On cyclic MDS codes of length q over $GF(q)$

Ron M. Roth*
and Gadiel Seroussi**

ABSTRACT

It is shown that a cyclic code C of length q over $GF(q)$ is MDS if and only if either i) q is a prime, in which case C is equivalent, up to a coordinate permutation, to an extended Reed-Solomon code, or ii) C is a trivial code of dimension $k \in \{1, q-1, q\}$. Hence, there exists a non-trivial cyclic extended Reed-Solomon code of length q over $GF(q)$ if and only if q is a prime.

* Department of Electrical Engineering, Technion, Israel Institute of Technology, Haifa 32000 - Israel.
** Department of Computer Science, Technion, Israel Institute of Technology, Haifa 32000 - Israel.
1. Statement of results

An \((n,k,d)\) linear code \(C\) over a finite field \(F=GF(q)\) is maximum distance separable (in short, MDS) if \(d=n-k+1\). MDS codes are optimal in the sense that they achieve the maximum possible minimum distance for given length and dimension.

Let \(\alpha\) be a primitive element of \(GF(q)\). The \((q-1,k,q-k)\) Reed-Solomon code (in short, RS code) over \(GF(q)\) is the cyclic code generated by
\[
g(x) = \prod_{i=1}^{q-1} (x-\alpha^i),
\]
1 The \((q;k,q-k+1)\) extended RS code is obtained from the RS code by adding an overall parity check digit. The generator matrix of the extended code is

\[
G = \begin{bmatrix}
1 & 1 & 1 & \cdots & 1 & 1 \\
1 & \alpha & \alpha^2 & \cdots & \alpha^{q-2} & 0 \\
1 & \alpha^2 & \alpha^4 & \cdots & \alpha^{(q-2)q/2} & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & \alpha^{q-2} & \alpha^{2(q-2)} & \cdots & \alpha^{(q-2)(q-1)} & 0
\end{bmatrix}
\]

RS codes and extended RS codes are well known to be MDS. An extensive treatment of RS codes, and of MDS codes in general, can be found in [1, chs. 10 and 11].

Two linear codes are said to be equivalent if one is obtained from the other by a permutation of coordinates. In this note, we characterize all cyclic MDS codes of length \(q\) over \(GF(q)\). The results are summarized in the following theorem and corollary:

Theorem 1: Let \(C\) be a cyclic code of length \(q\) over \(F=GF(q)\). Then,

(i) If \(q\) is a prime, then \(C\) is equivalent to an extended RS code, and hence, it is MDS.

(ii) If \(q=p^m\) for some prime \(p\) and integer \(m>1\), then \(C\) is MDS if and only if \(C\) is one of the following trivial codes: the \((q,1,q)\) repetition code, the \((q,q-1,2)\) single-parity-check code, or the \((q,q,1)\) entire vector space \(F^q\).

1 Actually, we are dealing with narrow sense RS codes, which are the most commonly studied. In general, the roots of the code are defined to be \(\alpha^b, \alpha^{b+1}, \ldots, \alpha^{b+q-2-b}\), for some integer \(b\). In our case, \(b=1\).
Corollary 1: The extended Reed-Solomon code of length \(q \) and dimension \(2 \leq k \leq q - 2 \) over \(GF(q) \) is equivalent to a cyclic code if and only if \(q \) is prime.

The fact that all cyclic codes of prime length \(p \) over \(GF(p) \) are MDS had already been established by Assmus and Mattson in [2]. Here we identify those codes with extended RS codes of prime length, and we show that no other non-trivial extended RS codes can be cyclic.

II. Proofs

Proof of Theorem 1: Let \(C \) be a cyclic \((q,k,d)\) code over \(GF(q) \). Then \(C \) has a generator polynomial \(g(x) \) of degree \(q-k \), which satisfies [1, ch. 7]

\[g(x) \mid x^q - 1. \]

Since raising to the \(q \)-th power is a linear operation in \(GF(q) \), we have

\[x^q - 1 = (x - 1)^q \]

Hence, we must have

\[g(x) = (x - 1)^{q-k}. \]

Assume \(q = p^m \) for some prime \(p \) and integer \(m \geq 1 \). We distinguish now between the cases \(m = 1 \) and \(m > 1 \), giving, respectively, parts (i) and (ii) of the theorem.

Part (i): \(m = 1 \). Consider the polynomials

\[f_i(x) = \sum_{j=0}^{q-1} j^i x^j, \quad 0 \leq i \leq q-1. \]

(Arithmetic is carried out modulo the prime \(q \), and we define \(0^0 = 1 \)). We claim that \(f_i(x) \) is divisible by \((x-1)^{q-1-i}, 0 \leq i \leq q-1\), and therefore, the vectors representing the polynomials \(f_0(x), f_1(x), \ldots, f_{q-1}(x) \), are in \(C \). We prove the claim by induction on \(i \). For \(i = 0 \), we have

\[f_0(x) = \sum_{j=0}^{q-1} x^j = \frac{x^q - 1}{x - 1} = (x - 1)^{q-1}. \]

For \(1 \leq i \leq q-1 \), assume \((x-1)^{q-1-i} \mid f_{i-1}(x)\). Then, the formal derivative ([1, p. 98]) of \(f_{i-1}(x) \) satisfies \((x-1)^{q-1-i} \mid f'_i(x) \). However,

\[f'_i(x) = \left(\sum_{j=0}^{q-1} j^{i-1} x^j \right)' = \sum_{j=0}^{q-1} j^i x^{j-1}. \]

Hence, \(f_i(x) = x f'_i(x) \), and thus, \((x-1)^{q-1-i} \mid f_i(x)\). This completes the proof of
the claim. Let \bar{G} denote the $k \times q$ matrix whose rows are the vector representations of the polynomials $f_0(x), f_1(x), \ldots, f_{k-1}(x)$. Then,

$$
\bar{G} = \begin{bmatrix}
1 & 1 & 1 & \ldots & 1 \\
0 & 1 & 2 & \ldots & q-1 \\
0 & 1^2 & 2^2 & \ldots & (q-1)^2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 1^{k-1} & 2^{k-1} & \ldots & (q-1)^{k-1}
\end{bmatrix}.
$$

Since the first k columns of \bar{G} form a Vandermonde matrix, \bar{G} has dimension k, and, thus, it can be used as a generator matrix for C. Now, since α is a primitive element of $GF(q)$, the columns of \bar{G} are the same, up to ordering, as the columns of the matrix G defined in Section I. Therefore, C is equivalent to the $(q,k,q-k+1)$ extended RS code generated by G.

Part (ii): $m>1$. Let $r=q-k$. Then, $g(x)=(x-1)^r$. If $r \leq p^{m-1}$, then C includes the codeword (in polynomial representation)

$$
c(x) = (x - 1)^{p^{m-1}} = x^{p^{m-1}} - 1,
$$
of weight 2. Hence, the minimum distance of the code satisfies $d \geq 2$. If $d=2$, then to satisfy the MDS requirement we must have $k=q-1$, which implies that $g(x)=x-1$, and that C is the single-parity-check code. If $d=1$, then $k=q$, and C is the entire space F^q.

Consider now the case where $p^{m-1} < r \leq p^{m-1}$. Clearly, a necessary condition for C to be MDS is that all $r+1$ coefficients of $g(x) = (x - 1)^r$ be nonzero. Hence we require $\binom{r}{j} \not\equiv 0 \mod p$, for all j, $0 \leq j \leq r$. By Lucas' theorem on binomial coefficients modulo p [3, p. 68], these congruences are simultaneously satisfied if and only if $r \equiv -1 \mod p^{m-1}$. Hence $r = sp^{m-1} - 1$ for some integer s, $2 \leq s \leq p$. One of the codewords is $(x - 1)^{r+1} = (x^{p^{m-1}} - 1)^s$, whose weight is at most $s + 1$. Since $d = r + 1 = sp^{m-1} > s + 1$, this codeword must be the zero word. Hence $r + 1 = q$, or $r = q - 1$, and, therefore, C is the code generated by

$$
(x - 1)^{q-1} = \frac{(x - 1)^q}{x - 1} = \frac{x^q - 1}{x - 1} = \sum_{i=0}^{q-1} x^i.
$$
which is the \((g,1,g)\) repetition code.

Q.E.D.

Proof of Corollary 1: If \(q\) is prime, then, by part (i) of Theorem 1, the \((g,k,g-k+1)\) extended RS code is equivalent to the cyclic code generated by \((x-1)^{q-k}\). If \(q\) is not prime, then, by part (ii) of Theorem 1, there are no cyclic MDS codes of length \(q\) and dimension \(2\leq k \leq q-2\). Hence, since the extended RS code is always MDS, there are no cyclic extended RS codes with those parameters.

Q.E.D.

REFERENCES

