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Abstract

Consider a �d�� k���RLL constraint that is contained in a �d�� k���RLL con�

straint� where k� � �d� and d� � �� and �x a codeword length q � k�� It is

shown that whenever there exist block decodable encoders with codeword length
q for those two constraints� there exist such encoders where one is a subgraph of

the other� furthermore� both encoders can be decoded by essentially the same de�

coder� Speci�cally� a �d�� k���RLL constrained word is decoded by �rst using a

block decoder of the �d�� k���RLL encoder� and then applying a certain function to

the output of that decoder�

Keywords� Block decodable encoders� Deterministic encoders� Nested encoders�

Runlength�limited constraints�

� Introduction

In secondary storage systems� it is usually required that the recorded binary sequences
satisfy certain constraints� In the most common types of constraints� lower and upper
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bounds are set on the runs of ���s in binary words� Hereafter� by a �runlength� in a binary
word we mean the length of a run of ���s which is delimited either by ���s or by the
beginning or end of the word� For instance� the runlengths in the word

���������������������� ���

are �� �� 	� ��� and �� The �d� k�
runlength limited �RLL� constraint consists of all binary
words in which each runlength is at most k and�with the exception of the �rst and last
runlengths�at least d� For example� the current compact disk and DVD standards use
the constraint �d� k�  ��� ��� �the word in ��� satis�es this constraint�� The set of all
�nite binary words that satisfy the �d� k�
RLL constraint will be denoted by S�d�k��

Arbitrary input sequences need to be encoded into sequences that satisfy the con

straint� An encoding model that is commonly used for this matter is that of a �nite
state
encoder at a �xed rate p � q� where the input binary sequence is divided into blocks of
a �xed length p� and each such block is mapped� in a state
dependent manner� into a
codeword of length q� The sequence of generated codewords forms a word that satis�es
the constraint� A primary requirement from encoders is that we should be able to decode
�reconstruct� the input binary sequence from the output constrained sequence�

Of particular interest are block decodable encoders� Such encoders can be decoded by
a block decoder� which maps every codeword of length q into the respective p
block� inde

pendently of the context of that codeword within the output sequence of generated code

words� Whether a block decodable encoder exists depends on the speci�c constraint�i�e��
on d and k�and on the parameters p and q� Block decodable encoders are preferable
due to their simple decoding structure and their immunity against error propagation�

In the current emerging technology and development of erasable and writable dense
optical disks� it might be the case that home recorders will be able to write data at
a poorer resolution compared to disk manufacturers� This implies that the shortest
recordable mark of home recorders may be longer� which translates into requiring a
larger value of the parameter d� Home recorders might therefore use an encoder E� at
rate p� � q� for a �d�� k�
RLL constraint� while manufacturers will use an encoder E� at a
higher rate p� � q� for a �d�� k�
RLL constraint where d� � d��

In spite of the di�erent encoders� we would still like a disk player to have the capability
of decoding both encoding schemes� As an alternative approach to having on board a
separate decoder for each encoder� the authors have recently suggested in ��� that the
encoders E� and E� be designed so that their decoders can be combined to a great extent�
To this end� we assume that q�  q� �and so p� � p��� A decoder D� of E� will decode�
as before�sequences of the �d�� k�
RLL constraint by dividing each sequence of output
symbols into non
overlapping words of length q� and mapping each such word into an
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input binary p�
block� A decoder D� of E� will be obtained by �rst applying D� to the
sequence of the �d�� k�
RLL constraint to produce a sequence of binary p�
blocks� then�
a combinational circuit �function� � will map each decoded input p�
block into an input
p�
block �see Figure ��� If such a combined decoding scheme exists� we will say that the
encoder E� is �block� observable from E� and that �E�� E�� is an observable pair�

q bits
� Decoder

D� of E�
�

p� bits Function
�

�
p� bits

Decoder D� of E�

Figure �� Decoding of an observable pair �E�� E���

The main result of this work is presented in Sections 	 and �� where we consider for
i  �� � any two �di� ki�
RLL constraints that satisfy

k� � k� � �d� � �d� � � �

Given two respective rates pi � q where q � k�� we show that whenever there exist
block decodable encoders for those constraints at the given rates� one can construct
such encoders that form an observable pair� Furthermore� the encoders are nested� the
underlying graph presentation of one encoder is contained in the other� Our result relies
to a great extent on the characterization of Gu and Fuja in ��� for the range of parameters
for which there exist �individual� block decodable RLL encoders� and on the construction
of such encoders as presented in ����

An example for the case �d�� k��  �	� ��� and �d�� k��  ��� ���� which may have
practical applications� is presented in the appendix�

The next section contains the necessary background material�

� Background

The de�nitions we provide next are taken from ��� and ��� and are tailored for the special
case of RLL constraints�

	



A ��nite�state� encoder for S�d�k� at rate p � q is a �nite labeled directed graph E 
�V�E� L� with a nonempty �nite set V of states� a set E of edges� and an edge labeling
L � E � f�� �gq such that the following three conditions hold� �i� there are �p outgoing
edges from each state in E � �ii� the concatenation of labels of paths in E are all words in
S�d�k�� and �iii� E is lossless� namely� any two distinct paths with the same initial state
and terminal state generate di�erent words�

A label of an edge will be referred to as a codeword� The set of all codewords that
actually label edges of E will be denoted by ��E�� An encoder E is deterministic if the
outgoing edges from any given state are labeled distinctly� An encoder E is irreducible if
every state is accessible from any other state in E �

An encoder for S�d�k� at rate p � q exists if and only if p�q is at most the capacity
of S�d�k� ���� ����� Table ��� in ��� p� ��� lists the capacity values of several �d� k�
RLL
constraints�

A tagged encoder for S�d�k� at rate p � q is an encoder E  �V�E� L� where the
outgoing edges from each state in E are assigned distinct input tags from f�� �gp� For
tagged encoders� we will extend the de�nition of the mapping L � E � ��E� to L �
V � f�� �gp � ��E�� where L�u� s� is the label of the outgoing edge from state u that is
tagged by s� The reader is referred to ��� Section 	�	� for a description of the encoding
process using tagged encoders�

Let E�  �V�� E�� L�� and E�  �V�� E�� L�� be encoders �for possibly di�erent con

straints at possibly di�erent rates�� We say that E� is nested in E��or that �E�� E�� is a
nested pair�if V� � V�� E� � E�� and L� is the restriction of L� to E��

Note that encoders are deterministic or nested according to whether their underlying
untagged graphs are�

A tagged encoder is block decodable if edges labeled by the same codeword are tagged
by the same input tag� A block decodable encoder E at rate p � q can be decoded through
a block decoder which is a function D � ��E� � f�� �gp that maps a codeword w to the
input tag assigned to any edge labeled w� A block decodable encoder is necessarily
deterministic �with respect to the labels of the edges��

Let E� be a block decodable encoder for S�d��k�� at rate p� � q and let E� be a block
decodable encoder for S�d��k�� at rate p� � q such that S�d��k�� � S�d��k��� Except for
degenerate cases we will always have p� � p�� We say that E� is �block� observable from
E� if the following two conditions hold�

�� every sequence of codewords that is generated by a path in E� can also be generated
in E�� and �
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�� a block decoder D� � ��E�� � f�� �gp� of E� and a block decoder D� � ��E�� �
f�� �gp� of E� are related for some function � � f�� �g

p� � f�� �gp� by

D��w�  ��D��w�� for every w � ��E���

We say that E� is weakly�observable from E� if condition � is relaxed to require only that
��E�� � ��E���

We mention that condition � �respectively� its relaxed form� allows to assume that
when no errors are present� the decoder D� is fed by sequences of codewords �respec

tively� by individual codewords� that can be generated by E�� even when D� is applied to
sequences generated by E�� This provides the possibility of incorporating an error detec

tion mechanism into D�� such a mechanism will track sequences �respectively� codewords�
that cannot be generated by E��

We refer the reader to ��� for examples that demonstrate the de�nitions introduced
in this section� Speci�cally� Example 	�� in ��� presents a block decodable encoder E� for
S����� at rate � � �� which is observable from a block decodable encoder E� for S����� at rate
� � �� �We point out that in this example� E� can be transformed into another encoder for
S����� by eliminating one state �state �� and redirecting all its incoming edges� excluding
self
loops� into another state �state ��� This yields a two
state encoder E �� for S����� at
rate � � �� Since ��E ���  ��E��� the encoder E

�

� can be decoded by the block decoder of
E�� and E� is weakly
observable from E ��� On the other hand� E� is not �fully� observable
from E ��� the codeword sequence ����� ����� can be generated in E� but not in E

�

���

Example 	�	 in ��� presents a block decodable encoder for S����� at rate � � ��� which
is observable from a block decodable encoder for S������ at rate � � ���

In the appendix� we present a block decodable encoder for S������ at rate � � ��� which
is weakly
observable from a block decodable encoder for S������ at rate � � ��� In addition
to producing sequences that satisfy the respective constraints� these encoders also possess
certain properties that allow for DC control �see ��� Chapter ���� ���� �����

It was shown by Franaszek in �	� that there exists a deterministic encoder for S�d�k�
at rate p � q if and only if there exists a block decodable encoder for the same con

straint at the same rate� Gu and Fuja obtained in ��� an almost
full characterization
of the parameters p� q� d� and k for which there exist deterministic�and hence block
decodable�encoders for S�d�k� at rate p � q �see Section 	 below��

In ���� a wider notion of observability was de�ned which applies to encoders that are
not necessarily block decodable� It was then shown in ��� that for irreducible deterministic
encoders� the requirement of having nested encoders is equivalent to having observable
encoders �for the respective constraints at the same rates�� On the other hand� it was
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demonstrated in ��� Example 	��� that there are cases where there exist nested pairs of
block decodable encoders� yet there are no observable pairs of block decodable encoders�

� Observable encoders for d� � �

Denote by IN the set of all nonnegative integers� Given a �d� k�
RLL constraint� a positive
integer q� and two sets R�R� � IN� let L�q� d� k� R�R�� be the set of all words of length
q in S�d�k� in which the �rst runlength �of ���s� is in R and the last runlength is in R��
For r � IN� we will use the notation ��r� to denote the set fx � IN � x � rg� Similar
notations such as ��r� or �r� will have their obvious meanings�

Next we present a construction of a block decodable encoder E� for S�d��k�� at rate
p� � q that is observable from a block decodable encoder E� for S�d��k�� at rate p� � q� Our
construction assumes that the parameters di� ki� and q satisfy the chain of inequalities

q � k� � k� � �d� � �d� � � � ���

note that the second and fourth inequalities are necessary for having S�d� �k�� � S�d� �k���
In addition� by ��� it follows that for i  �� � it is required that

pi � log� jL�q� di� ki��di� �ki�j

in order to have block decodable encoders at rates pi � q for S�di�ki� �regardless of observ

ability�� To avoid degenerate cases� we will further assume that a strict inequality holds
in ��� in either the second or the fourth inequality �or both�� and that p� � p��

�The condition ��� is su�cient for our construction to work� and it may as well be the
case that this condition can be relaxed� although we do not discuss such a relaxation here�
Also observe that the �rst and third inequalities in ��� appear also in the Beenker
Immink
construction ���� which can be viewed as a predecessor of the Gu
Fuja construction �����

We will assume in this section that d� � �� deferring the treatment of the case d�  �
to Section ��

For i  �� �� we de�ne ni  �
pi� �i  f�� �� � � � � ni��g� and �i  ki � di � �� so�

n� � �n� and �� � ��� We adopt the convention that bit locations in a binary word
are indexed starting with �� The �rst runlength in a binary word w will be denoted by
��w��

�



��� Encoding tables

Our encoders� E� and E�� are de�ned through two tables� T and A� each consisting of n�
distinct words of length q� Only the �rst n� entries in each table will be used by E�� The
tables are described next� followed by the de�nition of the encoders in Section 	���

For i � f�� �g and a word w � L�q� d�� k�� ��i� �k��� let 	i�w� be the word obtained

from w by inverting the ��� at location ��w� � �i� The entries in T 
�
T �j�

�
j���

are distinct elements of L�q� d�� k���d�� �k�� such that the following two conditions are
satis�ed for j � ���

�� T �j� � L�q� d�� k���d�� �k���

�� If T �j� � L�q� d�� k����� � d�� �k�� then T �j � n��  	��T �j���

Hereafter� we will use the short
hand notation ��j� for ��T �j��� We will also let 
�w�
denote the word obtained from a binary word w by inverting the bit at location � in w�

Clearly� there is much freedom left in setting the entries in T � For example� we
may �ll the �rst n� entries in T consecutively by words from L�q� d�� k��r� �k�� for
descending values of r� starting with r  k��� and ending with r  d�� Then� we
continue �lling the table consecutively with elements from L�q� d�� k��r� �k�� for r 
d���� d���� � � � � d� so that T �j�n��  	��T �j��� until we reach the largest index j � ��

that satis�es T �j� � L�q� d�� k����� � d�� �k��� The remaining entries in T are words
from L�q� d�� k���d�� �k�� that haven�t been inserted so far�

The entries in A 
�
A�j�

�
j���

are distinct elements of L�q� d�� k����� �k�� that

satisfy the following conditions�

	� A�j� � L�q� d�� k����� �k�� for j � ���

�� If ��j�  �i � � for an index j � �i then A�j�  	i�T �j���

For example� for every j � ��� we can let A�j� be 
�T �j�� except when ��j� �
fd������g or when j � �� and ��j� � fd������g� For the remaining undetermined
entries �i�e�� when ��j�  d� or when j � �� and ��j�  d��� the relationship between the
entries A�j� and T �j� might be somewhat more involved�

Next we show �Proposition 	�� below� that tables T and A that satisfy conditions ���
can indeed be constructed� We �rst point out that if we deleted condition �� then the
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existence of T and A would follow from the Gu
Fuja construction ���� Indeed� Lemma A�
in ��� states that

jL�q� d� k��d��k�j � jL�q� d� k���� �k�j

whenever � � d � k and q � d� Recalling that n� and n� are required to satisfy

ni � jL�q� di� ki��di� �ki�j for i  �� � � �	�

there are su ciently many elements in L�q� d�� k���d�� �k�� and L�q� d�� k����� �k��
which can be assigned to the �rst n� entries in T and A� respectively� while satisfying
conditions � and 	� Also� there are enough remaining elements in L�q� d�� k��d�� �k��
and L�q� d�� k����� �k�� that can be used for the remaining entries of T and A� note
that to this end� condition � poses no impediment �recall that n� � �n���

It is condition � where the Gu
Fuja result needs to be re�ned� since this condition
introduces cases where certain elements of L�q� d�� k����� �k�� are forced to be assigned
to entries A�j� while the respective entries T �j� are not in L�q� d�� k���d�� �k�� �hence�
the inequality jL�q� d�� k���d�� �k��j � jL�q� d�� k����� �k��j does not guarantee that we
have enough available elements in L�q� d�� k����� �k�� that can be assigned to the �rst
n� entries in A�� By condition �� such a situation occurs when �and only when� T �j�
belongs to the set

X 

�
w � L�q� d�� k���� � �� �k�� n L�q� d�� k���d�� �k�� �

	��w� � L�q� d�� k���� �k��

�
�

Since the image under 	� of each word w � X is in L�q� d�� k���� �k��� it follows that
w violates the �d�� k��
RLL constraint only in its �rst runlength� which may be equal to
either k� � � or k� � �� This implies that X is nonempty only if �� � fk�� k���g and

jX j 

�
jL�q�k���� d�� k���d�� �k��j if ��  k�
jL�q�k��	� d�� k���d�� �k��j if ��  k� � �

�

Since jL�t� d�� k���d�� �k��j is nondecreasing with t� we thus have

jX j � jL�q�k���� d�� k���d�� �k��j � ���

Proposition ��� Suppose that

q � k� � k� � �d� � �d� � �

and that ��� is satis�ed by n� and n� where n� � �n�� There exist tables

T � �L�q� d�� k���d�� �k���
n� and A � �L�q� d�� k����� �k���

n� �

each consisting of distinct entries� such that conditions ��� hold�
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Proof� In view of the foregoing discussion� it su ces to show that

jL�q� d�� k���d�� �k��j � jL�q� d�� k����� �k��j � jX j �

Letting ��q� stand for jL�q� d�� k���d�� �k��j� we �rst note that

��q� 
k���X

i	d���

��q�i� � ���

Substituting q�� for q� we get

��q��� 
k���X

i	d���

��q���i� 
k���X

i	d���

��q�i� � ���

We now subtract respective sides of ��� and ��� to yield

��q�� ��q���  ��q�d����� ��q�k���� � ��q���� ��q�k���� � ���

with the inequality holding since t �� ��t� is nondecreasing� Noting that ��q�i� 
jL�q� d�� k��i��� �k��j for i  �� �� we thus obtain from ����

��q� � ��q��� � ��q���� ��q�k����

 jL�q� d�� k���� �k��j� jL�q� d�� k���� �k��j � ��q�k����

� jL�q� d�� k����� �k��j � jX j �

where the second equality follows from ���� This leads to the desired result�

Following arguments similar to those in ���� it can be shown that through a proper
ordering of the entries in T and A� enumerative coding can be applied to compute
e ciently the values T �j� and A�j� for any given index j ��� Chapter ��� In practice� the
tables are generated only once and then hard
wired into the encoders�

��� Encoder graphs

For i  �� �� the tagged encoder Ei  �Vi� Ei� Li� consists of a set of ki states�

Vi  f�� �� � � � � ki��g �

We regard the input tags as integers j � �i and de�ne the labeling Li � Vi � �i �
L�q� di� ki���� �ki� for every u � Vi and j � �i as follows�

Li�u� j� 

����
���
T �j� if ki � ��j� � u and u � d�
	i�T �j�� if ki � ��j� � u � di
A�j� if

n
ki � ��j� � u and u � di

o
or u � d�

�
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The terminal state of an edge labeled w is v� where v equals the last runlength in w�
Note that Li�u� j� is well
de�ned when ki � ��j� � u � di� in this case we always have
��j� � �i and� so� T �j� belongs to the domain of 	i�

One can readily verify that each sequence of codewords that is generated by Ei forms
a binary word that belongs to S�di �ki��

Lemma ��� For i  �� �� the set ��Ei� can be partitioned into ��Ei�  Ti � !i �Ai�
where

Ti 
n
T �j�

o
j��i

� !i 
n
	i�T �j��

o
j��i 
 ��j���i��

� and Ai 
n
A�j�

o
j��i

�

In particular� for every w � ��Ei��

w �

���
��

Ti if ��w� � di
!i if � � ��w� � di
Ai if ��w� � �

�

Proof� By the de�nition of the labeling Li � Vi ��i � L�q� di� ki���� �ki� it follows
that ��Ei� � Ti � !

�

i � Ai� where

!�i 
n
	i�T �j��

o
j��i 
 ��j���i

�

Furthermore� by the way A is constructed �condition �� we have

!�i n !i 
n
	i�T �j��

o
j��i 
 ��j�	�i��

� Ai �

Therefore� ��Ei� � Ti � !i � Ai�

Conversely� we have Li��� j�  T �j� and Li�d�� j�  A�j� for every j � �i� and
Li�ki���j���� j�  	i�T �j�� when ��j� � �i� Therefore� Ti � !

�

i � Ai � ��Ei��

The sets Ti� !i� and Ai are disjoint� thereby forming a partition� from the de�nition
of T � 	i� and A� the �rst runlength of any given word w � ��Ei� determines the partition
element to which w belongs�

When u � v � d�� states u and v in Ei are in fact identical� in these states� the
outgoing edges that are tagged by j have the same label� A�j�� and therefore also the
same terminal state �which is determined by the last runlength of A�j��� Therefore� we
can merge the states d�� d���� � � � � ki�� by deleting them and re
directing their incoming
edges into one new state� �d�� ki���� whose outgoing edges�with their tagging� labeling�
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and terminal states�are the same as those in u  d�� This turns each encoder Ei into
an encoder with only d� � � states� �Furthermore� if we ignored observability and were
interested only in constructing a block decodable encoder for S�d��k��� then E� could be
simpli�ed to have at most d� � � states�� Yet� for clarity� we will maintain hereafter the
de�nition of Ei in its unmerged form� namely� having ki states�

�In the typical case where ni is strictly smaller than jL�q� di� ki��di� �ki�j we have
more "exibility in selecting the codewords when constructing the encoders� For example�
the codewords can sometimes be restricted to be from a set L�q� di� ki���� �r� where r
is now smaller than ki� In fact� this is the case in the Beenker
Immink construction ����
where we have r  �i� and this will be done in the appendix� where r  � while
ki  ��� The additional "exibility in selecting the codewords may allow more merging
opportunities� thereby reducing the number of resulting states� The reader is referred
to ��� Section ������ for more general settings in which merging can be applied��

��� Decoding

For i  �� � let
Di � ��Ei�� �i

be de�ned as follows� For a codeword w � ��Ei�� let w
� be obtained from w by inverting

the ��rst� ��� at location ��w�� Then�

Di�w�  index j for which

���
��
T �j�  w if ��w� � di
T �j�  w� if � � ��w� � di
A�j�  w if ��w� � �

� ���

Lemma ��� Di is a block decoder of Ei�

Proof� This follows directly from the partition in Lemma 	���

Let
D � ��E�� � ��E��� ��

be the following extension of D� to the domain ��E�� � ��E���

D�w�  index j for which

���
��
T �j�  w if ��w� � d�
T �j�  w� if � � ��w� � d�
A�j�  w if ��w� � �

� ���

��



Obviously� D��w�  D�w� for every w � ��E��� Note that the domains of D and D�

might di�er� since ��E�� is not necessarily a subset of ��E��� This means that �E�� E�� is
not necessarily a weakly
observable pair�

�Indeed� suppose that d� � � and let j � �� be such that ���� � ��T �j�� � ���d��
Consider the word w  	��T �j��� On the one hand� Lemma 	�� implies that w � ��E���
On the other hand� since � � ��w� � d�� the word w is neither an entry in A nor in T �
furthermore� the second runlength in w is ���� and� as such� w cannot be in the range
of 	�� Hence� it follows from Lemma 	�� that w 	� ��E����

Yet� the next lemma will show that we are nearly done in obtaining a weakly

observable pair�

Let �mod � �� � �� map each integer in �� to its remainder in �� when divided by n��
That is� recalling that ni  �

pi� the function �mod chops o� the p� � p� most
signi�cant
bits of the binary representation of its argument�

Lemma ��� D��w�  �mod�D�w�� for every w � ��E���

Proof� Let w be a word in ��E��� Clearly� D�w�  D��w� whenever ��w� � d� or
��w� � d�� Assume now that � � d� � ��w� � d� and let j � �� be the value of D��w��
In this case we have w  	��T �j�� where T �j� � L�q� d�� k������d�� �k��� By the way
T is constructed it follows that T �j � n��  	��T �j��  w and� so� j  D�w� � n� 
�mod�D�w���

We may interpret Lemma 	�� as stating that E� is �almost observable� from E�� indeed�
D� when restricted to the domain ��E��� is a decoder of E��

��� Incorporating full observability

We next modify the encoder E� to obtain �full� observability� Speci�cally� we construct
a tagged encoder E ��  �V

�

� � E
�

�� L
�

�� with V
�

�  V�� where each state has n� outgoing edges
that are tagged by ��� The labeling L

�

� � V� � �� � L�q� d�� k����� �k�� is de�ned for
every �u� j� � V� � �� as follows�

L�

��u� j� 

�
	��T �j�� if j � �� and d� � d� � k� � ��j� � u � d�
L��u� j� otherwise

�

The terminal state of an edge labeled w in E �� is a state v� where v equals the last
runlength in w�

��



We �rst need to establish that E �� is an encoder for S�d��k��� By construction� each
state in E �� has n� outgoing edges� and it is easy to see that E

�

� generates only sequences
in S�d��k��� The next lemma implies the losslessness of E

�

��

Lemma ��� �The untagged version of� E� is deterministic�

Proof� Suppose to the contrary that there is a state u � V� and two input tags�
j � �� and j � � �� n��� such that d� � d� � k� � ��j� � u � d� and

	��T �j��  L�

��u� j�  L�

��u� j
��  L��u� j

�� �

Using the notations of Lemma 	��� this implies that 	��T �j�� � !�
�T��!��A��� Since
the �rst runlength of each word in !� is greater than � and the second runlength equals
����� the set !� intersects with neither A� nor !�� It follows that 	��T �j�� � !� 
 T��
which occurs only when j �  j � n� and 	��T �j��  T �j ��� This� in turn� implies

��j�  ��	��T �j��� � ��  ��j �� � �� � d� ���  k� � d� � d� � � �

Hence� k� � ��j� � d� � d�� thus contradicting our assumption on j�

Lemma ��� �The untagged version of� E� is nested in E ���

Proof� Given �u� j� � V����� we show that there exists j
� � �� such that L

�

��u� j
�� 

L��u� j�� To this end� we distinguish between several cases�

Case �� k� � ��j� � u and u � d�� In this case we have L
�

��u� j�  L��u� j�  T �j� 
L��u� j��

Case �� d� � d� � k� � ��j� � u � d�� Here we have L
�

��u� j�  	��T �j��  L��u� j��

Case �� k� � ��j� � d� � d� and k� � ��j� � u � d�� In this range�

��j� � k� � �d� � d�� � �  �� � d� �

which� in turn� implies that T �j � n��  	��T �j�� and that

k� � ��j � n��  k� � ��j� � �� � �� � d� � u �

Hence�

L�

��u� j � n��  L��u� j � n��  T �j � n��  	��T �j��  L��u� j� �

�	



where in the last equality we make use of the condition k� � ��j� � u � d��

Case 	� u � d�� Here we have� L
�

��u� j�  L��u� j�  A�j�  L��u� j��

It follows from all cases that every codeword that can be generated from state u in
E� can also be generated from state u in E

�

�� while terminating in the same state� This
implies that E� is nested in E

�

��

We point out that even though E� is nested in E
�

�� the assignment of input tags to
codewords may di�er in the two encoders� In fact� from the proof of Lemma 	�� we
see that such a di�erence occurs in �and only in� case 	� where we have L��u� j� 
L�

��u� j�n��� that is� edges labeled by L��u� j� are assigned the input tag j in E� and the
input tag j �  j � n� in E

�

�� It follows that if D
�

� � ��E
�

�� � �� is a block decoder of E
�

�

then the block decoder of E� satis�es D��w�  �mod�D
�

��w�� for every w � ��E��� One
can readily check that a block decoder of E �� is obtained by restricting the mapping D
in ��� to the domain ��E ���� Hence� we reach the following conclusion�

Proposition ��� �E�� E
�

�� is a nested and observable pair�

� The case d� � �

Our construction for the case d�  � follows the framework presented in Section 	� with
a modi�cation in the way the tables are constructed� The case d�  � is treated in
Section ���� while the construction for larger values of d� is presented in Section ����

��� d� � d� � �

In this case we have �i  ki� so� conditions � and � on T and A in Section 	�� become
vacuous� On the other hand� both T and Amay now contain entries whose �rst runlength
is �� so� we will require that the two tables coincide on such entries� Speci�cally� we
require that each of the tables T and A consist of distinct entries such that the following
conditions hold for i  �� � and every j � �i�

�� T �j� � L�q� �� ki���� �ki��

�� If ��j�  � then A�j�  T �j��

	� If ��j� � � then A�j� � L�q� �� ki��� �ki��

��



For example� we can let A�j�  
�T �j�� whenever ��j� � ��

Given such tables� the encoders are de�ned as in Section 	��� For di  �� the labeling
Li � Vi � �i � ��Ei� reduces to

Li�u� j� 

�
T �j� if u  �
A�j� if u � �

�

It follows that encoder E� is nested in E�� furthermore� edges in the two encoders that are
labeled by the same codewords have the same input tags� Note that the states of each
encoder Ei can be merged into two states� � and ��� ki����

A block decoder D� � ��E��� �� of E� is given by

D��w�  index j for which

�
T �j�  w if ��w� � �
A�j�  w if ��w�  �

� ����

and a block decoder of E� is obtained by restricting the domain of D� to ��E���

��� d� � � and d� � �

In this case� the table A is not shared by the two encoders� Speci�cally� we de�ne three
tables� T 

�
T �j�

�
j���

� A 
�
A�j�

�
j���

� and A� 
�
A��j�

�
j���

� while T and A are

still accessed by E� and the �rst n� entries in T are accessed by E�� the latter encoder
will now access A� instead of the �rst n� entries in A�

The entries in T are distinct elements of L�q� �� k����� �k��� and the entries in A�

are distinct elements of L�q� d�� k����� �k�� such that the following conditions hold for
every j � ���

��� T �j� � L�q� d�� k���d�� �k���

��� If T �j� � L�q� d�� k����� � �� �k�� then T �j � n��  	��T �j���

	�� If ��j� 	� fd���� � �g then A��j�  
�T �j���

��� If ��j�  �� � � then A��j�  	��T �j���

��� If A��j� � L�q� d�� k���� �k�� then T �j � n��  A��j��

Conditions �� through �� have their counterparts in Section 	�� �withA� now replacing
A�� except that condition 	� is now stronger� Note that since ��j� can never take the
value �� � �  k� � �� condition �� is simpler than condition � in Section 	���

��



Condition �� is new and may a�ect the value of T �j�n�� only when ��j� � fd������g�

The inequality n� � jL�q� �� k����� �k��j guarantees that there are su ciently many
distinct elements in L�q� �� k����� �k�� which can be inserted in T � and the Gu
Fuja
construction allows to �ll in the tables T and A� so that conditions ����� hold�

The table A consists of distinct elements of L�q� �� k����� �k�� that satisfy the fol

lowing conditions for every j � ���

��� If A��j� � L�q� d�� k���� �k�� for j � �� then A�j�  A��j��

��� If ��j�  � then A�j�  T �j��

��� If ��j� � � then A�j� � L�q� �� k���� �k���

For example� when ��j� � �� we can satisfy condition �� by letting A�j�  
�T �j���
unless A�j ��  A��j

��  
�T �j�� for some j � � �� n fjg� By conditions 	� and ��� the
excluded case can occur only when ��j ��  d�� where instead we can let A�j� be 
�T �j

����
Note that when j � �� and ��j� 	� fd���� � �g� conditions 	�� ��� and �� become

A��j�  A�j�  
�T �j�� �

and when j � �� and ��j�  �� � �� conditions ��� ��� �� and �� become

A��j�  A�j � n��  T �j � n��  	��T �j�� �

Irrespective of the value of ��j�� we have

A��j� �
n
A�j��A�j � n��

o
for every j � �� � ����

The encoders Ei  �Vi� Ei� Li� are now de�ned as in Section 	��� except that E� now
accesses A� instead of A� That is� the labeling L� � V� ��� � ��E�� is given by

L��u� j� 

���
��
T �j� if k� � ��j� � u and u � d�
	��T �j�� if k� � ��j� � u � d�
A��j� if u � d�

�

and L� � V� � �� � ��E�� is given by

L��u� j� 

�
T �j� if k� � ��j� � u and u � d�
A�j� if k� � ��j� � u or u � d�

�

A block decoder D� of E� is obtained by substituting A� for A in ���� and a block
decoder D� of E� is given by �����

��



Lemma ��� �E�� E�� is a nested pair�

Proof� As was the case in the proof of Lemma 	��� we show that for every �u� j� �
V� � �� there is j

� � �� such that L��u� j
��  L��u� j��

Case �� k� � ��j� � u and u � d�� In this case we have L��u� j�  L��u� j�  T �j��

Case �� k� � ��j� � u � d�� Here we have

L��u� j�  	��T �j��  T �j � n��  L��u� j � n�� �

where the last equality follows from

k� � ��j � n��  k� � ��j� � �� � �� � d� � u �

Case �� u � d�� By ���� we have�

L��u� j�  A��j� �
n
A�j��A�j � n��

o
�

Hence� L��u� j� �
n
L��u� j�� L��u� j � n��

o
�

Lemma ��� D��w�  �mod�D��w�� for every w � ��E���

Proof� Let j  D��w� for a word w � ��E��� Then�

w 

�����
����
T �j� if ��w� � d�
	��T �j��  T �j � n�� if � � ��w� � d�
A��j�  T �j � n�� if ��w�  �
A��j�  A�j� if ��w�  �

�

Therefore� D��w� � fj� j � n�g�

The following result combines Lemmas ��� and ����

Proposition ��� �E�� E�� is a nested and observable pair�

��



Appendix� ��� ����RLL and ��� ����RLL encoders

We describe here a block decodable �	� ���
RLL encoder E������ at rate � � �� which is
weakly
observable from a block decodable ��� ���
RLL encoder E������ at rate � � �� �the
respective capacities of the constraints are approximately ������ and �������� Depending
on the encoder state� certain input tags can map to two codewords which di�er in their
parity �odd#even� number of ��s� This freedom allows to control the DC level of the
recorded signal ��� Section ������� Such a provision is present also in the compact disk
and DVD coding schemes ��� �yet� the encoding rate in the compact disk is � � ��� and
the encoder in the DVD standard is not block decodable� see also ��� Section �������

The encoders herein have been obtained by combining the method presented in this
paper with the one in ��� �in fact� the encoder E������ is very similar to one of the encoders
in ����� This� in turn� has required some deviations from the model presented in Section 	�

The main building block of the two encoders is one encoding table� which consists of
��� distinct codewords� each of length �� bits� The �rst ��� entries in the table form
the table T of Section 	��� and the remaining ��� entries form essentially the table A�
the larger number of entries in A results from having more than one codeword mapped
to certain input tags� The encoding table� which will be denoted by T kA� is shown in
Table �� and Table � shows a partition of the address range of T kA according to the
runlength properties of its entries� While E������ accesses the whole table� the encoder
E������ accesses the entries whose addresses have the form 	� �t for t  �� �� � � � � ��� �the
boldface entries in Table ��� Note that this deviates from our convention in Section ��
according to which E������ would access the �rst �� entries in T and A� this modi�cation�
however� allows to make use of the simple encoding scheme as presented in ����

None of the three elements in L���� 	� ��������� can be generated by E������� thereby
making condition � in Section 	�� vacuous� Furthermore� although the construction in
Section 	�� allows to include codewords whose last runlength is �� the six elements in
L���� �� �������� have been excluded from T kA� thus resulting in fewer encoder states
�see below�� In addition� when ��j�  �i � � for an index j � �i� we have allowed A�j�
to take any value from L���� di� ki������ and re
de�ned 	i�T �j�� to be equal to A�j��
This has made condition � vacuous and introduced more "exibility in setting up the table
entries so as to accommodate the technique in ����

Input tags are �
bit bytes in f�� �g�� where in the case of E������ the two least
signi�cant
bits of the bytes are �xed to be ����� �Therefore� to bridge the di�erence between the
order of entries in the tables here and that in Section 	��� we can associate each input
tag s  s�s� � � � s� � f�� �g� with an index j  j�s� � ��  f�� �� � � � � ���g� where� say�
j�s�  ����

P�
i	� si�

��i��

��



addr� Contents of table �hexadecimal
�dec� � � � 	 � � � � � � �� �� �� �	 �� ��

� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

�� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

	� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

�� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

�� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

�� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

�� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

	�� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

	�� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

		� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

	�� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

	�� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

	�� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

�	� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����
��� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����
��� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����
��� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����
��� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����
��� ���� ���� ����

Table �� Encoding table T kA� The boldface entries indicate codewords accessed by
E�������

��



Address Contents of entries taken from
range address � 	 �mod �� address 	� 	 �mod ��

����� ���� L���� 	� �������� L���� �� ��� f�� ��g����
T ����� ���� L���� 	� ��� f�� �� �g���� L���� �� ��� f�� �� �� �g����

����� ���� L���� 	� ��� f	� �� �g���� L���� �� ��� f	� �� �g����
����� ���� L���� 	� �������� L���� �� ��������
����� 	��� L���� 	� �������� L���� �� ��������

A �	��� ���� L���� 	� �������� L���� �� ��������
����� ���� L���� �� ��������

Table �� Skeleton of encoding table�

The encoder E������ has four states� �� �� �	� ��� and ��� �� �state notation follows the
one introduced in Section 	��� namely� �r� r�� is the terminal state of all edges labeled
by codewords whose last runlength lies between r and r��� Again� this deviates from
Section 	��� according to which we would expect E������ to have�after merging�the set
of states f�� �� �� �	� ��g� As explained in ���� we can gain DC control by not applying the
merging to its full extent� therefore� instead of having a state �	� ��� we have ended up
with more states� namely� �	� ��� ��� ��� and �� On the other hand� it turns out that at
a rate � � ��� we can spare all codewords whose last runlength is either � or �� thereby
deleting states � and ��

The encoder E������ has also four states� �� �� ��� ��� and ��� �� �note again the di�erence
from Section 	�� and that state � has been deleted also from E������� since there are no
entries in T kA whose last runlength is ��� Certain elements in L���� �� �������� have
been placed among the �rst ten entries in T kA so that they are inaccessible from state ��
this prevents the ��
bit pattern ������������������������������ from appearing any

where in the coded bit stream� thus making such a pattern suitable for synchronization�

Encoding is carried out as follows� given an input byte s� a ten
bit address is formed
by pre�xing s with two bits� This two
bit pre�x depends on how the value� jsj� of s as
an integer compares with two thresholds� T� and T�� These thresholds� in turn� depend
on the current state of the encoder� The thresholds and pre�xes of each encoder are
summarized in Tables 	 and �� The second column in those tables shows the address
range of the entries in T kA that can be accessed from any given state�

There are cases where more than one pre�x is possible� resulting in two di�erent
codeword candidates which have di�erent parity of number of ��s� such codeword candi

dates are located in T kA at addresses that are ��� apart� Furthermore� both codeword
candidates label edges that terminate in the same state and� therefore� replacement of a

��



State Address Thresholds �decimal� Pre�xes �binary�
range T� T� ��jsj�T� T��jsj�T� T��jsj����

� ����� ���� ��� ��� � � ��
� ����� 	��� ��� ��� �� �� or �� ��
�	� �� ����� ���� ��� ��� �� �� or �� ��
��� �� ����� ���� ��� ��� �� �� or �� ��

Table 	� Thresholds and pre�xes for E������� The two least
signi�cant bits of s are �xed
to be �����

State Address Thresholds �decimal� Pre�xes �binary�
range T� T� ��jsj�T� T��jsj�T� T��jsj����

� ����� ���� ��� ��� � � ��
� ����� 	��� ��� ��� �� �� or �� ��
��� �� ����� ���� �	� ��� �� or �� �� �� or ��
��� �� ����� ���� �	� ��� �� or �� �� �� or ��

Table �� Thresholds and pre�xes for E�������

codeword with its alternate can be done locally within a generated sequence of codewords
without a�ecting preceding or following codewords� This simple encoding mechanism
follows from the fact that codewords generated from any given state are located in a
contiguous segment of T kA� This applies also to E������ if we regard only entries that are
located at addresses of the form 	 � �t�

In order to obtain DC control� we need to be able to generate more than �� codewords
from certain states in E������� and more than ��� codewords in E������� Consider for example
the codewords that can be generated from states u � d�� While in Section 	�� we have
restricted the generated codeword to be taken only from A� here we allow the codeword
to be also T �j� as long as ki � ��j� � u� Also observe that in all instances where
a codeword 	i�T �j�� can be generated we necessarily have ��T �j��  �i � � and� so�
	i�T �j��  A�j��

Yet� on the other hand� we require that two codeword candidates for the same input
tag have di�erent parity� label edges that terminate in the same state� and be located in
T kA at addresses ��� apart� Due to those conditions� only �	 entries in A are accessible
by E������� compared to �� entries in Section 	���

��



A block decoder w �� D�������w� of E������ is obtained by deleting the two most

signi�cant bits of the ��
bit address of the entry in T kA that contains the codeword w�
When restricted to the domain ��E�������� this is also a block decoder of E������� with the
range consisting of bytes having least
signi�cant bits �����

The encoder E������ is weakly
observable from E������� Nesting and full observability
can be attained if we do not exclude the ��
bit pattern ��������� � � ����� from appearing
in the bit stream� we then need to slightly modify T kA and unmerge state ��� �� in E������
into states � and �	� ���

The power spectral densities of the two encoders are shown in Figure �� We have used
the same scaling of the axes as in ��� and applied the same local optimization �through en

coding look
ahead� when selecting the generated codeword between two codeword candi

dates� The power spectral density of E������ is virtually the same as that of the ��� ���
RLL
encoder in ����
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Figure �� Power spectral densities of E������ and E������� with encoding look
ahead of two
bytes�

��



References

��� R�L� Adler� D� Coppersmith� M� Hassner� Algorithms for sliding block codes
	 an application of symbolic dynamics to information theory� IEEE Trans
 Inform

Theory� �� ����	�� �����

��� G�F�M� Beenker� K�A�S� Immink� A generalized method for encoding and de

coding run
length
limited binary sequences� IEEE Trans
 Inform
 Theory� �� ����	��
��������

�	� P�A� Franaszek� Sequence
state methods for run
length
limited coding� IBM J

Res
 Develop
� �� ������� 	���	�	�

��� J� Gu� T�E� Fuja A new approach to constructing optimal block codes for
runlength
limited channels� IEEE Trans
 Inform
 Theory� �� ������� ��������

��� J� Hogan� R�M� Roth� G� Ruckenstein� Nested input
constrained codes� IEEE
Transactions on Information Theory� �� ������� �	����	���

��� K�A�S� Immink� Codes for Mass Data Storage Systems� Shannon Foundation Pub

lishers� The Netherlands� �����

��� K�A�S� Immink� EFMPlus� The coding format of the multimedia compact disc�
IEEE Trans
 Consum
 Electron
� �� ������� ��������

��� B�H� Marcus� R�M� Roth� P�H� Siegel� Constrained Systems and Coding for
Recording Channels� in Handbook of Coding Theory� V�S� Pless and W�C� Hu�man
�Editors�� Elsevier� Amsterdam� ����� ��	�������

��� R�M� Roth� On runlength
limited coding with DC control� IEEE Trans
 Commun
�
�� ������� 	���	���

���� C�E� Shannon� The mathematical theory of communication� Bell Sys
 Tech
 J
� ��
������� 	�����	�

�	


