p� 
 �p��
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The procedure is also applicable to the hexagonal lattice� For d � �� it yields the following
improved lower bound�

H�����hex�m�n� � max
��p��

h�p�

� � �p
 p�	� � ��
 p���
 �p� 
 ��p� 
 �p���

 ominfm�ng��� �
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